提交 8501ad2e 编写于 作者: X xiebaiyuan 提交者: GitHub

[LITE][OPENCL][Image]develop 1x1/5x5/7x7 routing in conv_compute ,tes… (#2818)

* [LITE][OPENCL][Image]develop 1x1/5x5/7x7 routing in conv_compute ,test=develop

* [LITE][OPENCL][Image]develop 1x1/5x5/7x7 routing in conv_compute ,convert bias filter in prepare for run ,test=develop
上级 93a388a3
......@@ -360,12 +360,12 @@ __read_only image2d_t new_scale,
READ_IMG_TYPE(CL_DTYPE_CHAR, new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation_type4(output0);
output1 = activation_type4(output1);
output2 = activation_type4(output2);
output3 = activation_type4(output3);
#endif
if (out_w0 < old_w) {
WRITE_IMG_TYPE(CL_DTYPE_CHAR, output_image, output_pos0, output0);
......
#include <cl_common.h>
__kernel void conv2d_5x5(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter_image,
#if defined(BIASE_CH) || defined(BIASE_ELE)
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
if (out_c >= global_size_dim0 || out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
const int batch_index = out_nh / output_height;
const int out_nh_in_one_batch = out_nh % output_height;
const int filter_n0 = 4 * out_c + 0;
const int filter_n1 = 4 * out_c + 1;
const int filter_n2 = 4 * out_c + 2;
const int filter_n3 = 4 * out_c + 3;
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh_in_one_batch;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
#ifdef BIASE_CH
CL_DTYPE4 output =
READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, (int2)(out_c, 0));
#elif defined(BIASE_ELE)
CL_DTYPE4 output = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, output_pos);
#else
CL_DTYPE4 output = 0.0f;
#endif
CL_DTYPE4 input;
CL_DTYPE4 filter[4];
int2 filter_pos0;
int2 filter_pos1;
int2 filter_pos2;
int2 filter_pos3;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x,
in_pos_in_one_block.y + batch_index * input_height);
for (int j = 0; j < 5; j++) {
for (int k = 0; k < 5; k++) {
input = select(
READ_IMG_TYPE(CL_DTYPE_CHAR,
input_image,
sampler,
(int2)(pos_in.x + (j - 2) * dilation,
pos_in.y + (k - 2) * dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)(
(in_pos_in_one_block.x + (j - 2) * dilation < 0 ||
in_pos_in_one_block.y + (k - 2) * dilation < 0 ||
in_pos_in_one_block.x + (j - 2) * dilation >= input_width ||
in_pos_in_one_block.y + (k - 2) * dilation >= input_height)
<< 15));
int filter_h = k;
int filter_w = j;
int filter_c = i;
filter_pos0.x = filter_c * 5 + filter_w;
filter_pos0.y = filter_n0 * 5 + filter_h;
filter_pos1.x = filter_c * 5 + filter_w;
filter_pos1.y = filter_n1 * 5 + filter_h;
filter_pos2.x = filter_c * 5 + filter_w;
filter_pos2.y = filter_n2 * 5 + filter_h;
filter_pos3.x = filter_c * 5 + filter_w;
filter_pos3.y = filter_n3 * 5 + filter_h;
filter[0] =
READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos0);
filter[1] =
READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos1);
filter[2] =
READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos2);
filter[3] =
READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos3);
output.x += dot(input, filter[0]);
output.y += dot(input, filter[1]);
output.z += dot(input, filter[2]);
output.w += dot(input, filter[3]);
//
// if (output_pos.x == 0 && output_pos.y == 5) {
// printf("i,j,k ={ %d, %d , %d }\n", i,j,k);
// printf("in={ %f , %f , %f , %f } \n",
// convert_float(input.x),
// convert_float(input.y),
// convert_float(input.z),
// convert_float(input.w));
// printf("filter0={ %f , %f , %f , %f } \n",
// convert_float(filter[0].x),
// convert_float(filter[0].y),
// convert_float(filter[0].z),
// convert_float(filter[0].w));
// printf("filter1={ %f , %f , %f , %f } \n",
// convert_float(filter[1].x),
// convert_float(filter[1].y),
// convert_float(filter[1].z),
// convert_float(filter[1].w));
// printf("filter2={ %f , %f , %f , %f } \n",
// convert_float(filter[2].x),
// convert_float(filter[2].y),
// convert_float(filter[2].z),
// convert_float(filter[2].w));
// printf("filter3={ %f , %f , %f , %f } \n",
// convert_float(filter[3].x),
// convert_float(filter[3].y),
// convert_float(filter[3].z),
// convert_float(filter[3].w));
// printf("output={ %f , %f , %f , %f } \n",
// convert_float(output.x),
// convert_float(output.y),
// convert_float(output.z),
// convert_float(output.w));
// }
}
}
}
#ifdef BATCH_NORM
output =
