提交 8a3867e1 编写于 作者: L liuruilong

add half judge

上级 7a455b07
...@@ -7,7 +7,7 @@ ...@@ -7,7 +7,7 @@
<key>paddle-mobile-demo.xcscheme</key> <key>paddle-mobile-demo.xcscheme</key>
<dict> <dict>
<key>orderHint</key> <key>orderHint</key>
<integer>2</integer> <integer>1</integer>
</dict> </dict>
</dict> </dict>
<key>SuppressBuildableAutocreation</key> <key>SuppressBuildableAutocreation</key>
......
...@@ -33,7 +33,7 @@ class MobileNet_ssd_hand: Net{ ...@@ -33,7 +33,7 @@ class MobileNet_ssd_hand: Net{
return " \(res)" return " \(res)"
} }
func fetchResult(paddleMobileRes: ResultHolder<Float32>) -> [Float32]{ func fetchResult(paddleMobileRes: ResultHolder<Float32>) -> [Float32] {
guard let interRes = paddleMobileRes.intermediateResults else { guard let interRes = paddleMobileRes.intermediateResults else {
fatalError(" need have inter result ") fatalError(" need have inter result ")
...@@ -46,12 +46,13 @@ class MobileNet_ssd_hand: Net{ ...@@ -46,12 +46,13 @@ class MobileNet_ssd_hand: Net{
guard let bboxs = interRes["BBoxes"], bboxs.count > 0, let bbox = bboxs[0] as? Texture<Float32> else { guard let bboxs = interRes["BBoxes"], bboxs.count > 0, let bbox = bboxs[0] as? Texture<Float32> else {
fatalError() fatalError()
} }
var scoreFormatArr: [Float32] = score.metalTexture.realNHWC(dim: (n: score.originDim[0], h: score.originDim[1], w: score.originDim[2], c: score.originDim[3])) var scoreFormatArr: [Float32] = score.metalTexture.realNHWC(dim: (n: score.originDim[0], h: score.originDim[1], w: score.originDim[2], c: score.originDim[3]))
var bboxArr = bbox.metalTexture.floatArray { (f) -> Float32 in var bboxArr = bbox.metalTexture.floatArray { (f) -> Float32 in
return f return f
} }
let nmsCompute = NMSCompute.init() let nmsCompute = NMSCompute.init()
nmsCompute.scoreThredshold = 0.01 nmsCompute.scoreThredshold = 0.01
nmsCompute.nmsTopK = 200 nmsCompute.nmsTopK = 200
...@@ -79,6 +80,7 @@ class MobileNet_ssd_hand: Net{ ...@@ -79,6 +80,7 @@ class MobileNet_ssd_hand: Net{
let modelDir: String let modelDir: String
// let paramPointer: UnsafeMutableRawPointer // let paramPointer: UnsafeMutableRawPointer
// //
// let paramSize: Int // let paramSize: Int
......
...@@ -85,6 +85,17 @@ kernel void genet_preprocess(texture2d<float, access::read> inTexture [[texture( ...@@ -85,6 +85,17 @@ kernel void genet_preprocess(texture2d<float, access::read> inTexture [[texture(
outTexture.write(float4(inColor.z, inColor.y, inColor.x, 0.0f), gid); outTexture.write(float4(inColor.z, inColor.y, inColor.x, 0.0f), gid);
} }
kernel void genet_preprocess_half(texture2d<half, access::read> inTexture [[texture(0)]], texture2d<half, access::write> outTexture [[texture(1)]], uint2 gid [[thread_position_in_grid]])
{
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height()) {
return;
}
const auto means = half4(128.0f, 128.0f, 128.0f, 0.0f);
const half4 inColor = (inTexture.read(gid) * 255.0 - means) * 0.017;
outTexture.write(half4(inColor.z, inColor.y, inColor.x, 0.0f), gid);
}
kernel void scale(texture2d<float, access::sample> inTexture [[texture(0)]], texture2d<float, access::write> outTexture [[texture(1)]], uint2 gid [[thread_position_in_grid]]) { kernel void scale(texture2d<float, access::sample> inTexture [[texture(0)]], texture2d<float, access::write> outTexture [[texture(1)]], uint2 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() || if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height()) return; gid.y >= outTexture.get_height()) return;
...@@ -95,12 +106,13 @@ kernel void scale(texture2d<float, access::sample> inTexture [[texture(0)]], tex ...@@ -95,12 +106,13 @@ kernel void scale(texture2d<float, access::sample> inTexture [[texture(0)]], tex
outTexture.write(input, gid); outTexture.write(input, gid);
} }
kernel void scale_half(texture2d<float, access::sample> inTexture [[texture(0)]], texture2d<half, access::write> outTexture [[texture(1)]], uint2 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height()) return;
float w_stride = inTexture.get_width() / outTexture.get_width();
float h_stride = inTexture.get_height() / outTexture.get_height();
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
float4 input = inTexture.sample(sample, float2(gid.x * w_stride, gid.y * h_stride), 0);
outTexture.write(half4(input), gid);
}
...@@ -79,7 +79,7 @@ class ViewController: UIViewController { ...@@ -79,7 +79,7 @@ class ViewController: UIViewController {
return return
} }
do { do {
let max = 10 let max = 50
let startDate = Date.init() let startDate = Date.init()
for i in 0..<max { for i in 0..<max {
try net.predict(inTexture: inTexture) { [weak self] (result) in try net.predict(inTexture: inTexture) { [weak self] (result) in
...@@ -87,7 +87,7 @@ class ViewController: UIViewController { ...@@ -87,7 +87,7 @@ class ViewController: UIViewController {
fatalError() fatalError()
} }
print(result.resultArray) // print(result.resultArray)
if i == max - 1 { if i == max - 1 {
let time = Date.init().timeIntervalSince(startDate) let time = Date.init().timeIntervalSince(startDate)
DispatchQueue.main.async { DispatchQueue.main.async {
......
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
4AF928822135673D005B6C3A /* Concat.metal in Sources */ = {isa = PBXBuildFile; fileRef = 4AF928812135673D005B6C3A /* Concat.metal */; }; 4AF928822135673D005B6C3A /* Concat.metal in Sources */ = {isa = PBXBuildFile; fileRef = 4AF928812135673D005B6C3A /* Concat.metal */; };
4AF9288421357BE3005B6C3A /* Elementwise.metal in Sources */ = {isa = PBXBuildFile; fileRef = 4AF9288321357BE3005B6C3A /* Elementwise.metal */; }; 4AF9288421357BE3005B6C3A /* Elementwise.metal in Sources */ = {isa = PBXBuildFile; fileRef = 4AF9288321357BE3005B6C3A /* Elementwise.metal */; };
D3831F70E7E0B565B9AC22DA /* Pods_paddle_mobile.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = DD2E06330A1E7129C918DB46 /* Pods_paddle_mobile.framework */; }; D3831F70E7E0B565B9AC22DA /* Pods_paddle_mobile.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = DD2E06330A1E7129C918DB46 /* Pods_paddle_mobile.framework */; };
FC0226562138F33800F395E2 /* TransposeKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FC0226552138F33800F395E2 /* TransposeKernel.metal */; };
FC0226582138F38D00F395E2 /* PoolKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FC0226572138F38D00F395E2 /* PoolKernel.metal */; };
FC039B6F20E11C3C0081E9F8 /* paddle_mobile.h in Headers */ = {isa = PBXBuildFile; fileRef = FC039B6D20E11C3C0081E9F8 /* paddle_mobile.h */; settings = {ATTRIBUTES = (Public, ); }; }; FC039B6F20E11C3C0081E9F8 /* paddle_mobile.h in Headers */ = {isa = PBXBuildFile; fileRef = FC039B6D20E11C3C0081E9F8 /* paddle_mobile.h */; settings = {ATTRIBUTES = (Public, ); }; };
FC039B9720E11C9A0081E9F8 /* Extensions.swift in Sources */ = {isa = PBXBuildFile; fileRef = FC039B9420E11C9A0081E9F8 /* Extensions.swift */; }; FC039B9720E11C9A0081E9F8 /* Extensions.swift in Sources */ = {isa = PBXBuildFile; fileRef = FC039B9420E11C9A0081E9F8 /* Extensions.swift */; };
FC039B9820E11C9A0081E9F8 /* Errors.swift in Sources */ = {isa = PBXBuildFile; fileRef = FC039B9520E11C9A0081E9F8 /* Errors.swift */; }; FC039B9820E11C9A0081E9F8 /* Errors.swift in Sources */ = {isa = PBXBuildFile; fileRef = FC039B9520E11C9A0081E9F8 /* Errors.swift */; };
...@@ -53,6 +55,9 @@ ...@@ -53,6 +55,9 @@
FCA3A1632132A4AC00084FE5 /* ReshapeKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA3A1622132A4AC00084FE5 /* ReshapeKernel.metal */; }; FCA3A1632132A4AC00084FE5 /* ReshapeKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA3A1622132A4AC00084FE5 /* ReshapeKernel.metal */; };
FCA3A1652132A5EB00084FE5 /* Common.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA3A1642132A5EB00084FE5 /* Common.metal */; }; FCA3A1652132A5EB00084FE5 /* Common.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA3A1642132A5EB00084FE5 /* Common.metal */; };
FCA67B1721364EF000BD58AA /* ConvTransposeKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA67B1621364EF000BD58AA /* ConvTransposeKernel.metal */; }; FCA67B1721364EF000BD58AA /* ConvTransposeKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA67B1621364EF000BD58AA /* ConvTransposeKernel.metal */; };
FCA67CD52138272900BD58AA /* ConvAddMetal.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA67CD42138272900BD58AA /* ConvAddMetal.metal */; };
FCA67CD7213827AC00BD58AA /* ConvAddBNReluKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA67CD6213827AC00BD58AA /* ConvAddBNReluKernel.metal */; };
FCA67CD92138287B00BD58AA /* ConvBNReluKernel.metal in Sources */ = {isa = PBXBuildFile; fileRef = FCA67CD82138287B00BD58AA /* ConvBNReluKernel.metal */; };
FCBCCC572122F41300D94F7E /* DwConvBNReluOp.swift in Sources */ = {isa = PBXBuildFile; fileRef = FCBCCC562122F41300D94F7E /* DwConvBNReluOp.swift */; }; FCBCCC572122F41300D94F7E /* DwConvBNReluOp.swift in Sources */ = {isa = PBXBuildFile; fileRef = FCBCCC562122F41300D94F7E /* DwConvBNReluOp.swift */; };
FCBCCC592122F42700D94F7E /* ConvBNReluOp.swift in Sources */ = {isa = PBXBuildFile; fileRef = FCBCCC582122F42700D94F7E /* ConvBNReluOp.swift */; }; FCBCCC592122F42700D94F7E /* ConvBNReluOp.swift in Sources */ = {isa = PBXBuildFile; fileRef = FCBCCC582122F42700D94F7E /* ConvBNReluOp.swift */; };
FCBCCC5B2122F66F00D94F7E /* ConvBNReluKernel.swift in Sources */ = {isa = PBXBuildFile; fileRef = FCBCCC5A2122F66F00D94F7E /* ConvBNReluKernel.swift */; }; FCBCCC5B2122F66F00D94F7E /* ConvBNReluKernel.swift in Sources */ = {isa = PBXBuildFile; fileRef = FCBCCC5A2122F66F00D94F7E /* ConvBNReluKernel.swift */; };
...@@ -97,6 +102,8 @@ ...@@ -97,6 +102,8 @@
CDF58151D902A1CBAE56A0C2 /* Pods-paddle-mobile.debug.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-paddle-mobile.debug.xcconfig"; path = "../Pods/Target Support Files/Pods-paddle-mobile/Pods-paddle-mobile.debug.xcconfig"; sourceTree = "<group>"; }; CDF58151D902A1CBAE56A0C2 /* Pods-paddle-mobile.debug.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-paddle-mobile.debug.xcconfig"; path = "../Pods/Target Support Files/Pods-paddle-mobile/Pods-paddle-mobile.debug.xcconfig"; sourceTree = "<group>"; };
DD2E06330A1E7129C918DB46 /* Pods_paddle_mobile.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = Pods_paddle_mobile.framework; sourceTree = BUILT_PRODUCTS_DIR; }; DD2E06330A1E7129C918DB46 /* Pods_paddle_mobile.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = Pods_paddle_mobile.framework; sourceTree = BUILT_PRODUCTS_DIR; };
E2A7957C92EDA5C3BEC0FFC2 /* Pods-paddle-mobile.release.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-paddle-mobile.release.xcconfig"; path = "../Pods/Target Support Files/Pods-paddle-mobile/Pods-paddle-mobile.release.xcconfig"; sourceTree = "<group>"; }; E2A7957C92EDA5C3BEC0FFC2 /* Pods-paddle-mobile.release.xcconfig */ = {isa = PBXFileReference; includeInIndex = 1; lastKnownFileType = text.xcconfig; name = "Pods-paddle-mobile.release.xcconfig"; path = "../Pods/Target Support Files/Pods-paddle-mobile/Pods-paddle-mobile.release.xcconfig"; sourceTree = "<group>"; };
FC0226552138F33800F395E2 /* TransposeKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = TransposeKernel.metal; sourceTree = "<group>"; };
FC0226572138F38D00F395E2 /* PoolKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = PoolKernel.metal; sourceTree = "<group>"; };
FC039B6A20E11C3C0081E9F8 /* paddle_mobile.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = paddle_mobile.framework; sourceTree = BUILT_PRODUCTS_DIR; }; FC039B6A20E11C3C0081E9F8 /* paddle_mobile.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = paddle_mobile.framework; sourceTree = BUILT_PRODUCTS_DIR; };
FC039B6D20E11C3C0081E9F8 /* paddle_mobile.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = paddle_mobile.h; sourceTree = "<group>"; }; FC039B6D20E11C3C0081E9F8 /* paddle_mobile.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = paddle_mobile.h; sourceTree = "<group>"; };
FC039B6E20E11C3C0081E9F8 /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; }; FC039B6E20E11C3C0081E9F8 /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
...@@ -141,6 +148,9 @@ ...@@ -141,6 +148,9 @@
FCA3A1622132A4AC00084FE5 /* ReshapeKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ReshapeKernel.metal; sourceTree = "<group>"; }; FCA3A1622132A4AC00084FE5 /* ReshapeKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ReshapeKernel.metal; sourceTree = "<group>"; };
FCA3A1642132A5EB00084FE5 /* Common.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = Common.metal; sourceTree = "<group>"; }; FCA3A1642132A5EB00084FE5 /* Common.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = Common.metal; sourceTree = "<group>"; };
FCA67B1621364EF000BD58AA /* ConvTransposeKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ConvTransposeKernel.metal; sourceTree = "<group>"; }; FCA67B1621364EF000BD58AA /* ConvTransposeKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ConvTransposeKernel.metal; sourceTree = "<group>"; };
FCA67CD42138272900BD58AA /* ConvAddMetal.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ConvAddMetal.metal; sourceTree = "<group>"; };
FCA67CD6213827AC00BD58AA /* ConvAddBNReluKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ConvAddBNReluKernel.metal; sourceTree = "<group>"; };
FCA67CD82138287B00BD58AA /* ConvBNReluKernel.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ConvBNReluKernel.metal; sourceTree = "<group>"; };
FCBCCC562122F41300D94F7E /* DwConvBNReluOp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = DwConvBNReluOp.swift; sourceTree = "<group>"; }; FCBCCC562122F41300D94F7E /* DwConvBNReluOp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = DwConvBNReluOp.swift; sourceTree = "<group>"; };
FCBCCC582122F42700D94F7E /* ConvBNReluOp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ConvBNReluOp.swift; sourceTree = "<group>"; }; FCBCCC582122F42700D94F7E /* ConvBNReluOp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ConvBNReluOp.swift; sourceTree = "<group>"; };
FCBCCC5A2122F66F00D94F7E /* ConvBNReluKernel.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ConvBNReluKernel.swift; sourceTree = "<group>"; }; FCBCCC5A2122F66F00D94F7E /* ConvBNReluKernel.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ConvBNReluKernel.swift; sourceTree = "<group>"; };
...@@ -372,6 +382,11 @@ ...@@ -372,6 +382,11 @@
FCA3A1622132A4AC00084FE5 /* ReshapeKernel.metal */, FCA3A1622132A4AC00084FE5 /* ReshapeKernel.metal */,
FCA3A1642132A5EB00084FE5 /* Common.metal */, FCA3A1642132A5EB00084FE5 /* Common.metal */,
FCA67B1621364EF000BD58AA /* ConvTransposeKernel.metal */, FCA67B1621364EF000BD58AA /* ConvTransposeKernel.metal */,
FCA67CD42138272900BD58AA /* ConvAddMetal.metal */,
FCA67CD6213827AC00BD58AA /* ConvAddBNReluKernel.metal */,
FCA67CD82138287B00BD58AA /* ConvBNReluKernel.metal */,
FC0226552138F33800F395E2 /* TransposeKernel.metal */,
FC0226572138F38D00F395E2 /* PoolKernel.metal */,
); );
path = metal; path = metal;
sourceTree = "<group>"; sourceTree = "<group>";
...@@ -478,6 +493,7 @@ ...@@ -478,6 +493,7 @@
files = ( files = (
FC9D038020E22FBB000F735A /* FeedOp.swift in Sources */, FC9D038020E22FBB000F735A /* FeedOp.swift in Sources */,
FC039B9F20E11CB20081E9F8 /* Tensor.swift in Sources */, FC039B9F20E11CB20081E9F8 /* Tensor.swift in Sources */,
FCA67CD7213827AC00BD58AA /* ConvAddBNReluKernel.metal in Sources */,
4AF9287921341661005B6C3A /* Softmax.metal in Sources */, 4AF9287921341661005B6C3A /* Softmax.metal in Sources */,
FC0E2DBC20EE45FE009C1FAC /* ConvKernel.swift in Sources */, FC0E2DBC20EE45FE009C1FAC /* ConvKernel.swift in Sources */,
FC039BAA20E11CBC0081E9F8 /* ElementwiseAddOp.swift in Sources */, FC039BAA20E11CBC0081E9F8 /* ElementwiseAddOp.swift in Sources */,
...@@ -493,12 +509,15 @@ ...@@ -493,12 +509,15 @@
FC1B186620ECF1C600678B91 /* ResizeKernel.swift in Sources */, FC1B186620ECF1C600678B91 /* ResizeKernel.swift in Sources */,
FCF2D73820E64E70007AC5F5 /* Kernel.swift in Sources */, FCF2D73820E64E70007AC5F5 /* Kernel.swift in Sources */,
FCDDC6CC212FDFDB00E5EF74 /* ReluKernel.metal in Sources */, FCDDC6CC212FDFDB00E5EF74 /* ReluKernel.metal in Sources */,
FC0226562138F33800F395E2 /* TransposeKernel.metal in Sources */,
FCDDC6C6212F9FB800E5EF74 /* PreluKernel.swift in Sources */, FCDDC6C6212F9FB800E5EF74 /* PreluKernel.swift in Sources */,
FCA67CD52138272900BD58AA /* ConvAddMetal.metal in Sources */,
FCBCCC5B2122F66F00D94F7E /* ConvBNReluKernel.swift in Sources */, FCBCCC5B2122F66F00D94F7E /* ConvBNReluKernel.swift in Sources */,
FCEBC0F420F1FDD90099DBAF /* ConvAddBatchNormReluOp.swift in Sources */, FCEBC0F420F1FDD90099DBAF /* ConvAddBatchNormReluOp.swift in Sources */,
FC0E2DC020EE461F009C1FAC /* ElementwiseAddKernel.swift in Sources */, FC0E2DC020EE461F009C1FAC /* ElementwiseAddKernel.swift in Sources */,
4AF928772133F1DB005B6C3A /* BoxCoder.metal in Sources */, 4AF928772133F1DB005B6C3A /* BoxCoder.metal in Sources */,
FCEB684C212F093800D2448E /* PreluOp.swift in Sources */, FCEB684C212F093800D2448E /* PreluOp.swift in Sources */,
FCA67CD92138287B00BD58AA /* ConvBNReluKernel.metal in Sources */,
FC60DB8920E9AAA500FF203F /* MetalExtension.swift in Sources */, FC60DB8920E9AAA500FF203F /* MetalExtension.swift in Sources */,
FCEBC0F620F1FE120099DBAF /* ConvAddBatchNormReluKernel.swift in Sources */, FCEBC0F620F1FE120099DBAF /* ConvAddBatchNormReluKernel.swift in Sources */,
FCDDC6CA212FDF6800E5EF74 /* BatchNormKernel.metal in Sources */, FCDDC6CA212FDF6800E5EF74 /* BatchNormKernel.metal in Sources */,
...@@ -550,6 +569,7 @@ ...@@ -550,6 +569,7 @@
FC5163F620EF556E00636C28 /* Texture2DTo2DArrayKernel.swift in Sources */, FC5163F620EF556E00636C28 /* Texture2DTo2DArrayKernel.swift in Sources */,
FC039BC020E11CC20081E9F8 /* BlockDesc.swift in Sources */, FC039BC020E11CC20081E9F8 /* BlockDesc.swift in Sources */,
FCD04E6820F315020007374F /* PoolKernel.swift in Sources */, FCD04E6820F315020007374F /* PoolKernel.swift in Sources */,
FC0226582138F38D00F395E2 /* PoolKernel.metal in Sources */,
FC039BAD20E11CBC0081E9F8 /* ReluOp.swift in Sources */, FC039BAD20E11CBC0081E9F8 /* ReluOp.swift in Sources */,
FCBCCC572122F41300D94F7E /* DwConvBNReluOp.swift in Sources */, FCBCCC572122F41300D94F7E /* DwConvBNReluOp.swift in Sources */,
FC039BBE20E11CC20081E9F8 /* OpDesc.swift in Sources */, FC039BBE20E11CC20081E9F8 /* OpDesc.swift in Sources */,
......
...@@ -341,14 +341,27 @@ public extension MTLTexture { ...@@ -341,14 +341,27 @@ public extension MTLTexture {
} }
// n c h w - dim // n c h w - dim
func toTensor(dim: (n: Int, c: Int, h: Int, w: Int)) -> [Float32] { func toTensor(dim: (n: Int, c: Int, h: Int, w: Int), texturePrecision: ComputePrecision = .Float16) -> [Float32] {
// print("origin dim: \(dim)") // print("origin dim: \(dim)")
print("texture: ") print("texture: ")
print(self) print(self)
var textureArray: [Float32]
// if texturePrecision == .Float16
let textureArray = floatArray { (i : Float32) -> Float32 in if pixelFormat == .rgba32Float {
return i textureArray = floatArray { (i : Float32) -> Float32 in
return i
}
} else if pixelFormat == .rgba16Float {
var textureFloat16Array = floatArray { (i : Float16) -> Float16 in
return i
}
textureArray = float16To32(input: &textureFloat16Array, count: textureFloat16Array.count)
} else {
fatalError(" 目前还不支持其他类型 ")
} }
var output: [Float32] = [] var output: [Float32] = []
for s in 0..<arrayLength { for s in 0..<arrayLength {
for c in 0..<4{ for c in 0..<4{
...@@ -366,16 +379,27 @@ public extension MTLTexture { ...@@ -366,16 +379,27 @@ public extension MTLTexture {
return output return output
} }
func realNHWC(dim: (n: Int, h: Int, w: Int, c: Int)) -> [Float32] { func realNHWC(dim: (n: Int, h: Int, w: Int, c: Int), texturePrecision: ComputePrecision = .Float16) -> [Float32] {
// print("origin dim: \(dim)") // print("origin dim: \(dim)")
// print("texture: ") // print("texture: ")
// print(self) // print(self)
let textureArray = floatArray { (i : Float32) -> Float32 in var textureArray: [Float32]
return i // if texturePrecision == .Float16
if pixelFormat == .rgba32Float {
textureArray = floatArray { (i : Float32) -> Float32 in
return i
}
} else if pixelFormat == .rgba16Float {
var textureFloat16Array = floatArray { (i : Float16) -> Float16 in
return i
}
textureArray = float16To32(input: &textureFloat16Array, count: textureFloat16Array.count)
} else {
fatalError(" 目前还不支持其他类型 ")
} }
var output: [Float32] = [] var output: [Float32] = []
let numOfASlice = dim.h * dim.w * 4 let numOfASlice = dim.h * dim.w * 4
for h in 0..<dim.h { for h in 0..<dim.h {
for w in 0..<dim.w { for w in 0..<dim.w {
...@@ -394,7 +418,6 @@ public extension MTLTexture { ...@@ -394,7 +418,6 @@ public extension MTLTexture {
} }
} }
} }
// print(" tensor count -- \(output.count)")
return output return output
} }
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
limitations under the License. */ limitations under the License. */
import Foundation import Foundation
import Accelerate
public protocol SummableMultipliable: Equatable { public protocol SummableMultipliable: Equatable {
static func +(lhs: Self, rhs: Self) -> Self static func +(lhs: Self, rhs: Self) -> Self
...@@ -78,6 +79,28 @@ extension Float32: PrecisionType { ...@@ -78,6 +79,28 @@ extension Float32: PrecisionType {
} }
} }
public func float32ToFloat16(input: UnsafeMutablePointer<Float32>, output: UnsafeMutableRawPointer, count: Int) {
var float32Buffer = vImage_Buffer(data: input, height: 1, width: UInt(count), rowBytes: count * 4)
var float16buffer = vImage_Buffer(data: output, height: 1, width: UInt(count), rowBytes: count * 2)
guard vImageConvert_PlanarFtoPlanar16F(&float32Buffer, &float16buffer, 0) == kvImageNoError else {
fatalError(" float 32 to float 16 error ! ")
}
}
public func float16To32(input: UnsafeMutablePointer<Float16>, count: Int) -> [Float32] {
var output = Array<Float>.init(repeating: 0.0, count: count)
float16to32(input: input, output: &output, count: count)
return output
}
public func float16to32(input: UnsafeMutablePointer<Float16>, output: UnsafeMutablePointer<Float32>, count: Int) {
var bufferFloat16 = vImage_Buffer(data: input, height: 1, width: UInt(count), rowBytes: count * 2)
var bufferFloat32 = vImage_Buffer(data: output, height: 1, width: UInt(count), rowBytes: count * 4)
if vImageConvert_Planar16FtoPlanarF(&bufferFloat16, &bufferFloat32, 0) != kvImageNoError {
fatalError(" convert float16 to float32 error")
}
}
// N - 0 C - 1 H - 2 W - 3 // N - 0 C - 1 H - 2 W - 3
struct DataLayout { struct DataLayout {
......
...@@ -16,6 +16,8 @@ import Foundation ...@@ -16,6 +16,8 @@ import Foundation
let testTo = 54 let testTo = 54
let computePrecision: ComputePrecision = .Float32
public class ResultHolder<P: PrecisionType> { public class ResultHolder<P: PrecisionType> {
public let dim: [Int] public let dim: [Int]
public let resultArr: [P] public let resultArr: [P]
...@@ -66,7 +68,6 @@ public class Executor<P: PrecisionType> { ...@@ -66,7 +68,6 @@ public class Executor<P: PrecisionType> {
let op = block.ops[i] let op = block.ops[i]
do { do {
let op = try OpCreator<P>.shared.creat(device: inDevice, opDesc: op, scope: inProgram.scope) let op = try OpCreator<P>.shared.creat(device: inDevice, opDesc: op, scope: inProgram.scope)
// op.inferShape()
ops.append(op) ops.append(op)
} catch let error { } catch let error {
throw error throw error
......