output * READ_IMG_TYPE(
CL_DTYPE_CHAR, new_scale, sampler, (int2)(out_c, 0)) +
READ_IMG_TYPE(CL_DTYPE_CHAR, new_biase, sampler, (int2)(out_c, 0));
#endif
output = activation_type4(output);
WRITE_IMG_TYPE(CL_DTYPE_CHAR, output_image, output_pos, output);
}
#include <cl_common.h>
__kernel void conv2d_7x7(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter_image,
#if defined(BIASE_CH) || defined(BIASE_ELE)
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
if (out_c >= global_size_dim0 || out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
const int batch_index = out_nh / output_height;
const int out_nh_in_one_batch = out_nh % output_height;
const filter_n0 = 4 * out_c + 0;
const filter_n1 = 4 * out_c + 1;
const filter_n2 = 4 * out_c + 2;
const filter_n3 = 4 * out_c + 3;
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh_in_one_batch;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
#ifdef BIASE_CH
CL_DTYPE4 output =
READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, (int2)(out_c, 0));
#elif defined(BIASE_ELE)
CL_DTYPE4 output = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, output_pos);
#else
CL_DTYPE4 output = 0.0f;
#endif
CL_DTYPE4 input;
CL_DTYPE4 filter[4];
int2 filter_pos0;
int2 filter_pos1;
int2 filter_pos2;
int2 filter_pos3;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x,
in_pos_in_one_block.y + batch_index * input_height);
for (int j = 0; j < 7; j++) {
for (int k = 0; k < 7; k++) {
input = select(
READ_IMG_TYPE(CL_DTYPE_CHAR,
input_image,
sampler,
(int2)(pos_in.x + (j - 3) * dilation,
pos_in.y + (k - 3) * dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)(
(in_pos_in_one_block.x + (j - 3) * dilation < 0 ||
in_pos_in_one_block.y + (k - 3) * dilation < 0 ||
in_pos_in_one_block.x + (j - 3) * dilation >= input_width ||
in_pos_in_one_block.y + (k - 3) * dilation >= input_height)
<< 15));
int filter_h = k;
int filter_w = j;
int filter_c = i;
filter_pos0.x = filter_c * 7 + filter_w;
filter_pos0.y = filter_n0 * 7 + filter_h;
filter_pos1.x = filter_c * 7 + filter_w;
filter_pos1.y = filter_n1 * 7 + filter_h;
filter_pos2.x = filter_c * 7 + filter_w;
filter_pos2.y = filter_n2 * 7 + filter_h;
filter_pos3.x = filter_c * 7 + filter_w;
filter_pos3.y = filter_n3 * 7 + filter_h;
filter[0] =
READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos0);
filter[1] =
READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos1);
filter[2] =
READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos2);
filter[3] =
READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos3);
output.x += dot(input, filter[0]);
output.y += dot(input, filter[1]);
output.z += dot(input, filter[2]);
output.w += dot(input, filter[3]);
}
}
}
#ifdef BATCH_NORM
output = output * READ_IMG_TYPE(
CL_DTYPE_CHAR, new_scale, sampler, (int2)(out_c, 0)) +
READ_IMG_TYPE(CL_DTYPE_CHAR, new_biase, sampler, (int2)(out_c, 0));
#endif
output = activation_type4(output);
WRITE_IMG_TYPE(CL_DTYPE_CHAR, output_image, output_pos, output);
}
......@@ -17,7 +17,7 @@ add_kernel(relu_opencl OPENCL basic SRCS relu_compute.cc DEPS ${cl_kernel_deps})
add_kernel(depthwise_conv2d_opencl OPENCL basic SRCS depthwise_conv2d_compute.cc DEPS ${cl_kernel_deps})
#add_kernel(conv2d_1x1_opencl OPENCL basic SRCS conv2d_1x1_compute.cc DEPS ${cl_kernel_deps})
add_kernel(reshape_opencl OPENCL basic SRCS reshape_compute.cc DEPS ${cl_kernel_deps})
add_kernel(conv_opencl OPENCL basic SRCS conv_compute.cc DEPS ${cl_kernel_deps})
add_kernel(conv_opencl OPENCL basic SRCS conv_compute.cc DEPS ${cl_kernel_deps} cl_image_converter)
add_kernel(layout_opencl OPENCL basic SRCS layout_compute.cc DEPS ${cl_kernel_deps})
lite_cc_test(test_elementwise_add_opencl SRCS elementwise_add_compute_test.cc
......@@ -70,6 +70,10 @@ lite_cc_test(test_conv_opencl SRCS conv_compute_test.cc
DEPS conv_opencl op_registry program context
ARGS --cl_path=${CMAKE_SOURCE_DIR}/lite/backends/opencl)
lite_cc_test(test_conv_image2d_opencl SRCS conv_image2d_compute_test.cc
DEPS conv_opencl op_registry program context cl_image_converter
ARGS --cl_path=${CMAKE_SOURCE_DIR}/lite/backends/opencl)
lite_cc_test(test_layout_opencl SRCS layout_compute_test.cc
DEPS layout_opencl op_registry program context
ARGS --cl_path=${CMAKE_SOURCE_DIR}/lite/backends/opencl)
......@@ -13,9 +13,13 @@
// limitations under the License.