...@@ -58,28 +58,26 @@ class BoxcoderOp<P: PrecisionType>: Operator<BoxcoderKernel<P>, BoxcoderParam<P> ...@@ -58,28 +58,26 @@ class BoxcoderOp<P: PrecisionType>: Operator<BoxcoderKernel<P>, BoxcoderParam<P>
} }
func delogOutput() { func delogOutput() {
print(" \(type) output: ") print(" \(type) output: ")
let priorBoxOriginDim = para.priorBox.originDim // let priorBoxOriginDim = para.priorBox.originDim
let priorBoxArray = para.priorBox.metalTexture.realNHWC(dim: (n: priorBoxOriginDim[0], h: priorBoxOriginDim[1], w: priorBoxOriginDim[2], c: priorBoxOriginDim[3])) // let priorBoxArray: [Float32] = para.priorBox.metalTexture.realNHWC(dim: (n: priorBoxOriginDim[0], h: priorBoxOriginDim[1], w: priorBoxOriginDim[2], c: priorBoxOriginDim[3]))
print(" prior box ") // print(" prior box ")
print(priorBoxArray.strideArray()) // print(priorBoxArray.strideArray())
//
let priorBoxVarOriginDim = para.priorBoxVar.originDim // let priorBoxVarOriginDim = para.priorBoxVar.originDim
let priorBoxVarArray = para.priorBoxVar.metalTexture.realNHWC(dim: (n: priorBoxVarOriginDim[0], h: priorBoxVarOriginDim[1], w: priorBoxVarOriginDim[2], c: priorBoxVarOriginDim[3])) // let priorBoxVarArray: [Float32] = para.priorBoxVar.metalTexture.realNHWC(dim: (n: priorBoxVarOriginDim[0], h: priorBoxVarOriginDim[1], w: priorBoxVarOriginDim[2], c: priorBoxVarOriginDim[3]))
print(" prior box var ") // print(" prior box var ")
print(priorBoxVarArray.strideArray()) // print(priorBoxVarArray.strideArray())
//
let targetBoxOriginDim = para.targetBox.originDim // let targetBoxOriginDim = para.targetBox.originDim
let targetBoxArray = para.targetBox.metalTexture.realNHWC(dim: (n: targetBoxOriginDim[0], h: targetBoxOriginDim[1], w: targetBoxOriginDim[2], c: targetBoxOriginDim[3])) // let targetBoxArray: [Float32] = para.targetBox.metalTexture.realNHWC(dim: (n: targetBoxOriginDim[0], h: targetBoxOriginDim[1], w: targetBoxOriginDim[2], c: targetBoxOriginDim[3]))
print(" target box ") // print(" target box ")
print(targetBoxArray.strideArray()) // print(targetBoxArray.strideArray())
let originDim = para.output.originDim let originDim = para.output.originDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3])) let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray()) print(outputArray.strideArray())
} }
} }
......
...@@ -66,9 +66,16 @@ class ConcatOp<P: PrecisionType>: Operator<ConcatKernel<P>, ConcatParam<P>>, Run ...@@ -66,9 +66,16 @@ class ConcatOp<P: PrecisionType>: Operator<ConcatKernel<P>, ConcatParam<P>>, Run
func delogOutput() { func delogOutput() {
print(" \(type) output: ") print(" \(type) output: ")
let originDim = para.output.originDim let originDim = para.output.originDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]))
print(outputArray.strideArray()) if para.output.transpose == [0, 1, 2, 3] {
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray()) let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray())
} else if para.output.transpose == [0, 2, 3, 1] {
print(para.output.metalTexture.toTensor(dim: (n: originDim[0], c: originDim[1], h: originDim[2], w: originDim[3]), texturePrecision: computePrecision).strideArray())
} else {
fatalError(" not implemet")
}
} }
} }
......
...@@ -125,13 +125,6 @@ class ConvAddBatchNormReluOp<P: PrecisionType>: Operator<ConvAddBatchNormReluKer ...@@ -125,13 +125,6 @@ class ConvAddBatchNormReluOp<P: PrecisionType>: Operator<ConvAddBatchNormReluKer
// let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false) // let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false)
// let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false) // let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false)
let output = para.output.metalTexture.floatArray { (p: P) -> P in
return p
}
//
writeToLibrary(fileName: "output_112x112x32_2", array: output)
print(" write done")
// let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: false) // let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: false)
} }
} }
...@@ -46,9 +46,6 @@ class ConvAddParam<P: PrecisionType>: OpParam { ...@@ -46,9 +46,6 @@ class ConvAddParam<P: PrecisionType>: OpParam {
class ConvAddOp<P: PrecisionType>: Operator<ConvAddKernel<P>, ConvAddParam<P>>, Runable, Creator, InferShaperable, Fusion{ class ConvAddOp<P: PrecisionType>: Operator<ConvAddKernel<P>, ConvAddParam<P>>, Runable, Creator, InferShaperable, Fusion{
typealias OpType = ConvAddOp<P> typealias OpType = ConvAddOp<P>
static func fusionNode() -> Node { static func fusionNode() -> Node {
let beginNode = Node.init(inType: gConvType) let beginNode = Node.init(inType: gConvType)
_ = beginNode _ = beginNode
...@@ -64,7 +61,6 @@ class ConvAddOp<P: PrecisionType>: Operator<ConvAddKernel<P>, ConvAddParam<P>>, ...@@ -64,7 +61,6 @@ class ConvAddOp<P: PrecisionType>: Operator<ConvAddKernel<P>, ConvAddParam<P>>,
return gConvAddType return gConvAddType
} }
func inferShape() { func inferShape() {
let inDims = para.input.dim let inDims = para.input.dim
...@@ -101,10 +97,8 @@ class ConvAddOp<P: PrecisionType>: Operator<ConvAddKernel<P>, ConvAddParam<P>>, ...@@ -101,10 +97,8 @@ class ConvAddOp<P: PrecisionType>: Operator<ConvAddKernel<P>, ConvAddParam<P>>,
print(para.stride) print(para.stride)
print("dilations: ") print("dilations: ")
print(para.dilations) print(para.dilations)
print(" \(type) output: ") print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray())
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
} }
} }
...@@ -110,7 +110,7 @@ class ConvBNReluOp<P: PrecisionType>: Operator<ConvBNReluKernel<P>, ConvBNReluPa ...@@ -110,7 +110,7 @@ class ConvBNReluOp<P: PrecisionType>: Operator<ConvBNReluKernel<P>, ConvBNReluPa
func delogOutput() { func delogOutput() {
print(" \(type) output: ") print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3])).strideArray()) print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3]), texturePrecision: computePrecision).strideArray())
} }
} }
...@@ -46,10 +46,10 @@ class ConvTransposeOp<P: PrecisionType>: Operator<ConvTransposeKernel<P>, ConvTr ...@@ -46,10 +46,10 @@ class ConvTransposeOp<P: PrecisionType>: Operator<ConvTransposeKernel<P>, ConvTr
print(" \(type) output: ") print(" \(type) output: ")
let originDim = para.output.originDim let originDim = para.output.originDim
if para.output.transpose == [0, 1, 2, 3] { if para.output.transpose == [0, 1, 2, 3] {
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3])) let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray()) print(outputArray.strideArray())
} else if para.output.transpose == [0, 2, 3, 1] { } else if para.output.transpose == [0, 2, 3, 1] {
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray()) print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
} else { } else {
print(" not implement") print(" not implement")
} }
......
...@@ -58,6 +58,6 @@ class DepthConvOp<P: PrecisionType>: Operator<ConvKernel<P>, ConvParam<P>>, Runa ...@@ -58,6 +58,6 @@ class DepthConvOp<P: PrecisionType>: Operator<ConvKernel<P>, ConvParam<P>>, Runa
func delogOutput() { func delogOutput() {
print(" \(type) output: ") print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3])).strideArray()) print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3]), texturePrecision: computePrecision).strideArray())
} }
} }
...@@ -65,6 +65,6 @@ class DwConvBNReluOp<P: PrecisionType>: Operator<ConvBNReluKernel<P>, ConvBNRelu ...@@ -65,6 +65,6 @@ class DwConvBNReluOp<P: PrecisionType>: Operator<ConvBNReluKernel<P>, ConvBNRelu
func delogOutput() { func delogOutput() {
print(" \(type) output: ") print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3])).strideArray()) print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3]), texturePrecision: computePrecision).strideArray())
} }
} }
...@@ -56,31 +56,30 @@ class ElementwiseAddOp<P: PrecisionType>: Operator<ElementwiseAddKernel<P>, Elem ...@@ -56,31 +56,30 @@ class ElementwiseAddOp<P: PrecisionType>: Operator<ElementwiseAddKernel<P>, Elem
// para.output.dim = para.input.dim // para.output.dim = para.input.dim
} }
func runImpl(device: MTLDevice, buffer: MTLCommandBuffer) throws {
do {
try kernel.compute(commandBuffer: buffer, param: para)
} catch let error {
throw error
}
}
func delogOutput() { func delogOutput() {
print(" \(type) inputX: ") // print(" \(type) inputX: ")
print(para.inputX.metalTexture.toTensor(dim: (n: para.inputX.tensorDim[0], c: para.inputX.tensorDim[1], h: para.inputX.tensorDim[2], w: para.inputX.tensorDim[3])).strideArray()) // print(para.inputX.metalTexture.toTensor(dim: (n: para.inputX.tensorDim[0], c: para.inputX.tensorDim[1], h: para.inputX.tensorDim[2], w: para.inputX.tensorDim[3])).strideArray())
print(" \(type) inputY: ") // print(" \(type) inputY: ")
print(para.inputY.metalTexture.toTensor(dim: (n: para.inputY.tensorDim[0], c: para.inputY.tensorDim[1], h: para.inputY.tensorDim[2], w: para.inputY.tensorDim[3])).strideArray()) // print(para.inputY.metalTexture.toTensor(dim: (n: para.inputY.tensorDim[0], c: para.inputY.tensorDim[1], h: para.inputY.tensorDim[2], w: para.inputY.tensorDim[3])).strideArray())
print(" \(type) output: ") print(" \(type) output: ")
let originDim = para.output.originDim let originDim = para.output.originDim
if para.output.transpose == [0, 1, 2, 3] { if para.output.transpose == [0, 1, 2, 3] {
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3])) let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray()) print(outputArray.strideArray())
} else if para.output.transpose == [0, 2, 3, 1] { } else if para.output.transpose == [0, 2, 3, 1] {
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray()) print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
} else { } else {
print(" not implement") print(" not implement")
} }
}
func runImpl(device: MTLDevice, buffer: MTLCommandBuffer) throws {
do {
try kernel.compute(commandBuffer: buffer, param: para)
} catch let error {
throw error
}
} }
} }
......
...@@ -19,68 +19,76 @@ public protocol TestParam { ...@@ -19,68 +19,76 @@ public protocol TestParam {
} }
public protocol Testable { public protocol Testable {
associatedtype TestParamType: TestParam associatedtype TestParamType: TestParam
func test(commandBuffer: MTLCommandBuffer, param: TestParamType) func test(commandBuffer: MTLCommandBuffer, param: TestParamType)
init(device: MTLDevice, testParam: TestParamType) init(device: MTLDevice, testParam: TestParamType)
} }
protocol Computable { protocol Computable {
associatedtype ParamType: OpParam associatedtype ParamType: OpParam
func compute(commandBuffer: MTLCommandBuffer, param: ParamType) throws func compute(commandBuffer: MTLCommandBuffer, param: ParamType) throws
init(device: MTLDevice, param: ParamType) init(device: MTLDevice, param: ParamType)
} }
protocol KernelProtocol { protocol KernelProtocol {
var pipline: MTLComputePipelineState { get set } var pipline: MTLComputePipelineState { get set }
var functionName: String { get set } var functionName: String { get set }
} }
open class Kernel { open class Kernel {
let pipline: MTLComputePipelineState let pipline: MTLComputePipelineState
let functionName: String let functionName: String
public init(device: MTLDevice, inFunctionName: String, usePaddleMobileLib: Bool = true) { public init(device: MTLDevice, inFunctionName: String, usePaddleMobileLib: Bool = true) {
pipline = device.pipeLine(funcName: inFunctionName, inPaddleMobileLib: usePaddleMobileLib) pipline = device.pipeLine(funcName: inFunctionName, inPaddleMobileLib: usePaddleMobileLib)
functionName = inFunctionName functionName = inFunctionName
} }
} }
open class CusomKernel: Kernel { open class CusomKernel: Kernel {
public struct Shape { public struct Shape {
public let width: Int public let width: Int
public let height: Int public let height: Int
public let channel: Int public let channel: Int
public init(inWidth: Int, inHeight: Int, inChannel: Int){ public init(inWidth: Int, inHeight: Int, inChannel: Int){
width = inWidth width = inWidth
height = inHeight height = inHeight
channel = inChannel channel = inChannel
}
}
public let outputTexture: MTLTexture
public init(device: MTLDevice, inFunctionName: String, outputDim: Shape, usePaddleMobileLib: Bool = false) {
let textureDesc = MTLTextureDescriptor.init()
textureDesc.textureType = .type2D
textureDesc.width = outputDim.width
textureDesc.height = outputDim.height
textureDesc.depth = (outputDim.channel + 3) / 4
textureDesc.pixelFormat = .rgba32Float
textureDesc.usage = [.shaderRead, .shaderWrite]
textureDesc.storageMode = .shared
outputTexture = device.makeTexture(descriptor: textureDesc) ?! " make texture error "
super.init(device: device, inFunctionName: inFunctionName, usePaddleMobileLib: usePaddleMobileLib)
} }
}
public let outputTexture: MTLTexture
public init(device: MTLDevice, inFunctionName: String, outputDim: Shape, usePaddleMobileLib: Bool = false) {
let textureDesc = MTLTextureDescriptor.init()
textureDesc.textureType = .type2D
textureDesc.width = outputDim.width
textureDesc.height = outputDim.height
textureDesc.depth = (outputDim.channel + 3) / 4
public func compute(inputTexuture: MTLTexture, commandBuffer: MTLCommandBuffer) throws { if computePrecision == .Float16 {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else { textureDesc.pixelFormat = .rgba16Float
throw PaddleMobileError.predictError(message: " encode is nil") } else if computePrecision == .Float32 {
} textureDesc.pixelFormat = .rgba32Float
encoder.setTexture(inputTexuture, index: 0) } else {
encoder.setTexture(outputTexture, index: 1) fatalError()
encoder.dispatch(computePipline: pipline, outTexture: outputTexture)
encoder.endEncoding()
} }
textureDesc.usage = [.shaderRead, .shaderWrite]
textureDesc.storageMode = .shared
outputTexture = device.makeTexture(descriptor: textureDesc) ?! " make texture error "
super.init(device: device, inFunctionName: inFunctionName, usePaddleMobileLib: usePaddleMobileLib)
}
public func compute(inputTexuture: MTLTexture, commandBuffer: MTLCommandBuffer) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(inputTexuture, index: 0)
encoder.setTexture(outputTexture, index: 1)
encoder.dispatch(computePipline: pipline, outTexture: outputTexture)
encoder.endEncoding()
}
} }
...@@ -18,22 +18,29 @@ struct BoxcoderMetalParam { ...@@ -18,22 +18,29 @@ struct BoxcoderMetalParam {
} }
class BoxcoderKernel<P: PrecisionType>: Kernel, Computable{ class BoxcoderKernel<P: PrecisionType>: Kernel, Computable{
func compute(commandBuffer: MTLCommandBuffer, param: BoxcoderParam<P>) throws { func compute(commandBuffer: MTLCommandBuffer, param: BoxcoderParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else { guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil") throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(param.priorBox.metalTexture, index: 0)
encoder.setTexture(param.priorBoxVar.metalTexture, index: 1)
encoder.setTexture(param.targetBox.metalTexture, index: 2)
encoder.setTexture(param.output.metalTexture, index: 3)
var bmp = BoxcoderMetalParam.init()
encoder.setBytes(&bmp, length: MemoryLayout<BoxcoderMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
} }
encoder.setTexture(param.priorBox.metalTexture, index: 0)
required init(device: MTLDevice, param: BoxcoderParam<P>) { encoder.setTexture(param.priorBoxVar.metalTexture, index: 1)
param.output.initTexture(device: device) encoder.setTexture(param.targetBox.metalTexture, index: 2)
super.init(device: device, inFunctionName: "boxcoder") encoder.setTexture(param.output.metalTexture, index: 3)
var bmp = BoxcoderMetalParam.init()
encoder.setBytes(&bmp, length: MemoryLayout<BoxcoderMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
required init(device: MTLDevice, param: BoxcoderParam<P>) {
param.output.initTexture(device: device, computePrecision: computePrecision)
if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "boxcoder")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "boxcoder_half")
} else {
fatalError()
} }
}
} }
...@@ -121,8 +121,14 @@ class ConcatKernel<P: PrecisionType>: Kernel, Computable{ ...@@ -121,8 +121,14 @@ class ConcatKernel<P: PrecisionType>: Kernel, Computable{
} }
required init(device: MTLDevice, param: ConcatParam<P>) { required init(device: MTLDevice, param: ConcatParam<P>) {
param.output.initTexture(device: device, inTranspose: param.transpose) param.output.initTexture(device: device, inTranspose: param.transpose, computePrecision: computePrecision)
super.init(device: device, inFunctionName: "concat") if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "concat")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "concat_half")
} else {
fatalError()
}
} }
required init(device: MTLDevice, testParam: ConcatTestParam) { required init(device: MTLDevice, testParam: ConcatTestParam) {
......
...@@ -15,127 +15,155 @@ ...@@ -15,127 +15,155 @@
import Foundation import Foundation
struct ConvAddBatchNormReluTestParam: TestParam { struct ConvAddBatchNormReluTestParam: TestParam {
let inputTexture: MTLTexture let inputTexture: MTLTexture
let outputTexture: MTLTexture let outputTexture: MTLTexture
var metalParam: MetalConvParam var metalParam: MetalConvParam
let filterBuffer: MTLBuffer let filterBuffer: MTLBuffer
let biaseBuffer: MTLBuffer let biaseBuffer: MTLBuffer
let newScaleBuffer: MTLBuffer let newScaleBuffer: MTLBuffer
let newBiaseBuffer: MTLBuffer let newBiaseBuffer: MTLBuffer
let filterSize: (width: Int, height: Int, channel: Int) let filterSize: (width: Int, height: Int, channel: Int)
init(inInputTexture: MTLTexture, inOutputTexture: MTLTexture, inMetalParam: MetalConvParam, inFilterBuffer: MTLBuffer, inBiaseBuffer: MTLBuffer, inNewScaleBuffer: MTLBuffer, inNewBiaseBuffer: MTLBuffer, inFilterSize: (width: Int, height: Int, channel: Int)) { init(inInputTexture: MTLTexture, inOutputTexture: MTLTexture, inMetalParam: MetalConvParam, inFilterBuffer: MTLBuffer, inBiaseBuffer: MTLBuffer, inNewScaleBuffer: MTLBuffer, inNewBiaseBuffer: MTLBuffer, inFilterSize: (width: Int, height: Int, channel: Int)) {
inputTexture = inInputTexture inputTexture = inInputTexture
outputTexture = inOutputTexture outputTexture = inOutputTexture
metalParam = inMetalParam metalParam = inMetalParam
filterBuffer = inFilterBuffer filterBuffer = inFilterBuffer
biaseBuffer = inBiaseBuffer biaseBuffer = inBiaseBuffer
newScaleBuffer = inNewScaleBuffer newScaleBuffer = inNewScaleBuffer
newBiaseBuffer = inNewBiaseBuffer newBiaseBuffer = inNewBiaseBuffer
filterSize = inFilterSize filterSize = inFilterSize
} }
} }
class ConvAddBatchNormReluKernel<P: PrecisionType>: Kernel, Computable, Testable { class ConvAddBatchNormReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
required init(device: MTLDevice, testParam: ConvAddBatchNormReluTestParam) { required init(device: MTLDevice, testParam: ConvAddBatchNormReluTestParam) {
if testParam.filterSize.width == 1 && testParam.filterSize.height == 1 { if testParam.filterSize.width == 1 && testParam.filterSize.height == 1 {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_1x1") super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_1x1")
} else if testParam.filterSize.channel == 1 { } else if testParam.filterSize.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_batch_norm_relu_3x3") super.init(device: device, inFunctionName: "depthwise_conv_add_batch_norm_relu_3x3")
} else { } else {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_3x3") super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_3x3")
}
} }
}
var metalParam: MetalConvParam!
required init(device: MTLDevice, param: ConvAddBatchNormReluParam<P>) {
var metalParam: MetalConvParam! param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1], computePrecision: computePrecision)
required init(device: MTLDevice, param: ConvAddBatchNormReluParam<P>) { if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_1x1")
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1]) } else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_batch_norm_relu_3x3")
if param.filter.width == 1 && param.filter.height == 1 { } else {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_1x1") super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_3x3")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_batch_norm_relu_3x3")
} else {
super.init(device: device, inFunctionName: "conv_add_batch_norm_relu_3x3")
}
param.filter.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32)
param.y.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32)
param.variance.initBuffer(device: device)
param.mean.initBuffer(device: device)
param.scale.initBuffer(device: device)
param.bias.initBuffer(device: device)
let offsetX = param.filter.width/2 - Int(param.paddings[0])
let offsetY = param.filter.height/2 - Int(param.paddings[1])
print("offset x: \(offsetX)")
print("offset y: \(offsetY)")
let offsetZ = 0.0
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]), dilationX: UInt16(param.dilations[0]), dilationY: UInt16(param.dilations[1]))
var invs: [P] = []
let varianceContents = param.variance.buffer.contents().assumingMemoryBound(to: P.self)
for i in 0..<param.variance.buffer.length/MemoryLayout<P>.stride {
let inv = 1.0/pow(Float32.init(varianceContents[i]) + param.epsilon, 0.5)
invs.append(P(inv))
}
let newScale: UnsafeMutablePointer<P> = UnsafeMutablePointer<P>.allocate(capacity: param.scale.buffer.length)
let newBiase: UnsafeMutablePointer<P> = UnsafeMutablePointer<P>.allocate(capacity: param.bias.buffer.length)
let scaleContents = param.scale.buffer.contents().assumingMemoryBound(to: P.self)
let biaseContents = param.bias.buffer.contents().assumingMemoryBound(to: P.self)
let meanContents = param.mean.buffer.contents().assumingMemoryBound(to: P.self)
for i in 0..<param.scale.buffer.length/MemoryLayout<P>.stride {
newScale[i] = invs[i] * scaleContents[i]
newBiase[i] = biaseContents[i] - meanContents[i] * invs[i] * scaleContents[i]
}
param.newBiase = device.makeBuffer(bytes: newBiase, length: param.bias.buffer.length)
param.newScale = device.makeBuffer(bytes: newScale, length: param.scale.buffer.length)
newScale.deinitialize(count: param.scale.buffer.length)
newScale.deallocate()
newBiase.deinitialize(count: param.bias.buffer.length)
newBiase.deallocate()
} }
func compute(commandBuffer: MTLCommandBuffer, param: ConvAddBatchNormReluParam<P>) throws { param.filter.initBuffer(device: device, precision: computePrecision)
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil") param.y.initBuffer(device: device, precision: computePrecision)
}
param.variance.initBuffer(device: device, precision: .Float32)
param.mean.initBuffer(device: device, precision: .Float32)
param.scale.initBuffer(device: device, precision: .Float32)
param.bias.initBuffer(device: device, precision: .Float32)
let offsetX = param.filter.width/2 - Int(param.paddings[0])
let offsetY = param.filter.height/2 - Int(param.paddings[1])
print("offset x: \(offsetX)")
print("offset y: \(offsetY)")
let offsetZ = 0.0
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]), dilationX: UInt16(param.dilations[0]), dilationY: UInt16(param.dilations[1]))
var invs: [P] = []
let varianceContents = param.variance.buffer.contents().assumingMemoryBound(to: P.self)
for i in 0..<param.variance.buffer.length/MemoryLayout<P>.stride {
let inv = 1.0/pow(Float32.init(varianceContents[i]) + param.epsilon, 0.5)
invs.append(P(inv))
}
let newScale: UnsafeMutablePointer<P> = UnsafeMutablePointer<P>.allocate(capacity: param.scale.buffer.length)
let newBiase: UnsafeMutablePointer<P> = UnsafeMutablePointer<P>.allocate(capacity: param.bias.buffer.length)
let scaleContents = param.scale.buffer.contents().assumingMemoryBound(to: P.self)
let biaseContents = param.bias.buffer.contents().assumingMemoryBound(to: P.self)
let meanContents = param.mean.buffer.contents().assumingMemoryBound(to: P.self)
for i in 0..<param.scale.buffer.length/MemoryLayout<P>.stride {
newScale[i] = invs[i] * scaleContents[i]
newBiase[i] = biaseContents[i] - meanContents[i] * invs[i] * scaleContents[i]
}
// var newScaleFP16: UnsafeMutableRawPointer
//
// float32ToFloat16(input: newScale as! UnsafeMutablePointer<Float32>, output: newScaleFP16, count: param.scale.buffer.length / MemoryLayout<P>.size)
// let newBiaseFloat16 = device.makeBuffer(length: <#T##Int#>, options: <#T##MTLResourceOptions#>)
var newBiaseBuffer: MTLBuffer
var newScaleBuffer: MTLBuffer
if computePrecision == .Float16 {
newBiaseBuffer = device.makeBuffer(bytes: newBiase, length: param.bias.buffer.length)!
newScaleBuffer = device.makeBuffer(bytes: newScale, length: param.scale.buffer.length)!
} else if computePrecision == .Float32 {
newBiaseBuffer = device.makeBuffer(length: param.bias.buffer.length / 2)!
encoder.setTexture(param.input.metalTexture, index: 0) newScaleBuffer = device.makeBuffer(length: param.bias.buffer.length / 2)!
encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setBytes(&metalParam, length: MemoryLayout<MetalConvParam>.size, index: 0) float32ToFloat16(input: newBiase as! UnsafeMutablePointer<Float32>, output: newBiaseBuffer.contents(), count: param.bias.buffer.length / MemoryLayout<P>.size)
encoder.setBuffer(param.filter.buffer, offset: 0, index: 1)
encoder.setBuffer(param.y.buffer, offset: 0, index: 2) float32ToFloat16(input: newScale as! UnsafeMutablePointer<Float32>, output: newScaleBuffer.contents(), count: param.scale.buffer.length / MemoryLayout<P>.size)
encoder.setBuffer(param.newScale!, offset: 0, index: 3) } else {
encoder.setBuffer(param.newBiase!, offset: 0, index: 4) fatalError(" unsupport ")
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
} }
public func test(commandBuffer: MTLCommandBuffer, param: ConvAddBatchNormReluTestParam) { param.newBiase = newBiaseBuffer
guard let encoder = commandBuffer.makeComputeCommandEncoder() else { param.newScale = newScaleBuffer
fatalError()
} newScale.deinitialize(count: param.scale.buffer.length)
newScale.deallocate()
encoder.setTexture(param.inputTexture, index: 0)
encoder.setTexture(param.outputTexture, index: 1) newBiase.deinitialize(count: param.bias.buffer.length)
var inMetalParam = param.metalParam newBiase.deallocate()
encoder.setBytes(&inMetalParam, length: MemoryLayout<MetalConvParam>.size, index: 0) }
encoder.setBuffer(param.filterBuffer, offset: 0, index: 1)
encoder.setBuffer(param.biaseBuffer, offset: 0, index: 2) func compute(commandBuffer: MTLCommandBuffer, param: ConvAddBatchNormReluParam<P>) throws {
encoder.setBuffer(param.newScaleBuffer, offset: 0, index: 3) guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
encoder.setBuffer(param.newBiaseBuffer, offset: 0, index: 4) throw PaddleMobileError.predictError(message: " encode is nil")
encoder.dispatch(computePipline: pipline, outTexture: param.outputTexture)
encoder.endEncoding()
} }
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setBytes(&metalParam, length: MemoryLayout<MetalConvParam>.size, index: 0)
encoder.setBuffer(param.filter.buffer, offset: 0, index: 1)
encoder.setBuffer(param.y.buffer, offset: 0, index: 2)
encoder.setBuffer(param.newScale!, offset: 0, index: 3)
encoder.setBuffer(param.newBiase!, offset: 0, index: 4)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
public func test(commandBuffer: MTLCommandBuffer, param: ConvAddBatchNormReluTestParam) {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
fatalError()
}
encoder.setTexture(param.inputTexture, index: 0)
encoder.setTexture(param.outputTexture, index: 1)
var inMetalParam = param.metalParam
encoder.setBytes(&inMetalParam, length: MemoryLayout<MetalConvParam>.size, index: 0)
encoder.setBuffer(param.filterBuffer, offset: 0, index: 1)
encoder.setBuffer(param.biaseBuffer, offset: 0, index: 2)
encoder.setBuffer(param.newScaleBuffer, offset: 0, index: 3)
encoder.setBuffer(param.newBiaseBuffer, offset: 0, index: 4)
encoder.dispatch(computePipline: pipline, outTexture: param.outputTexture)
encoder.endEncoding()
}
} }
...@@ -17,22 +17,35 @@ import Foundation ...@@ -17,22 +17,35 @@ import Foundation
class ConvAddKernel<P: PrecisionType>: Kernel, Computable { class ConvAddKernel<P: PrecisionType>: Kernel, Computable {
var metalParam: MetalConvParam! var metalParam: MetalConvParam!