#include "lite/kernels/opencl/conv_compute.h"
#include <sstream>
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
namespace paddle {
......@@ -242,7 +246,6 @@ void ConvCompute::Conv2d1x1() {
GemmBatched(kernel, x_d, filter_d, bias_d, output_d, batch_size, m, n, k);
}
// a: filter_d ==> <m, k> <=> <oc, ic>
// b: x_d ==> <k, n> <=> <ic, ih*iw>
// c: output_d ==> <m, n> <=> <oc, ih*iw>
......@@ -294,6 +297,582 @@ void ConvCompute::GemmBatched(cl::Kernel& kernel,
void ConvCompute::Run() { (this->*impl_)(); }
/* image kernel*/
void ConvImageCompute::PrepareForRun() {
const auto& param = this->Param<param_t>();
auto x_dims = param.x->dims();
auto filter_dims = param.filter->dims();
auto output_dims = param.output->dims();
float* filter_cpu = param.filter->mutable_data<float>();
auto& context = ctx_->As<OpenCLContext>();
CHECK(context.cl_context() != nullptr);
int bs = x_dims[0];
int c_in = x_dims[1];
int h_out = output_dims[2];
int w_out = output_dims[3];
int kernel_h = filter_dims[2]; // oihw
int kernel_w = filter_dims[3];
auto paddings = *param.paddings;
auto dilations = *param.dilations;
int stride_h = param.strides[0];
int stride_w = param.strides[1];
int pad_h = paddings[0];
int pad_w = paddings[2];
int groups = param.groups;
bool relu_fused = param.fuse_relu;
bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1);
bool zero_pad = (pad_h == 0) && (pad_w == 0);
bool pad_equal =
((paddings[0] == paddings[1]) && (paddings[1] == paddings[2]) &&
(paddings[2] == paddings[3]));
bool stride_equal = stride_h == stride_w;
bool dilation_equal = dilations[0] == dilations[1];
CHECK(pad_equal && stride_equal && dilation_equal);
VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No");
VLOG(3) << "groups:" << groups << " stride_h:" << stride_h
<< " stride_w:" << stride_w << " pad_h:" << pad_h
<< " pad_w:" << pad_w << " kernel_h:" << kernel_h
<< " kernel_h:" << kernel_h;
VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
<< " " << x_dims[3];
VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " "
<< output_dims[2] << " " << output_dims[3];
VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " "
<< filter_dims[2] << " " << filter_dims[3];
if (kernel_h == 1 && kernel_w == 1) {
// conv2d_1x1
if (param.x->dims()[1] % 4 == 0) {
kernel_func_names_.push_back("conv2d_1x1_simple");
} else {
kernel_func_names_.push_back("conv2d_1x1");
}
kernel_func_paths_.push_back("image/conv2d_1x1_kernel.cl");
CLImageConverterNWBlock converter;
const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
std::vector<float> filter_image_v(filter_image_dims[0] *
filter_image_dims[1] * 4); // 4 : RGBA
converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
filter_gpu_image_.mutable_data<float, cl::Image2D>(
filter_image_dims[0], filter_image_dims[1], filter_image_v.data());
impl_ = &ConvImageCompute::Conv2d1x1;
} else if (kernel_h == 5 && kernel_w == 5) {
// conv2d_5x5
kernel_func_names_.push_back("conv2d_5x5");
kernel_func_paths_.push_back("image/conv2d_5x5_kernel.cl");
CLImageConverterFolder converter;
const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
std::vector<float> filter_image_v(filter_image_dims[0] *
filter_image_dims[1] * 4); // 4 : RGBA
converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
filter_gpu_image_.mutable_data<float, cl::Image2D>(
filter_image_dims[0], filter_image_dims[1], filter_image_v.data());
impl_ = &ConvImageCompute::Conv2d5x5;
} else if (kernel_h == 7 && kernel_w == 7) {
// conv2d_7x7
kernel_func_names_.push_back("conv2d_7x7");
kernel_func_paths_.push_back("image/conv2d_7x7_kernel.cl");
CLImageConverterFolder converter;
const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
std::vector<float> filter_image_v(filter_image_dims[0] *
filter_image_dims[1] * 4); // 4 : RGBA
converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
this->filter_gpu_image_.mutable_data<float, cl::Image2D>(
filter_image_dims[0], filter_image_dims[1], filter_image_v.data());
impl_ = &ConvImageCompute::Conv2d7x7;
} else {
LOG(FATAL) << "conv image compute not support this condition yet! ";
}
std::string build_options_single(" -DCL_DTYPE_float");
// relu options
if (relu_fused) {
build_options_single += " -DRELU";
} else if (param.activation_param.active_type ==
lite_api::ActivationType::kRelu6) {
build_options_single += " -DRELU6";
} else {
// do nothing
}
// bias options
const bool has_bias = param.bias != nullptr;
const bool is_element_wise_bias =
has_bias && param.output->dims() == param.bias->dims();
if (has_bias) {
build_options_single +=
is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH";
// convert cpu buffer bias --> gpu image
CLImageConverterFolder bias_converter;
const DDim& bias_image_dims =
bias_converter.InitImageDimInfoWith(param.bias->dims());
std::vector<float> bias_image_v(bias_image_dims[0] * bias_image_dims[1] *
4);
float* bias_cpu_data = param.bias->mutable_data<float>();
bias_converter.NCHWToImage(
bias_cpu_data, bias_image_v.data(), param.bias->dims());
this->bias_gpu_image_.mutable_data<float, cl::Image2D>(
bias_image_dims[0], bias_image_dims[1], bias_image_v.data());
// convert cpu buffer bias --> gpu image --- end ----
}
build_options_.push_back(build_options_single);
for (size_t i = 0; i < kernel_func_names_.size(); i++) {
context.cl_context()->AddKernel(
kernel_func_names_[i], kernel_func_paths_[i], build_options_[i]);
}
}
void ConvImageCompute::Conv2d1x1() {
const auto& param = *param_.get_mutable<param_t>();
auto input_dims = param.x->dims();
auto paddings = *param.paddings;
auto strides = param.strides;
auto* input_image = param.x->data<float, cl::Image2D>();
auto* filter_image = filter_gpu_image_.data<float, cl::Image2D>();
auto filter_dims = param.filter->dims();
auto output_dims = param.output->dims();
int input_width = input_dims[3];
int input_height = input_dims[2];
int output_width = output_dims[3];
int output_height = output_dims[2];
auto out_image_shape = InitImageDimInfoWith(output_dims);
auto* out_image = param.output->mutable_data<float, cl::Image2D>(
out_image_shape["width"], out_image_shape["height"]);
const bool has_bias = param.bias != nullptr;
const bool is_element_wise_bias =
has_bias && param.output->dims() == param.bias->dims();
int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
static_cast<int>(paddings[0]);
// calc input_c_block
auto input_image_shape = InitImageDimInfoWith(input_dims);
int input_c_block = input_image_shape["width"] / input_dims[3];
int input_c = input_dims[1];
auto dilations = *param.dilations;
const std::vector<size_t>& default_work_size =
DefaultWorkSize(output_dims,
DDim(std::vector<DDim::value_type>{
static_cast<int64_t>(out_image_shape["width"]),
static_cast<int64_t>(out_image_shape["height"])}));
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
VLOG(4) << "============ conv2d_1x1 params ============";
VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
<< input_image_shape["height"];
VLOG(4) << "input_c_block: " << input_c_block;
VLOG(4) << "input_c: " << input_c;
VLOG(4) << "input_image: " << input_image;
VLOG(4) << "filter_dims: " << filter_dims;
VLOG(4) << "filter_image: " << filter_image;
VLOG(4) << "output_dims: " << output_dims;
VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
<< out_image_shape["height"];
VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
VLOG(4) << "has bias: " << has_bias;
VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
VLOG(4) << "strides: " << strides[0] << "," << strides[1];
VLOG(4) << "offset: " << offset;
VLOG(4) << "dilations.size : " << dilations.size();
VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
VLOG(4) << "default work size{c_block, w, nh}: "
<< "{" << c_block << ", " << w << ", " << nh << ""
<< "}";
CHECK_GE(dilations.size(), 2);
CHECK(dilations[0] == dilations[1]);
CHECK_GE(input_dims.size(), 4);
CHECK_GE(paddings.size(), 2);
CHECK(paddings[0] == paddings[1]);
CHECK_GE(strides.size(), 2);
CHECK(strides[0] == strides[1]);
// handle bias use buffer for channel wise , use image for element wise
const cl::Buffer* bias_buf = nullptr;
const cl::Image2D* bias_image = nullptr;
if (has_bias) {
bias_image = bias_gpu_image_.data<float, cl::Image2D>();
}
auto& context = ctx_->As<OpenCLContext>();
CHECK(context.cl_context() != nullptr);
std::stringstream kernel_key;
kernel_key << kernel_func_names_[0] << build_options_[0];
auto kernel = context.cl_context()->GetKernel(kernel_key.str());
int maped_w = maptofactor(w, 4);
VLOG(4) << "kernel_key: " << kernel_key.str();
VLOG(4) << "kernel ready ... " << kernel_key.str();
VLOG(4) << "maped_w: " << maped_w;
VLOG(4) << "hasbias: " << has_bias;
cl_int status;
int arg_idx = 0;
status = kernel.setArg(arg_idx, c_block);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, maped_w);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, nh);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, *input_image);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, *filter_image);
CL_CHECK_FATAL(status);
if (has_bias) {
status = kernel.setArg(++arg_idx, *bias_image);
CL_CHECK_FATAL(status);
}
status = kernel.setArg(++arg_idx, *out_image);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, strides[0]);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, offset);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_c_block);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_c);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, dilations[0]);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_width);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_height);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, output_width);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, output_height);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, w);