required init(device: MTLDevice, param: ConvAddParam<P>) { required init(device: MTLDevice, param: ConvAddParam<P>) {
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_add_1x1") if computePrecision == .Float16 {
} else if param.filter.channel == 1 { if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_3x3") super.init(device: device, inFunctionName: "conv_add_1x1_half")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_3x3_half")
} else {
super.init(device: device, inFunctionName: "conv_add_3x3_half")
}
} else if computePrecision == .Float32 {
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_add_1x1")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_add_3x3")
} else {
super.init(device: device, inFunctionName: "conv_add_3x3")
}
} else { } else {
super.init(device: device, inFunctionName: "conv_add_3x3") fatalError()
} }
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1]) param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1], computePrecision: computePrecision)
let offsetX = (Int(param.dilations[0]) * (param.filter.width - 1) + 1)/2 - Int(param.paddings[0]) let offsetX = (Int(param.dilations[0]) * (param.filter.width - 1) + 1)/2 - Int(param.paddings[0])
let offsetY = (Int(param.dilations[1]) * (param.filter.height - 1) + 1)/2 - Int(param.paddings[1]) let offsetY = (Int(param.dilations[1]) * (param.filter.height - 1) + 1)/2 - Int(param.paddings[1])
param.filter.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32) param.filter.initBuffer(device: device, precision: computePrecision)
param.y.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32) param.y.initBuffer(device: device, precision: computePrecision)
print("offset x: \(offsetX)") print("offset x: \(offsetX)")
print("offset y: \(offsetY)") print("offset y: \(offsetY)")
......
...@@ -51,21 +51,33 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable { ...@@ -51,21 +51,33 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
var metalParam: MetalConvParam! var metalParam: MetalConvParam!
required init(device: MTLDevice, param: ConvBNReluParam<P>) { required init(device: MTLDevice, param: ConvBNReluParam<P>) {
if computePrecision == .Float32 {
if param.filter.width == 1 && param.filter.height == 1 { if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_1x1") super.init(device: device, inFunctionName: "conv_batch_norm_relu_1x1")
} else if param.filter.channel == 1 { } else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_batch_norm_relu_3x3") super.init(device: device, inFunctionName: "depthwise_conv_batch_norm_relu_3x3")
} else {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_3x3")
}
} else if computePrecision == .Float16 {
if param.filter.width == 1 && param.filter.height == 1 {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_1x1_half")
} else if param.filter.channel == 1 {
super.init(device: device, inFunctionName: "depthwise_conv_batch_norm_relu_3x3_half")
} else {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_3x3_half")
}
} else { } else {
super.init(device: device, inFunctionName: "conv_batch_norm_relu_3x3") fatalError()
} }
param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1])
param.filter.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32)
param.variance.initBuffer(device: device) param.output.initTexture(device: device, inTranspose: [0, 2, 3, 1], computePrecision: computePrecision)
param.mean.initBuffer(device: device) param.filter.initBuffer(device: device, precision: computePrecision)
param.scale.initBuffer(device: device)
param.bias.initBuffer(device: device) param.variance.initBuffer(device: device, precision: .Float32)
param.mean.initBuffer(device: device, precision: .Float32)
param.scale.initBuffer(device: device, precision: .Float32)
param.bias.initBuffer(device: device, precision: .Float32)
let offsetX = param.filter.width/2 - Int(param.paddings[0]) let offsetX = param.filter.width/2 - Int(param.paddings[0])
let offsetY = param.filter.height/2 - Int(param.paddings[1]) let offsetY = param.filter.height/2 - Int(param.paddings[1])
...@@ -102,8 +114,26 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable { ...@@ -102,8 +114,26 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
newBiase[i] = biaseContents[i] - meanContents[i] * invs[i] * scaleContents[i] newBiase[i] = biaseContents[i] - meanContents[i] * invs[i] * scaleContents[i]
} }
param.newBiase = device.makeBuffer(bytes: newBiase, length: param.bias.buffer.length) var newBiaseBuffer: MTLBuffer
param.newScale = device.makeBuffer(bytes: newScale, length: param.scale.buffer.length) var newScaleBuffer: MTLBuffer
if computePrecision == .Float16 {
newBiaseBuffer = device.makeBuffer(bytes: newBiase, length: param.bias.buffer.length)!
newScaleBuffer = device.makeBuffer(bytes: newScale, length: param.scale.buffer.length)!
} else if computePrecision == .Float32 {
newBiaseBuffer = device.makeBuffer(length: param.bias.buffer.length / 2)!
newScaleBuffer = device.makeBuffer(length: param.bias.buffer.length / 2)!
float32ToFloat16(input: newBiase as! UnsafeMutablePointer<Float32>, output: newBiaseBuffer.contents(), count: param.bias.buffer.length / MemoryLayout<P>.size)
float32ToFloat16(input: newScale as! UnsafeMutablePointer<Float32>, output: newScaleBuffer.contents(), count: param.scale.buffer.length / MemoryLayout<P>.size)
} else {
fatalError(" unsupport ")
}
param.newBiase = newBiaseBuffer
param.newScale = newScaleBuffer
newScale.deinitialize(count: param.scale.buffer.length) newScale.deinitialize(count: param.scale.buffer.length)
newScale.deallocate() newScale.deallocate()
......
...@@ -39,7 +39,7 @@ class ConvKernel<P: PrecisionType>: Kernel, Computable { ...@@ -39,7 +39,7 @@ class ConvKernel<P: PrecisionType>: Kernel, Computable {
let offsetX = param.filter.dim[2]/2 - Int(param.paddings[0]) let offsetX = param.filter.dim[2]/2 - Int(param.paddings[0])
let offsetY = param.filter.dim[1]/2 - Int(param.paddings[1]) let offsetY = param.filter.dim[1]/2 - Int(param.paddings[1])
let offsetZ = 0.0 let offsetZ = 0.0
param.filter.initBuffer(device: device, precision: Tensor.BufferPrecision.Float32) param.filter.initBuffer(device: device, precision: ComputePrecision.Float32)
metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]), dilationX: UInt16(param.dilations[0]), dilationY: UInt16(param.dilations[1])) metalParam = MetalConvParam.init(offsetX: Int16(offsetX), offsetY: Int16(offsetY), offsetZ: Int16(offsetZ), strideX: UInt16(param.stride[0]), strideY: UInt16(param.stride[1]), paddedZ: UInt16(param.input.metalTexture.arrayLength * 4 - param.input.dim[3]), dilationX: UInt16(param.dilations[0]), dilationY: UInt16(param.dilations[1]))
} }
......
...@@ -28,7 +28,7 @@ class PoolKernel<P: PrecisionType>: Kernel, Computable{ ...@@ -28,7 +28,7 @@ class PoolKernel<P: PrecisionType>: Kernel, Computable{
required init(device: MTLDevice, param: PoolParam<P>) { required init(device: MTLDevice, param: PoolParam<P>) {
super.init(device: device, inFunctionName: "pool") super.init(device: device, inFunctionName: "pool")
param.output.initTexture(device: device, inTranspose: param.input.transpose) param.output.initTexture(device: device, inTranspose: param.input.transpose, computePrecision: computePrecision)
} }
func compute(commandBuffer: MTLCommandBuffer, param: PoolParam<P>) throws { func compute(commandBuffer: MTLCommandBuffer, param: PoolParam<P>) throws {
......
...@@ -17,8 +17,8 @@ class PreluKernel<P: PrecisionType>: Kernel, Computable{ ...@@ -17,8 +17,8 @@ class PreluKernel<P: PrecisionType>: Kernel, Computable{
} else { } else {
super.init(device: device, inFunctionName: "prelu_other") super.init(device: device, inFunctionName: "prelu_other")
} }
param.alpha.initBuffer(device: device) param.alpha.initBuffer(device: device, precision: computePrecision)
param.output.initTexture(device: device, inTranspose: param.input.transpose) param.output.initTexture(device: device, inTranspose: param.input.transpose, computePrecision: computePrecision)
} }
func compute(commandBuffer: MTLCommandBuffer, param: PreluParam<P>) throws { func compute(commandBuffer: MTLCommandBuffer, param: PreluParam<P>) throws {
......
...@@ -33,11 +33,16 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{ ...@@ -33,11 +33,16 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{
var metalParam: PriorBoxMetalParam! var metalParam: PriorBoxMetalParam!
required init(device: MTLDevice, param: PriorBoxParam<P>) { required init(device: MTLDevice, param: PriorBoxParam<P>) {
super.init(device: device, inFunctionName: "prior_box") if computePrecision == .Float32 {
param.output.initTexture(device: device, inTranspose: [2, 0, 1, 3]) super.init(device: device, inFunctionName: "prior_box")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "prior_box_half")
} else {
fatalError()
}
param.output.initTexture(device: device, inTranspose: [2, 0, 1, 3], computePrecision: computePrecision)
param.outputVariances.initTexture(device: device, inTranspose: [2, 0, 1, 3]) param.outputVariances.initTexture(device: device, inTranspose: [2, 0, 1, 3], computePrecision: computePrecision)
let n = 1 let n = 1
let h = param.output.dim[1] let h = param.output.dim[1]
...@@ -79,7 +84,18 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{ ...@@ -79,7 +84,18 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{
} }
} }
param.newAspectRatios = outputAspectRatior if computePrecision == .Float16 {
let buffer = device.makeBuffer(length: outputAspectRatior.count)
float32ToFloat16(input: &outputAspectRatior, output:(buffer?.contents())!, count: outputAspectRatior.count)
param.newAspectRatios = buffer
} else if computePrecision == .Float32 {
let buffer = device.makeBuffer(bytes: outputAspectRatior, length: outputAspectRatior.count * MemoryLayout<Float32>.size, options: [])
param.newAspectRatios = buffer
} else {
fatalError()
}
let aspectRatiosSize = uint(outputAspectRatior.count) let aspectRatiosSize = uint(outputAspectRatior.count)
let maxSizeSize: uint = uint(param.maxSizes.count) let maxSizeSize: uint = uint(param.maxSizes.count)
...@@ -102,12 +118,13 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{ ...@@ -102,12 +118,13 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{
encoder.setTexture(param.input.metalTexture, index: 0) encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1) encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setTexture(param.outputVariances.metalTexture, index: 2) encoder.setTexture(param.outputVariances.metalTexture, index: 2)
encoder.setBytes(&metalParam, length: MemoryLayout<PriorBoxMetalParam>.size, index: 0)
encoder.setBytes(param.newAspectRatios!, length: MemoryLayout<Float32>.size * param.newAspectRatios!.count, index: 1) encoder.setBuffer(param.newAspectRatios!, offset: 0, index: 0)
encoder.setBytes(&metalParam, length: MemoryLayout<PriorBoxMetalParam>.size, index: 1)
encoder.setBytes(param.variances, length: MemoryLayout<Float32>.size * param.variances.count, index: 2) encoder.setBytes(param.variances, length: MemoryLayout<Float32>.size * param.variances.count, index: 2)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture) encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding() encoder.endEncoding()
} }
} }
...@@ -15,58 +15,65 @@ ...@@ -15,58 +15,65 @@
import Foundation import Foundation
struct ReshapeMetalParam { struct ReshapeMetalParam {
var idim: (Int32, Int32, Int32, Int32) var idim: (Int32, Int32, Int32, Int32)
var itrans: (Int32, Int32, Int32, Int32) var itrans: (Int32, Int32, Int32, Int32)
var odim: (Int32, Int32, Int32, Int32) var odim: (Int32, Int32, Int32, Int32)
var otrans: (Int32, Int32, Int32, Int32) var otrans: (Int32, Int32, Int32, Int32)
} }
struct ReshapeTestParam: TestParam { struct ReshapeTestParam: TestParam {
let inputTexture: MTLTexture let inputTexture: MTLTexture
let outputTexture: MTLTexture let outputTexture: MTLTexture
let param: ReshapeMetalParam let param: ReshapeMetalParam
} }
class ReshapeKernel<P: PrecisionType>: Kernel, Computable{ class ReshapeKernel<P: PrecisionType>: Kernel, Computable{
required init(device: MTLDevice, param: ReshapeParam<P>) { required init(device: MTLDevice, param: ReshapeParam<P>) {
param.output.initTexture(device: device) param.output.initTexture(device: device, computePrecision: computePrecision)
super.init(device: device, inFunctionName: "reshape") if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "reshape")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "reshape_half")
} else {
fatalError()
} }
}
required init(device: MTLDevice, testParam: ReshapeTestParam) {
super.init(device: device, inFunctionName: "reshape") required init(device: MTLDevice, testParam: ReshapeTestParam) {
} super.init(device: device, inFunctionName: "reshape")
}
func compute(commandBuffer: MTLCommandBuffer, param: ReshapeParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else { func compute(commandBuffer: MTLCommandBuffer, param: ReshapeParam<P>) throws {
throw PaddleMobileError.predictError(message: " encoder is nil") guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
} throw PaddleMobileError.predictError(message: " encoder is nil")
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
let id: [Int32] = (0..<4).map { Int32(param.input.dim[$0]) }
let it: [Int32] = param.input.transpose.map { Int32($0) }
let od: [Int32] = (0..<4).map { Int32(param.output.dim[$0]) }
let ot: [Int32] = param.output.transpose.map { Int32($0) }
var rmp = ReshapeMetalParam.init(
idim: (id[0], id[1], id[2], id[3]),
itrans: (it[0], it[1], it[2], it[3]),
odim: (od[0], od[1], od[2], od[3]),
otrans: (ot[0], ot[1], ot[2], ot[3])
)
encoder.setBytes(&rmp, length: MemoryLayout<ReshapeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
} }
func test(commandBuffer: MTLCommandBuffer, testParam: ReshapeTestParam) { encoder.setTexture(param.input.metalTexture, index: 0)
guard let encoder = commandBuffer.makeComputeCommandEncoder() else { encoder.setTexture(param.output.metalTexture, index: 1)
fatalError() let id: [Int32] = (0..<4).map { Int32(param.input.dim[$0]) }
} let it: [Int32] = param.input.transpose.map { Int32($0) }
encoder.setTexture(testParam.inputTexture, index: 0) let od: [Int32] = (0..<4).map { Int32(param.output.dim[$0]) }
encoder.setTexture(testParam.outputTexture, index: 1) let ot: [Int32] = param.output.transpose.map { Int32($0) }
var pm: ReshapeMetalParam = testParam.param var rmp = ReshapeMetalParam.init(
encoder.setBytes(&pm, length: MemoryLayout<ReshapeMetalParam>.size, index: 0) idim: (id[0], id[1], id[2], id[3]),
encoder.dispatch(computePipline: pipline, outTexture: testParam.outputTexture) itrans: (it[0], it[1], it[2], it[3]),
encoder.endEncoding() odim: (od[0], od[1], od[2], od[3]),
otrans: (ot[0], ot[1], ot[2], ot[3])
)
encoder.setBytes(&rmp, length: MemoryLayout<ReshapeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
func test(commandBuffer: MTLCommandBuffer, testParam: ReshapeTestParam) {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
fatalError()
} }
encoder.setTexture(testParam.inputTexture, index: 0)
encoder.setTexture(testParam.outputTexture, index: 1)
var pm: ReshapeMetalParam = testParam.param
encoder.setBytes(&pm, length: MemoryLayout<ReshapeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: testParam.outputTexture)
encoder.endEncoding()
}
} }
...@@ -38,7 +38,13 @@ class SoftmaxKernel<P: PrecisionType>: Kernel, Computable{ ...@@ -38,7 +38,13 @@ class SoftmaxKernel<P: PrecisionType>: Kernel, Computable{
} }
required init(device: MTLDevice, param: SoftmaxParam<P>) { required init(device: MTLDevice, param: SoftmaxParam<P>) {
param.output.initTexture(device: device) param.output.initTexture(device: device, computePrecision: computePrecision)
super.init(device: device, inFunctionName: "softmax") if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "softmax")
} else if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "softmax_half")
} else {
fatalError()
}
} }
} }
...@@ -41,33 +41,27 @@ struct TransposeTestParam: TestParam { ...@@ -41,33 +41,27 @@ struct TransposeTestParam: TestParam {
} }
class TransposeKernel<P: PrecisionType>: Kernel, Computable, Testable { class TransposeKernel<P: PrecisionType>: Kernel, Computable, Testable {
var metalParam: TransposeMetalParam!