CL_CHECK_FATAL(status);
auto global_work_size =
cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
static_cast<size_t>(maped_w),
static_cast<size_t>(default_work_size.data()[2])};
VLOG(4) << "out_image: " << out_image;
VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
<< global_work_size[1] << "," << global_work_size[2] << "}";
status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
kernel,
cl::NullRange,
global_work_size,
cl::NullRange,
nullptr,
event_.get());
CL_CHECK_FATAL(status);
context.cl_wait_list()->emplace(out_image, event_);
}
void ConvImageCompute::Conv2d5x5() {
const auto& param = *param_.get_mutable<param_t>();
auto input_dims = param.x->dims();
auto paddings = *param.paddings;
auto strides = param.strides;
auto* input_image = param.x->data<float, cl::Image2D>();
auto* filter_image = filter_gpu_image_.data<float, cl::Image2D>();
auto filter_dims = param.filter->dims();
auto output_dims = param.output->dims();
int input_width = input_dims[3];
int input_height = input_dims[2];
int output_width = output_dims[3];
int output_height = output_dims[2];
int filter_width = filter_dims[3];
int filter_height = filter_dims[2];
auto out_image_shape = InitImageDimInfoWith(output_dims);
auto* out_image = param.output->mutable_data<float, cl::Image2D>(
out_image_shape["width"], out_image_shape["height"]);
const bool has_bias = param.bias != nullptr;
const bool is_element_wise_bias =
has_bias && param.output->dims() == param.bias->dims();
int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
static_cast<int>(paddings[0]);
// calc input_c_block
auto input_image_shape = InitImageDimInfoWith(input_dims);
int input_c_block = input_image_shape["width"] / input_dims[3];
int input_c = input_dims[1];
auto dilations = *param.dilations;
const std::vector<size_t>& default_work_size =
DefaultWorkSize(output_dims,
DDim(std::vector<DDim::value_type>{
static_cast<int64_t>(out_image_shape["width"]),
static_cast<int64_t>(out_image_shape["height"])}));
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
VLOG(4) << "============ conv2d params ============";
VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
<< input_image_shape["height"];
VLOG(4) << "input_c_block: " << input_c_block;
VLOG(4) << "input_c: " << input_c;
VLOG(4) << "input_image: " << input_image;
VLOG(4) << "input_dims: " << input_dims;
VLOG(4) << "filter_dims: " << filter_dims;
VLOG(4) << "filter_image: " << filter_image;
VLOG(4) << "output_dims: " << output_dims;
VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
<< out_image_shape["height"];
VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
VLOG(4) << "has bias: " << has_bias;
VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
VLOG(4) << "strides: " << strides[0] << "," << strides[1];
VLOG(4) << "offset: " << offset;
VLOG(4) << "dilations.size : " << dilations.size();
VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
VLOG(4) << "default work size{c_block, w, nh}: "
<< "{" << c_block << ", " << w << ", " << nh << ""
<< "}";
CHECK_GE(dilations.size(), 2);
CHECK(dilations[0] == dilations[1]);
CHECK_GE(input_dims.size(), 4);
CHECK_GE(paddings.size(), 2);
CHECK(paddings[0] == paddings[1]);
CHECK_GE(strides.size(), 2);
CHECK(strides[0] == strides[1]);
const cl::Image2D* bias_image = nullptr;
if (has_bias) {
bias_image = bias_gpu_image_.data<float, cl::Image2D>();
}
auto& context = ctx_->As<OpenCLContext>();
CHECK(context.cl_context() != nullptr);
STL::stringstream kernel_key;
kernel_key << kernel_func_names_[0] << build_options_[0];
auto kernel = context.cl_context()->GetKernel(kernel_key.str());
VLOG(4) << "kernel_key: " << kernel_key.str();
VLOG(4) << "kernel ready ... " << kernel_key.str();
VLOG(4) << "w: " << w;
cl_int status;
int arg_idx = 0;
status = kernel.setArg(arg_idx, c_block);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, w);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, nh);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, *input_image);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, *filter_image);
CL_CHECK_FATAL(status);
if (has_bias) {
VLOG(4) << "set bias_image: ";
status = kernel.setArg(++arg_idx, *bias_image);
CL_CHECK_FATAL(status);
}
status = kernel.setArg(++arg_idx, *out_image);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, strides[0]);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, offset);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_c_block);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, dilations[0]);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_width);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_height);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, output_width);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, output_height);
CL_CHECK_FATAL(status);
auto global_work_size =
cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
static_cast<size_t>(default_work_size.data()[1]),
static_cast<size_t>(default_work_size.data()[2])};
VLOG(4) << "out_image: " << out_image;
VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
<< global_work_size[1] << "," << global_work_size[2] << "}";
status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
kernel,
cl::NullRange,
global_work_size,
cl::NullRange,
nullptr,
event_.get());
CL_CHECK_FATAL(status);
context.cl_wait_list()->emplace(out_image, event_);
}
void ConvImageCompute::Conv2d7x7() {
const auto& param = *param_.get_mutable<param_t>();
auto input_dims = param.x->dims();
auto paddings = *param.paddings;
auto strides = param.strides;
auto* input_image = param.x->data<float, cl::Image2D>();
auto* filter_image = filter_gpu_image_.data<float, cl::Image2D>();
auto filter_dims = param.filter->dims();
auto output_dims = param.output->dims();
int input_width = input_dims[3];
int input_height = input_dims[2];
int output_width = output_dims[3];
int output_height = output_dims[2];
int filter_width = filter_dims[3];
int filter_height = filter_dims[2];
auto out_image_shape = InitImageDimInfoWith(output_dims);
auto* out_image = param.output->mutable_data<float, cl::Image2D>(
out_image_shape["width"], out_image_shape["height"]);
const bool has_bias = param.bias != nullptr;
const bool is_element_wise_bias =
has_bias && param.output->dims() == param.bias->dims();
int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
static_cast<int>(paddings[0]);
// calc input_c_block
auto input_image_shape = InitImageDimInfoWith(input_dims);
int input_c_block = input_image_shape["width"] / input_dims[3];
int input_c = input_dims[1];
auto dilations = *param.dilations;
const std::vector<size_t>& default_work_size =
DefaultWorkSize(output_dims,
DDim(std::vector<DDim::value_type>{
static_cast<int64_t>(out_image_shape["width"]),
static_cast<int64_t>(out_image_shape["height"])}));
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
VLOG(4) << "============ conv2d params ============";
VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
<< input_image_shape["height"];
VLOG(4) << "input_c_block: " << input_c_block;
VLOG(4) << "input_c: " << input_c;
VLOG(4) << "input_image: " << input_image;
VLOG(4) << "input_dims: " << input_dims;
VLOG(4) << "filter_dims: " << filter_dims;
VLOG(4) << "filter_image: " << filter_image;
VLOG(4) << "output_dims: " << output_dims;
VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
<< out_image_shape["height"];
VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
VLOG(4) << "has bias: " << has_bias;
VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
VLOG(4) << "strides: " << strides[0] << "," << strides[1];
VLOG(4) << "offset: " << offset;
VLOG(4) << "dilations.size : " << dilations.size();
VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
VLOG(4) << "default work size{c_block, w, nh}: "
<< "{" << c_block << ", " << w << ", " << nh << ""
<< "}";
CHECK_GE(dilations.size(), 2);
CHECK(dilations[0] == dilations[1]);
CHECK_GE(input_dims.size(), 4);
CHECK_GE(paddings.size(), 2);
CHECK(paddings[0] == paddings[1]);
CHECK_GE(strides.size(), 2);
CHECK(strides[0] == strides[1]);
const cl::Image2D* bias_image = nullptr;
if (has_bias) {
bias_image = bias_gpu_image_.data<float, cl::Image2D>();
}
auto& context = ctx_->As<OpenCLContext>();
CHECK(context.cl_context() != nullptr);
STL::stringstream kernel_key;
kernel_key << kernel_func_names_[0] << build_options_[0];
auto kernel = context.cl_context()->GetKernel(kernel_key.str());
VLOG(4) << "kernel_key: " << kernel_key.str();
VLOG(4) << "kernel ready ... " << kernel_key.str();
VLOG(4) << "w: " << w;
cl_int status;
int arg_idx = 0;
status = kernel.setArg(arg_idx, c_block);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, w);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, nh);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, *input_image);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, *filter_image);
CL_CHECK_FATAL(status);
if (has_bias) {
VLOG(4) << "set bias_image: ";
status = kernel.setArg(++arg_idx, *bias_image);
CL_CHECK_FATAL(status);
}