func compute(commandBuffer: MTLCommandBuffer, param: TransposeParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setBytes(&metalParam, length: MemoryLayout<TransposeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
}
required init(device: MTLDevice, param: TransposeParam<P>) { required init(device: MTLDevice, param: TransposeParam<P>) {
param.output.initTexture(device: device, inTranspose: [0, 1, 2, 3]) param.output.initTexture(device: device, inTranspose: [0, 1, 2, 3], computePrecision: computePrecision)
super.init(device: device, inFunctionName: "transpose")
if computePrecision == .Float16 {
super.init(device: device, inFunctionName: "transpose_half")
} else if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "transpose")
} else {
fatalError()
}
var invT: [Int] = [0, 1, 2, 3] var invT: [Int] = [0, 1, 2, 3]
for (i, v) in param.input.transpose.enumerated() { for (i, v) in param.input.transpose.enumerated() {
invT[v] = i invT[v] = i
} }
var axis: [Int] = [0, 1, 2, 3] var axis: [Int] = [0, 1, 2, 3]
// var doNothing = false // var doNothing = false
// if param.axis.count == param.input.transpose.count { // if param.axis.count == param.input.transpose.count {
// doNothing = param.axis == param.input.transpose.map { Int32($0) } // doNothing = param.axis == param.input.transpose.map { Int32($0) }
// } // }
for i in 0..<param.axis.count { for i in 0..<param.axis.count {
...@@ -84,10 +78,30 @@ class TransposeKernel<P: PrecisionType>: Kernel, Computable, Testable { ...@@ -84,10 +78,30 @@ class TransposeKernel<P: PrecisionType>: Kernel, Computable, Testable {
} }
metalParam = tmp metalParam = tmp
} }
required init(device: MTLDevice, testParam: TransposeTestParam) { required init(device: MTLDevice, testParam: TransposeTestParam) {
super.init(device: device, inFunctionName: "transpose") if computePrecision == .Float16 {
fatalError() super.init(device: device, inFunctionName: "transpose_half")
} else if computePrecision == .Float32 {
super.init(device: device, inFunctionName: "transpose")
} else {
fatalError()
}
}
var metalParam: TransposeMetalParam!
func compute(commandBuffer: MTLCommandBuffer, param: TransposeParam<P>) throws {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
throw PaddleMobileError.predictError(message: " encode is nil")
}
encoder.setTexture(param.input.metalTexture, index: 0)
encoder.setTexture(param.output.metalTexture, index: 1)
encoder.setBytes(&metalParam, length: MemoryLayout<TransposeMetalParam>.size, index: 0)
encoder.dispatch(computePipline: pipline, outTexture: param.output.metalTexture)
encoder.endEncoding()
} }
public func test(commandBuffer: MTLCommandBuffer, param: TransposeTestParam) { public func test(commandBuffer: MTLCommandBuffer, param: TransposeTestParam) {
guard let encoder = commandBuffer.makeComputeCommandEncoder() else { guard let encoder = commandBuffer.makeComputeCommandEncoder() else {
......
...@@ -34,7 +34,6 @@ kernel void boxcoder(texture2d_array<float, access::read> priorBox [[texture(0)] ...@@ -34,7 +34,6 @@ kernel void boxcoder(texture2d_array<float, access::read> priorBox [[texture(0)]
float tw = exp(pv.z * t.z) * pw; float tw = exp(pv.z * t.z) * pw;
float th = exp(pv.w * t.w) * ph; float th = exp(pv.w * t.w) * ph;
float4 r; float4 r;
r.x = tx - tw / 2; r.x = tx - tw / 2;
r.y = ty - th / 2; r.y = ty - th / 2;
...@@ -43,3 +42,31 @@ kernel void boxcoder(texture2d_array<float, access::read> priorBox [[texture(0)] ...@@ -43,3 +42,31 @@ kernel void boxcoder(texture2d_array<float, access::read> priorBox [[texture(0)]
output.write(r, gid.xy, gid.z); output.write(r, gid.xy, gid.z);
} }
kernel void boxcoder_half(texture2d_array<half, access::read> priorBox [[texture(0)]],
texture2d_array<half, access::read> priorBoxVar [[texture(1)]],
texture2d_array<half, access::read> targetBox [[texture(2)]],
texture2d_array<half, access::write> output[[texture(3)]],
uint3 gid [[thread_position_in_grid]]) {
half4 t = targetBox.read(gid.xy, gid.z);
half4 p = priorBox.read(gid.xy, gid.z);
half4 pv = priorBoxVar.read(gid.xy, gid.z);
float px = (float(p.x) + float(p.z)) / 2;
float py = (float(p.y) + float(p.w)) / 2;
float pw = float(p.z) - float(p.x);
float ph = float(p.w) - float(p.y);
float tx = float(pv.x) * float(t.x) * pw + px;
float ty = float(pv.y) * float(t.y) * ph + py;
float tw = exp(float(pv.z) * float(t.z)) * pw;
float th = exp(float(pv.w) * float(t.w)) * ph;
float4 r;
r.x = tx - tw / 2;
r.y = ty - th / 2;
r.z = tx + tw / 2;
r.w = ty + th / 2;
output.write(half4(r), gid.xy, gid.z);
}
...@@ -57,3 +57,14 @@ inline void invtrans(int32_t trans[4], int32_t ipos[4], int32_t opos[4]) { ...@@ -57,3 +57,14 @@ inline void invtrans(int32_t trans[4], int32_t ipos[4], int32_t opos[4]) {
opos[trans[i]] = ipos[i]; opos[trans[i]] = ipos[i];
} }
} }
struct MetalConvParam {
short offsetX;
short offsetY;
short offsetZ;
ushort strideX;
ushort strideY;
ushort dilationX;
ushort dilationY;
};
...@@ -69,3 +69,48 @@ kernel void concat(texture2d_array<float, access::read> in0 [[texture(0)]], ...@@ -69,3 +69,48 @@ kernel void concat(texture2d_array<float, access::read> in0 [[texture(0)]],
} }
out.write(r, gid.xy, gid.z); out.write(r, gid.xy, gid.z);
} }
kernel void concat_half(texture2d_array<half, access::read> in0 [[texture(0)]],
texture2d_array<half, access::read> in1 [[texture(1)]],
texture2d_array<half, access::read> in2 [[texture(2)]],
texture2d_array<half, access::read> in3 [[texture(3)]],
texture2d_array<half, access::read> in4 [[texture(4)]],
texture2d_array<half, access::read> in5 [[texture(5)]],
texture2d_array<half, access::read> inx [[texture(6)]],
texture2d_array<half, access::write> out [[texture(7)]],
constant ConcatParam & pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
ConcatParam cp = pm;
int xyzn[4] = {int(gid.x), int(gid.y), int(gid.z), 0}, abcd[4], oxyzn[4];
half4 r;
for (int i = 0; i < 4; i++) {
xyzn[3] = i;
xyzn2abcd(cp.odim[3], xyzn, abcd);
int k = abcd[cp.axis] - cp.offset;
int j = 0;
if (k < 0) {
r[i] = inx.read(gid.xy, gid.z)[i];
} else {
for (; j < 6; j++) {
if (k < cp.vdim[j]) {
break;
}
k -= cp.vdim[j];
}
int ta = cp.odim[cp.axis];
abcd[cp.axis] = k;
cp.odim[cp.axis] = cp.vdim[j];
abcd2xyzn(cp.odim[3], abcd, oxyzn);
cp.odim[cp.axis] = ta;
switch (j) {
case 0: r[i] = in0.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 1: r[i] = in1.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 2: r[i] = in2.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 3: r[i] = in3.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 4: r[i] = in4.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
case 5: r[i] = in5.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2])[oxyzn[3]]; break;
}
}
}
out.write(r, gid.xy, gid.z);
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
kernel void conv_add_batch_norm_relu_1x1_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
half4 output = half4(0.0);
half4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = half4(fmax((float4(output) + float4(biase[gid.z])) * new_scale[gid.z] + new_biase[gid.z], 0.0));
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
half4 output = half4(0.0);
half4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = half4(fmax((float4(output) + float4(biase[gid.z])) * new_scale[gid.z] + new_biase[gid.z], 0.0));
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
half4 output = half4(0.0);
half4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = half4(fmax((float4(output) + float4(biase[gid.z])) * new_scale[gid.z] + new_biase[gid.z], 0.0));
outTexture.write(output, gid.xy, gid.z);
}
/*---------------------------------------------*/
kernel void conv_add_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
#pragma mark - convAdd
kernel void conv_add_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
ushort dilation_x = param.dilationX;
ushort dilation_y = param.dilationY;
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y - dilation_y), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - dilation_y), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y - dilation_y), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y + dilation_y), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + dilation_y), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y + dilation_y), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
#pragma mark - half
kernel void conv_add_1x1_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
half4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = output + float4(biase[gid.z]);
outTexture.write(half4(output), gid.xy, gid.z);
}
kernel void conv_add_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device half4 *new_scale [[buffer(3)]],
const device half4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
ushort dilation_x = param.dilationX;
ushort dilation_y = param.dilationY;
half4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y - dilation_y), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - dilation_y), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y - dilation_y), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y + dilation_y), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + dilation_y), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y + dilation_y), i);
for (int j = 0; j < 9; ++j) {
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(float4(input[j]), float4(weight_x));
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(float4(input[j]), float4(weight_y));
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(float4(input[j]), float4(weight_z));
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(float4(input[j]), float4(weight_w));
}
}
output = output + float4(biase[gid.z]);
outTexture.write(half4(output), gid.xy, gid.z);
}
kernel void depthwise_conv_add_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device half4 *new_scale [[buffer(3)]],
const device half4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
half4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
output.x += float(input.x) * float(weights[weithTo + 0 * kernelHXW + j]);
output.y += float(input.y) * float(weights[weithTo + 1 * kernelHXW + j]);
output.z += float(input.z) * float(weights[weithTo + 2 * kernelHXW + j]);
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = output + float4(biase[gid.z]);
outTexture.write(half4(output), gid.xy, gid.z);
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
#pragma mark - conv bn relu
kernel void conv_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
#pragma mark - half
kernel void conv_batch_norm_relu_1x1_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *new_scale [[buffer(2)]],
const device half4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
half4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(float4(input), float4(weight_x));
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(float4(input), float4(weight_y));
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(float4(input), float4(weight_z));
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(float4(input), float4(weight_w));
}
output = fmax(output * float4(new_scale[gid.z]) + float4(new_biase[gid.z]), 0.0);
outTexture.write(half4(output), gid.xy, gid.z);
}
kernel void conv_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *new_scale [[buffer(2)]],
const device half4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
half4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(float4(input[j]), float4(weight_x));
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(float4(input[j]), float4(weight_y));
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(float4(input[j]), float4(weight_z));
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(float4(input[j]), float4(weight_w));
}
}
output = fmax(output * float4(new_scale[gid.z]) + float4(new_biase[gid.z]), 0.0);
outTexture.write(half4(output), gid.xy, gid.z);
}
kernel void depthwise_conv_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half *weights [[buffer(1)]],
const device half4 *new_scale [[buffer(2)]],
const device half4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
half4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = fmax(output * float4(new_scale[gid.z]) + float4(new_biase[gid.z]), 0.0);
outTexture.write(half4(output), gid.xy, gid.z);
}
...@@ -13,349 +13,9 @@ ...@@ -13,349 +13,9 @@
limitations under the License. */ limitations under the License. */
#include <metal_stdlib> #include <metal_stdlib>
#include "Common.metal"
using namespace metal; using namespace metal;
struct MetalConvParam {
short offsetX;
short offsetY;
short offsetZ;
ushort strideX;
ushort strideY;
ushort dilationX;
ushort dilationY;
};
kernel void conv_add_batch_norm_relu_1x1_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