status = kernel.setArg(++arg_idx, *out_image);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, strides[0]);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, offset);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_c_block);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, dilations[0]);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_width);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, input_height);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, output_width);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, output_height);
CL_CHECK_FATAL(status);
auto global_work_size =
cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
static_cast<size_t>(default_work_size.data()[1]),
static_cast<size_t>(default_work_size.data()[2])};
VLOG(4) << "out_image: " << out_image;
VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
<< global_work_size[1] << "," << global_work_size[2] << "}";
status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
kernel,
cl::NullRange,
global_work_size,
cl::NullRange,
nullptr,
event_.get());
CL_CHECK_FATAL(status);
context.cl_wait_list()->emplace(out_image, event_);
}
void ConvImageCompute::Run() { (this->*impl_)(); }
} // namespace opencl
} // namespace kernels
} // namespace lite
......@@ -310,3 +889,21 @@ REGISTER_LITE_KERNEL(conv2d,
.BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))})
.BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))})
.Finalize();
REGISTER_LITE_KERNEL(conv2d,
kOpenCL,
kFloat,
kImageDefault,
paddle::lite::kernels::opencl::ConvImageCompute,
image2d)
.BindInput("Input",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault))})
.BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
.BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
.BindOutput("Output",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault))})
.Finalize();
......@@ -17,6 +17,7 @@
#include <memory>
#include <string>
#include <vector>
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/tensor.h"
......@@ -57,6 +58,30 @@ class ConvCompute
std::shared_ptr<cl::Event> event_{new cl::Event};
};
class ConvImageCompute : public KernelLite<TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault)> {
public:
using param_t = operators::ConvParam;
using kernel_t = void (ConvImageCompute::*)();
void PrepareForRun() override;
void Run() override;
private:
void Conv2d1x1();
void Conv2d5x5();
void Conv2d7x7();
kernel_t impl_;
std::vector<std::string> kernel_func_names_{};
std::vector<std::string> kernel_func_paths_{};
std::vector<std::string> build_options_{};
std::shared_ptr<cl::Event> event_{new cl::Event};
Tensor filter_gpu_image_;
Tensor bias_gpu_image_;
};
} // namespace opencl
} // namespace kernels
} // namespace lite
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <random>
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
namespace paddle {
namespace lite {
// #define SHADOW_LOG LOG(INFO)
#define SHADOW_LOG VLOG(4)
template <typename Dtype1, typename Dtype2>
static void conv_basic(const Dtype1* din,
Dtype2* dout,
int num,
int chout,
int hout,
int wout,
int chin,
int hin,
int win,
const Dtype1* weights,
const Dtype2* bias,
int group,
int kernel_w,
int kernel_h,
int stride_w,
int stride_h,
int dila_w,
int dila_h,
int pad_w,
int pad_h,
bool flag_bias,
std::string flag_relu) {
Dtype2 beta = 0;
auto src_data = din;
auto dst_data_ref = dout;
auto weights_data = weights;
auto with_bias = flag_bias;
auto bias_data = bias;
int in_num = num;
int out_channels = chout;
int out_h = hout;
int out_w = wout;
int in_channel = chin;
int in_h = hin;
int in_w = win;
int out_c_group = out_channels / group;
int in_c_group = in_channel / group;
for (int n = 0; n < in_num; ++n) {
for (int g = 0; g < group; ++g) {
for (int oc = 0; oc < out_c_group; ++oc) {
for (int oh = 0; oh < out_h; ++oh) {
for (int ow = 0; ow < out_w; ++ow) {
int out_idx = n * group * out_c_group * out_h * out_w +
g * out_c_group * out_h * out_w + oc * out_h * out_w +
oh * out_w + ow;
Dtype2 bias_d =
with_bias ? (bias_data[g * out_c_group + oc]) : (Dtype2)0;
dst_data_ref[out_idx] = bias_d; // + dst_data_ref[out_idx] * beta;
for (int ic = 0; ic < in_c_group; ++ic) {
for (int kh = 0; kh < kernel_h; ++kh) {
for (int kw = 0; kw < kernel_w; ++kw) {
int iw = ow * stride_w - pad_w + kw * (dila_w);
int ih = oh * stride_h - pad_h + kh * (dila_h);
if (iw < 0 || iw >= in_w) continue;
if (ih < 0 || ih >= in_h) continue;
int iidx = n * in_channel * in_h * in_w +
g * in_c_group * in_h * in_w + ic * in_h * in_w +
ih * in_w + iw;
int widx =
g * out_c_group * in_c_group * kernel_h * kernel_w +
oc * in_c_group * kernel_h * kernel_w +
ic * kernel_h * kernel_w + kh * kernel_w + kw;
dst_data_ref[out_idx] += src_data[iidx] * weights_data[widx];
}
}
}
if (flag_relu == "relu") {
dst_data_ref[out_idx] = dst_data_ref[out_idx] > (Dtype2)0
? dst_data_ref[out_idx]