half4 output = half4(0.0);
half4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = half4(fmax((float4(output) + float4(biase[gid.z])) * new_scale[gid.z] + new_biase[gid.z], 0.0));
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
half4 output = half4(0.0);
half4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = half4(fmax((float4(output) + float4(biase[gid.z])) * new_scale[gid.z] + new_biase[gid.z], 0.0));
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_1x1_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
half4 output = half4(0.0);
half4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
half4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
half4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
half4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
half4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_batch_norm_relu_3x3_half(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device half *weights [[buffer(1)]],
const device half4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
half4 output = half4(0.0);
half4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
half4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = half4(fmax((float4(output) + float4(biase[gid.z])) * new_scale[gid.z] + new_biase[gid.z], 0.0));
outTexture.write(output, gid.xy, gid.z);
}
/*---------------------------------------------*/
kernel void conv_add_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
// conv // conv
#pragma mark -- conv #pragma mark -- conv
kernel void conv_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]], kernel void conv_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
...@@ -487,285 +147,4 @@ kernel void conv_1x1(texture2d_array<float, access::sample> inTexture [[texture( ...@@ -487,285 +147,4 @@ kernel void conv_1x1(texture2d_array<float, access::sample> inTexture [[texture(
outTexture.write(output, gid.xy, gid.z); outTexture.write(output, gid.xy, gid.z);
} }
#pragma mark - convAdd
kernel void conv_add_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
ushort dilation_x = param.dilationX;
ushort dilation_y = param.dilationY;
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y - dilation_y), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - dilation_y), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y - dilation_y), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - dilation_x, posInInput.y + dilation_y), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + dilation_y), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + dilation_x, posInInput.y + dilation_y), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
#pragma mark - conv bn relu
kernel void conv_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam &param [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(2)]],
const device float4 *new_biase [[buffer(3)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
...@@ -79,113 +79,6 @@ kernel void texture2d_to_2d_array_half(texture2d<half, access::read> inTexture [ ...@@ -79,113 +79,6 @@ kernel void texture2d_to_2d_array_half(texture2d<half, access::read> inTexture [
outTexture.write(input, gid.xy, 0); outTexture.write(input, gid.xy, 0);
} }
struct PoolParam {
int ksizeX;
int ksizeY;
int strideX;
int strideY;
int paddingX;
int paddingY;
int poolType;
};
kernel void pool(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant PoolParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int xmin = gid.x * pm.strideX - pm.paddingX;
int xmax = min(xmin + pm.ksizeX, int(inTexture.get_width()));
xmin = max(xmin, 0);
int ymin = gid.y * pm.strideX - pm.paddingX;
int ymax = min(ymin + pm.ksizeX, int(inTexture.get_height()));
ymin = max(ymin, 0);
float4 r = 0;
if (pm.poolType == 0) {
r = inTexture.read(uint2(xmin, ymin), gid.z);
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r = fmax(r, inTexture.read(uint2(x, y), gid.z));
}
}
} else if (pm.poolType == 1) {
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r += inTexture.read(uint2(x, y), gid.z);
}
}
r /= pm.ksizeX * pm.ksizeY;
}
outTexture.write(r, gid.xy, gid.z);
}
kernel void pool_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant PoolParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int xmin = gid.x * pm.strideX - pm.paddingX;
int xmax = min(xmin + pm.ksizeX, int(inTexture.get_width()));
xmin = max(xmin, 0);
int ymin = gid.y * pm.strideX - pm.paddingX;
int ymax = min(ymin + pm.ksizeX, int(inTexture.get_height()));
ymin = max(ymin, 0);
half4 r = 0;
if (pm.poolType == 0) {
r = inTexture.read(uint2(xmin, ymin), gid.z);
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r = fmax(r, inTexture.read(uint2(x, y), gid.z));
}
}
} else if (pm.poolType == 1) {
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r += inTexture.read(uint2(x, y), gid.z);
}
}
r /= pm.ksizeX * pm.ksizeY;
}
outTexture.write(r, gid.xy, gid.z);
}
struct TransposeParam {
int iC;
int oC;
int axis[4];
};
kernel void transpose(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant TransposeParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if ((pm.axis[0] == 0) && (pm.axis[1] == 1) && (pm.axis[2] == 2) && (pm.axis[3] == 3)) {
// do nothing
float4 r = inTexture.read(gid.xy, gid.z);
outTexture.write(r, gid.xy, gid.z);
} else {
float4 r;
for (int n = 0; n < 4; n++) {
int ixyzn[] = {int(gid.x), int(gid.y), int(gid.z), n};
int iabcd[4], oabcd[4], oxyzn[4];
xyzn2abcd(pm.oC, ixyzn, iabcd);
oabcd[pm.axis[0]] = iabcd[0];
oabcd[pm.axis[1]] = iabcd[1];
oabcd[pm.axis[2]] = iabcd[2];
oabcd[pm.axis[3]] = iabcd[3];
abcd2xyzn(pm.iC, oabcd, oxyzn);
float4 rt = inTexture.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2]);
r[n] = rt[oxyzn[3]];
}
outTexture.write(r, gid.xy, gid.z);
}
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
struct PoolParam {
int ksizeX;
int ksizeY;
int strideX;
int strideY;
int paddingX;
int paddingY;
int poolType;
};
kernel void pool(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant PoolParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int xmin = gid.x * pm.strideX - pm.paddingX;
int xmax = min(xmin + pm.ksizeX, int(inTexture.get_width()));
xmin = max(xmin, 0);
int ymin = gid.y * pm.strideX - pm.paddingX;
int ymax = min(ymin + pm.ksizeX, int(inTexture.get_height()));
ymin = max(ymin, 0);
float4 r = 0;
if (pm.poolType == 0) {
r = inTexture.read(uint2(xmin, ymin), gid.z);
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r = fmax(r, inTexture.read(uint2(x, y), gid.z));
}
}
} else if (pm.poolType == 1) {
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r += inTexture.read(uint2(x, y), gid.z);
}
}
r /= pm.ksizeX * pm.ksizeY;
}
outTexture.write(r, gid.xy, gid.z);
}
kernel void pool_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant PoolParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int xmin = gid.x * pm.strideX - pm.paddingX;
int xmax = min(xmin + pm.ksizeX, int(inTexture.get_width()));
xmin = max(xmin, 0);
int ymin = gid.y * pm.strideX - pm.paddingX;
int ymax = min(ymin + pm.ksizeX, int(inTexture.get_height()));
ymin = max(ymin, 0);
half4 r = 0;
if (pm.poolType == 0) {
r = inTexture.read(uint2(xmin, ymin), gid.z);
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r = fmax(r, inTexture.read(uint2(x, y), gid.z));
}
}
} else if (pm.poolType == 1) {
for (int x = xmin; x < xmax; x++) {
for (int y = ymin; y < ymax; y++) {
r += inTexture.read(uint2(x, y), gid.z);
}
}
r /= pm.ksizeX * pm.ksizeY;
}
outTexture.write(r, gid.xy, gid.z);
}
...@@ -15,8 +15,6 @@ ...@@ -15,8 +15,6 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
kernel void prelu_channel(texture2d_array<float, access::sample> inTexture [[texture(0)]], kernel void prelu_channel(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]], texture2d_array<float, access::write> outTexture [[texture(1)]],
const device float4 *alpha [[buffer(0)]], const device float4 *alpha [[buffer(0)]],
...@@ -82,3 +80,4 @@ kernel void prelu_other(texture2d_array<float, access::sample> inTexture [[textu ...@@ -82,3 +80,4 @@ kernel void prelu_other(texture2d_array<float, access::sample> inTexture [[textu
output.w = input.w > 0 ? input.w : (alpha_value * input.w); output.w = input.w > 0 ? input.w : (alpha_value * input.w);
outTexture.write(output, gid.xy, gid.z); outTexture.write(output, gid.xy, gid.z);
} }
...@@ -35,8 +35,8 @@ struct PriorBoxMetalParam { ...@@ -35,8 +35,8 @@ struct PriorBoxMetalParam {
kernel void prior_box(texture2d_array<float, access::read> inTexture [[texture(0)]], kernel void prior_box(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outBoxTexture [[texture(1)]], texture2d_array<float, access::write> outBoxTexture [[texture(1)]],
texture2d_array<float, access::write> varianceTexture [[texture(2)]], texture2d_array<float, access::write> varianceTexture [[texture(2)]],
constant PriorBoxMetalParam &param [[buffer(0)]], const device float *aspect_ratios [[buffer(0)]],
const device float *aspect_ratios [[buffer(1)]], constant PriorBoxMetalParam &param [[buffer(1)]],
const device float4 *variances [[buffer(2)]], const device float4 *variances [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) { uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outBoxTexture.get_width() || if (gid.x >= outBoxTexture.get_width() ||
...@@ -96,3 +96,68 @@ kernel void prior_box(texture2d_array<float, access::read> inTexture [[texture(0 ...@@ -96,3 +96,68 @@ kernel void prior_box(texture2d_array<float, access::read> inTexture [[texture(0
} }
} }
kernel void prior_box_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outBoxTexture [[texture(1)]],
texture2d_array<half, access::write> varianceTexture [[texture(2)]],
constant PriorBoxMetalParam &param [[buffer(0)]],
const device half *aspect_ratios [[buffer(1)]],
const device float4 *variances [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outBoxTexture.get_width() ||
gid.y >= outBoxTexture.get_height() ||
gid.z >= outBoxTexture.get_array_size()) return;
float center_x = (gid.x + param.offset) * param.stepWidth;
float center_y = (gid.y + param.offset) * param.stepHeight;
float box_width, box_height;
if (gid.z < param.aspecRatiosSize) {
half ar = aspect_ratios[gid.z];
box_width = param.minSize * sqrt(ar) / 2;
box_height = param.minSize / sqrt(ar) / 2;
float4 box;
box.x = (center_x - box_width) / param.imageWidth;
box.y = (center_y - box_height) / param.imageHeight;
box.z = (center_x + box_width) / param.imageWidth;
box.w = (center_y + box_height) / param.imageHeight;
float4 res;
if (param.clip) {
res = fmin(fmax(box, 0.0), 1.0);
} else {
res = box;
}
outBoxTexture.write(half4(res), gid.xy, gid.z);
} else if (gid.z >= param.aspecRatiosSize) {
if (param.maxSizeSize > 0) {
box_width = box_height = sqrt(param.minSize * param.maxSize) / 2;
float4 max_box;
max_box.x = (center_x - box_width) / param.imageWidth;
max_box.y = (center_y - box_height) / param.imageHeight;
max_box.z = (center_x + box_width) / param.imageWidth;
max_box.w = (center_y + box_height) / param.imageHeight;
float4 res;
if (param.clip) {
res = min(max(max_box, 0.0), 1.0);
} else {
res = max_box;
}
outBoxTexture.write(half4(max_box), gid.xy, gid.z);
}
}
float4 variance = variances[0];
if (gid.z < param.numPriors) {
float4 variances_output;
variances_output.x = variance.x;
variances_output.y = variance.y;
variances_output.z = variance.z;
variances_output.w = variance.w;
varianceTexture.write(half4(variances_output), gid.xy, gid.z);
}
}
...@@ -102,14 +102,36 @@ kernel void reshape(texture2d_array<float, access::read> inTexture [[texture(0)] ...@@ -102,14 +102,36 @@ kernel void reshape(texture2d_array<float, access::read> inTexture [[texture(0)]
outTexture.write(r, gid.xy, gid.z); outTexture.write(r, gid.xy, gid.z);
} }
kernel void reshape_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
half4 r = inTexture.read(uint2(0, 0), gid.x); kernel void reshape_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
outTexture.write(r, gid.xy, gid.z); texture2d_array<half, access::write> outTexture [[texture(1)]],
constant ReshapeParam &rp [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) return;
int oxyzn[4] = {int(gid.x), int(gid.y), int(gid.z), 0}, oabcd[4], ixyzn[4], iabcd[4];
ReshapeParam lrp = rp;
int oC = lrp.odim[lrp.otrans[3]];
int iC = lrp.idim[lrp.itrans[3]];
int count = lrp.odim[0] * lrp.odim[1] * lrp.odim[2] * lrp.odim[3];
half4 r;
for (int n = 0; n < 4; n++) {
oxyzn[3] = n;
xyzn2abcd(oC, oxyzn, oabcd);
int tabcd[4];
invtrans(lrp.otrans, oabcd, tabcd);
int index = abcd2index(lrp.odim, tabcd);
if (index < count) {
index2abcd(lrp.idim, index, tabcd);
trans(lrp.itrans, tabcd, iabcd);
abcd2xyzn(iC, iabcd, ixyzn);
r[n] = inTexture.read(uint2(ixyzn[0], ixyzn[1]), ixyzn[2])[ixyzn[3]];
} else {
r[n] = 0;
}
}
outTexture.write(r, gid.xy, gid.z);
} }
...@@ -57,25 +57,44 @@ kernel void softmax(texture2d_array<float, access::read> inTexture [[texture(0)] ...@@ -57,25 +57,44 @@ kernel void softmax(texture2d_array<float, access::read> inTexture [[texture(0)]
rr = exp(rr - maxv) / sum; rr = exp(rr - maxv) / sum;
outTexture.write(rr, gid.xy, gid.z); outTexture.write(rr, gid.xy, gid.z);
} }
//
//kernel void softmax_half(texture2d_array<half, access::read> inTexture [[texture(0)]], kernel void softmax_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
// texture2d_array<half, access::write> outTexture [[texture(1)]], texture2d_array<half, access::write> outTexture [[texture(1)]],
// uint3 gid [[thread_position_in_grid]]) { constant SoftmaxParam &sp [[buffer(0)]],
// if (gid.x >= outTexture.get_width() || uint3 gid [[thread_position_in_grid]]) {
// gid.y >= outTexture.get_height() || if (gid.x >= outTexture.get_width() ||
// gid.z >= outTexture.get_array_size()) return; gid.y >= outTexture.get_height() ||
// int zsize = inTexture.get_array_size(); gid.z >= outTexture.get_array_size()) return;
// half maxv = inTexture.read(uint2(0, 0), 0)[0]; // int zsize = inTexture.get_array_size();
// for (int z = 0; z < zsize; z++) { half maxv = inTexture.read(gid.xy, 0)[0];
// half4 r = inTexture.read(uint2(0, 0), z); int group = sp.K / 4;
// maxv = max(maxv, max(max(r[0], r[1]), max(r[2], r[3]))); int remain = sp.K % 4;
// } for (int z = 0; z < group; z++) {
// float sum = 0; half4 r = inTexture.read(gid.xy, z);
// for (int z = 0; z < zsize; z++) { maxv = max(maxv, max(r[0], max(r[1], max(r[2], r[3]))));
// half4 r = inTexture.read(uint2(0, 0), z); }
// sum += exp(r[0] - maxv) + exp(r[1] - maxv) + exp(r[2] - maxv) + exp(r[3] - maxv); if (remain > 0) {
// } half4 r = inTexture.read(gid.xy, group);
// half4 rr = inTexture.read(gid.xy, gid.z); for (int i = 0; i < remain; i++) {
// rr = exp(rr - maxv) / sum; maxv = max(maxv, r[i]);
// outTexture.write(rr, gid.xy, gid.z); }
//} }
float4 rsum = {0, 0, 0, 0};
for (int z = 0; z < group; z++) {
half4 r = inTexture.read(gid.xy, z);
rsum += exp(float4(r) - float4(maxv));
}
float sum = rsum[0] + rsum[1] + rsum[2] + rsum[3];
if (remain > 0) {
half4 r = inTexture.read(gid.xy, group);
for (int i = 0; i < remain; i++) {
sum += exp(float(r[i]) - float(maxv));
}
}
half4 rr = inTexture.read(gid.xy, gid.z);
rr = half4(exp(float4(rr) - float(maxv)) / sum);
outTexture.write(rr, gid.xy, gid.z);
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <metal_stdlib>
#include "Common.metal"
using namespace metal;
struct TransposeParam {
int iC;
int oC;
int axis[4];
};
kernel void transpose(texture2d_array<float, access::read> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant TransposeParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if ((pm.axis[0] == 0) && (pm.axis[1] == 1) && (pm.axis[2] == 2) && (pm.axis[3] == 3)) {
// do nothing
float4 r = inTexture.read(gid.xy, gid.z);
outTexture.write(r, gid.xy, gid.z);
} else {
float4 r;
for (int n = 0; n < 4; n++) {
int ixyzn[] = {int(gid.x), int(gid.y), int(gid.z), n};
int iabcd[4], oabcd[4], oxyzn[4];
xyzn2abcd(pm.oC, ixyzn, iabcd);
oabcd[pm.axis[0]] = iabcd[0];
oabcd[pm.axis[1]] = iabcd[1];
oabcd[pm.axis[2]] = iabcd[2];
oabcd[pm.axis[3]] = iabcd[3];
abcd2xyzn(pm.iC, oabcd, oxyzn);
float4 rt = inTexture.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2]);
r[n] = rt[oxyzn[3]];
}
outTexture.write(r, gid.xy, gid.z);
}
}
kernel void transpose_half(texture2d_array<half, access::read> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant TransposeParam &pm [[buffer(0)]],
uint3 gid [[thread_position_in_grid]]) {
if ((pm.axis[0] == 0) && (pm.axis[1] == 1) && (pm.axis[2] == 2) && (pm.axis[3] == 3)) {
// do nothing
half4 r = inTexture.read(gid.xy, gid.z);
outTexture.write(r, gid.xy, gid.z);
} else {
half4 r;
for (int n = 0; n < 4; n++) {
int ixyzn[] = {int(gid.x), int(gid.y), int(gid.z), n};
int iabcd[4], oabcd[4], oxyzn[4];
xyzn2abcd(pm.oC, ixyzn, iabcd);
oabcd[pm.axis[0]] = iabcd[0];
oabcd[pm.axis[1]] = iabcd[1];
oabcd[pm.axis[2]] = iabcd[2];
oabcd[pm.axis[3]] = iabcd[3];
abcd2xyzn(pm.iC, oabcd, oxyzn);
half4 rt = inTexture.read(uint2(oxyzn[0], oxyzn[1]), oxyzn[2]);
r[n] = rt[oxyzn[3]];
}
outTexture.write(r, gid.xy, gid.z);
}
}
...@@ -60,7 +60,7 @@ class PoolOp<P: PrecisionType>: Operator<PoolKernel<P>, PoolParam<P>>, Runable, ...@@ -60,7 +60,7 @@ class PoolOp<P: PrecisionType>: Operator<PoolKernel<P>, PoolParam<P>>, Runable,
func delogOutput() { func delogOutput() {
print(" \(type) output: ") print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray()) print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
// print("pool2d delog") // print("pool2d delog")
......
...@@ -51,13 +51,13 @@ class PreluOp<P: PrecisionType>: Operator<PreluKernel<P>, PreluParam<P>>, Runabl ...@@ -51,13 +51,13 @@ class PreluOp<P: PrecisionType>: Operator<PreluKernel<P>, PreluParam<P>>, Runabl
func delogOutput() { func delogOutput() {
print(" \(type) input: ") print(" \(type) input: ")
print(para.input.metalTexture.toTensor(dim: (n: para.input.originDim[0], c: para.input.originDim[1], h: para.input.originDim[2], w: para.input.originDim[3])).strideArray()) print(para.input.metalTexture.toTensor(dim: (n: para.input.originDim[0], c: para.input.originDim[1], h: para.input.originDim[2], w: para.input.originDim[3]), texturePrecision: computePrecision).strideArray())
print(" \(type) Alpha: ") print(" \(type) Alpha: ")
let _: Float32? = para.alpha.buffer.logDesc(header: " alpha: ", stridable: false) let _: Float32? = para.alpha.buffer.logDesc(header: " alpha: ", stridable: false)
print(" \(type) output: ") print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3])).strideArray()) print(para.output.metalTexture.toTensor(dim: (n: para.output.originDim[0], c: para.output.originDim[1], h: para.output.originDim[2], w: para.output.originDim[3]), texturePrecision: computePrecision).strideArray())
} }
// print("softmax delog") // print("softmax delog")
......
...@@ -39,7 +39,7 @@ class PriorBoxParam<P: PrecisionType>: OpParam { ...@@ -39,7 +39,7 @@ class PriorBoxParam<P: PrecisionType>: OpParam {
let minSizes: [Float32] let minSizes: [Float32]
let maxSizes: [Float32] let maxSizes: [Float32]
let aspectRatios: [Float32] let aspectRatios: [Float32]
var newAspectRatios: [Float32]? var newAspectRatios: MTLBuffer?
let variances: [Float32] let variances: [Float32]
let flip: Bool let flip: Bool
let clip: Bool let clip: Bool
...@@ -69,15 +69,19 @@ class PriorBoxOp<P: PrecisionType>: Operator<PriorBoxKernel<P>, PriorBoxParam<P> ...@@ -69,15 +69,19 @@ class PriorBoxOp<P: PrecisionType>: Operator<PriorBoxKernel<P>, PriorBoxParam<P>
} }
func delogOutput() { func delogOutput() {
print(" \(type) output: ")
// output // output
let outputArray = para.output.metalTexture.floatArray { (o: Float32) -> Float32 in print(" \(type) output: ")
return o let originDim = para.output.originDim
if para.output.transpose == [0, 1, 2, 3] {
let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray())
} else if para.output.transpose == [0, 2, 3, 1] {
print(para.output.metalTexture.toTensor(dim: (n: originDim[0], c: originDim[1], h: originDim[2], w: originDim[3]), texturePrecision: computePrecision).strideArray())
} else {
print(" not implement")
} }
print(outputArray)
// writeToLibrary(fileName: "box_out", array: outputArray) // writeToLibrary(fileName: "box_out", array: outputArray)
// output variance // output variance
......
...@@ -46,7 +46,7 @@ class ReluOp<P: PrecisionType>: Operator<ReluKernel<P>, ReluParam<P>>, Runable, ...@@ -46,7 +46,7 @@ class ReluOp<P: PrecisionType>: Operator<ReluKernel<P>, ReluParam<P>>, Runable,
func delogOutput() { func delogOutput() {
print(" \(type) output: ") print(" \(type) output: ")
print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3])).strideArray()) print(para.output.metalTexture.toTensor(dim: (n: para.output.tensorDim[0], c: para.output.tensorDim[1], h: para.output.tensorDim[2], w: para.output.tensorDim[3]), texturePrecision: computePrecision).strideArray())
} }
} }
......
...@@ -76,7 +76,7 @@ class ReshapeOp<P: PrecisionType>: Operator<ReshapeKernel<P>, ReshapeParam<P>>, ...@@ -76,7 +76,7 @@ class ReshapeOp<P: PrecisionType>: Operator<ReshapeKernel<P>, ReshapeParam<P>>,
let originDim = para.output.originDim let originDim = para.output.originDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3])) let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray()) print(outputArray.strideArray())
} }
......
...@@ -52,9 +52,9 @@ class SoftmaxOp<P: PrecisionType>: Operator<SoftmaxKernel<P>, SoftmaxParam<P>>, ...@@ -52,9 +52,9 @@ class SoftmaxOp<P: PrecisionType>: Operator<SoftmaxKernel<P>, SoftmaxParam<P>>,
func delogOutput() { func delogOutput() {
print("softmax delog") print("softmax delog")
let originDim = para.output.originDim let originDim = para.output.originDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3])) let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray()) print(outputArray.strideArray())
} }
} }
...@@ -49,7 +49,7 @@ class TransposeOp<P: PrecisionType>: Operator<TransposeKernel<P>, TransposeParam ...@@ -49,7 +49,7 @@ class TransposeOp<P: PrecisionType>: Operator<TransposeKernel<P>, TransposeParam
func delogOutput() { func delogOutput() {
print(" \(type) output: ") print(" \(type) output: ")
let originDim = para.output.tensorDim let originDim = para.output.tensorDim
let outputArray = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3])) let outputArray: [Float32] = para.output.metalTexture.realNHWC(dim: (n: originDim[0], h: originDim[1], w: originDim[2], c: originDim[3]), texturePrecision: computePrecision)
print(outputArray.strideArray()) print(outputArray.strideArray())
} }
} }
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
import Accelerate
import Foundation import Foundation
protocol Tensorial: CustomStringConvertible, CustomDebugStringConvertible{ protocol Tensorial: CustomStringConvertible, CustomDebugStringConvertible{
...@@ -27,10 +26,11 @@ extension Tensorial { ...@@ -27,10 +26,11 @@ extension Tensorial {
} }
} }
public enum ComputePrecision {
case Float32, Float16
}
class Tensor<P: PrecisionType>: Tensorial { class Tensor<P: PrecisionType>: Tensorial {
enum BufferPrecision {
case Float32, Float16
}
var data: Data var data: Data
var dim: Dim var dim: Dim
...@@ -93,15 +93,9 @@ class Tensor<P: PrecisionType>: Tensorial { ...@@ -93,15 +93,9 @@ class Tensor<P: PrecisionType>: Tensorial {
layout = to layout = to
} }
func float32ToFloat16(input: UnsafeMutablePointer<Float32>, output: UnsafeMutableRawPointer, count: Int) {
var float32Buffer = vImage_Buffer(data: input, height: 1, width: UInt(count), rowBytes: count * 4)
var float16buffer = vImage_Buffer(data: output, height: 1, width: UInt(count), rowBytes: count * 2)
guard vImageConvert_PlanarFtoPlanar16F(&float32Buffer, &float16buffer, 0) == kvImageNoError else {
fatalError(" float 32 to float 16 error ! ")
}
}
func initBuffer(device: MTLDevice, precision: BufferPrecision = .Float32) { func initBuffer(device: MTLDevice, precision: ComputePrecision = .Float16) {
guard let floatPointer = data.pointer as? UnsafeMutablePointer<Float32> else { guard let floatPointer = data.pointer as? UnsafeMutablePointer<Float32> else {
fatalError(" not support yet ") fatalError(" not support yet ")
} }
......
...@@ -46,7 +46,7 @@ public class Texture<P: PrecisionType>: Tensorial { ...@@ -46,7 +46,7 @@ public class Texture<P: PrecisionType>: Tensorial {
public var metalTexture: MTLTexture! public var metalTexture: MTLTexture!
var transpose: [Int] = [0, 1, 2, 3] var transpose: [Int] = [0, 1, 2, 3]
func initTexture(device: MTLDevice, inTranspose: [Int] = [0, 1, 2, 3]) { func initTexture(device: MTLDevice, inTranspose: [Int] = [0, 1, 2, 3], computePrecision: ComputePrecision = .Float16) {
transpose = inTranspose transpose = inTranspose
let newDim = transpose.map { originDim[$0] } let newDim = transpose.map { originDim[$0] }
...@@ -64,12 +64,10 @@ public class Texture<P: PrecisionType>: Tensorial { ...@@ -64,12 +64,10 @@ public class Texture<P: PrecisionType>: Tensorial {
tmpTextureDes.depth = 1 tmpTextureDes.depth = 1
tmpTextureDes.arrayLength = ((newDim[0]) * (newDim[3]) + 3) / 4 tmpTextureDes.arrayLength = ((newDim[0]) * (newDim[3]) + 3) / 4
tmpTextureDes.textureType = .type2DArray tmpTextureDes.textureType = .type2DArray
if MemoryLayout<P>.size == 1 { if computePrecision == .Float16 {
tmpTextureDes.pixelFormat = .rgba8Unorm
} else if MemoryLayout<P>.size == 2 {
tmpTextureDes.pixelFormat = .rgba16Float tmpTextureDes.pixelFormat = .rgba16Float
} else if MemoryLayout<P>.size == 4 { } else if computePrecision == .Float32 {
tmpTextureDes.pixelFormat = .rgba32Float tmpTextureDes.pixelFormat = .rgba32Float
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册