: (Dtype2)0;
} else if (flag_relu == "relu6") {
auto dst_tmp = (dst_data_ref[out_idx] > (Dtype2)0)
? dst_data_ref[out_idx]
: (Dtype2)0;
dst_data_ref[out_idx] = (dst_tmp < 6.f) ? dst_tmp : 6.f;
}
}
}
}
}
}
}
int ConvOutputSize(int input_size,
int filter_size,
int dilation,
int pad_left,
int pad_right,
int stride) {
const int dkernel = dilation * (filter_size - 1) + 1;
int output_size =
(input_size + (pad_left + pad_right) - dkernel) / stride + 1;
return output_size;
}
// #define PRINT_RESULT
// #define LOOP_TEST
TEST(conv2d, compute_image2d_1x1) {
// conv infos
const int ksize = 1;
const int stride = 1;
const int pad = 0;
const int group = 1;
const int dilation = 0;
// int loop_cnt = 0;
#ifdef LOOP_TEST
for (int batch_size = 1; batch_size < 4; ++batch_size) {
for (int oc = 4; oc < 10; oc += 1) { // oc
for (int ih = 4; ih < 9; ih += 1) { // ih
int iw = ih;
for (int iw = 4; iw < 10; iw += 1) { // iw
for (int ic = 4; ic < 10; ic += 1) { // ic
for (bool bias_flag : {true, false}) {
for (std::string relu_flag : {"relu"}) {
#else
const int batch_size = 1;
const int oc = 4;
const int ih = 8;
const int iw = 8;
const int ic = 4;
const bool bias_flag = true;
const std::string relu_flag = "relu";
#endif
const int oh = ih;
const int ow = iw;
SHADOW_LOG << "to get kernel ...";
auto kernels =
KernelRegistry::Global().Create("conv2d",
TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault));
ASSERT_FALSE(kernels.empty());
auto kernel = std::move(kernels.front());
SHADOW_LOG << "created conv2d_1x1 kernel";
SHADOW_LOG << "prepare kernel ------";
lite::Tensor input, filter, bias, output;
operators::ConvParam param;
param.x = &input;
param.filter = &filter;
param.output = &output;
if (bias_flag) {
param.bias = &bias;
}
if (relu_flag == "relu") {
param.fuse_relu = true;
} else if (relu_flag == "None") {
param.fuse_relu = false;
} else if (relu_flag == "relu6") {
param.activation_param.Relu_clipped_coef = 6.f;
param.activation_param.has_active = true;
param.activation_param.active_type =
lite_api::ActivationType::kRelu6;
}
std::vector<int> paddings = {pad, pad, pad, pad};
std::vector<int> dilations = {dilation, dilation};
param.paddings = std::make_shared<std::vector<int>>(paddings);
param.dilations = std::make_shared<std::vector<int>>(dilations);
param.strides = std::vector<int>{stride, stride};
std::unique_ptr<KernelContext> context(new KernelContext);
context->As<OpenCLContext>().InitOnce();
std::unique_ptr<KernelContext> conv_1x1_context(
new KernelContext);
context->As<OpenCLContext>().CopySharedTo(
&(conv_1x1_context->As<OpenCLContext>()));
kernel->SetContext(std::move(conv_1x1_context));
const DDim& input_dim =
lite::DDim{std::vector<int64_t>({batch_size, ic, ih, iw})};
const DDim& filter_dim =
lite::DDim{std::vector<int64_t>({oc, ic, ksize, ksize})};
const DDim& out_dim =
lite::DDim{std::vector<int64_t>({batch_size, oc, ih, iw})};
// element wise bias
const DDim& bias_dim = lite::DDim{std::vector<int64_t>({oc})};
param.x->Resize(input_dim);
param.filter->Resize(filter_dim);
param.output->Resize(out_dim);
if (bias_flag) {
param.bias->Resize(bias_dim);
}
kernel->SetParam(param);
size_t input_image_width = iw * ((ic + 3) / 4);
size_t input_image_height = ih * batch_size;
size_t out_image_width = ow * ((oc + 3) / 4);
size_t out_image_height = oh * batch_size;
size_t bias_image_width = ow * ((oc + 3) / 4);
size_t bias_image_height = oh * batch_size;
size_t filter_image_width = ksize * ((oc + 3) / 4);
size_t filter_image_height = ic * ksize;
const size_t cl_image2d_row_pitch{0};
const size_t cl_image2d_slice_pitch{0};
std::default_random_engine engine;
std::uniform_real_distribution<float> gen(-5, 5);
std::vector<float> input_v(batch_size * ic * ih * iw);
std::vector<float> filter_v(oc * ic * ksize * ksize);
std::vector<float> output_v(batch_size * oc * ih * iw);
std::vector<float> bias_v(oc);
SHADOW_LOG << "gen input and filter ...";
for (auto& i : input_v) {
i = gen(engine);
}
for (auto& f : filter_v) {
f = gen(engine);
}
SHADOW_LOG << "after gen input and filter ...";
SHADOW_LOG << "input_v.size(): " << input_v.size();
SHADOW_LOG << "filter_v.size(): " << filter_v.size();
SHADOW_LOG << "output_v.size(): " << output_v.size();
SHADOW_LOG << "bias_v.size(): " << bias_v.size();
SHADOW_LOG << "input_dim.production(): "
<< input_dim.production();
SHADOW_LOG << "filter_dim.production(): "
<< filter_dim.production();
SHADOW_LOG << "out_dim.production(): " << out_dim.production();
SHADOW_LOG << "bias_dim.production(): "
<< bias_dim.production();
SHADOW_LOG << "4 * input_image_height * input_image_width: "
<< 4 * input_image_height * input_image_width;
SHADOW_LOG << "4 * filter_image_width * filter_image_height: "
<< 4 * filter_image_width * filter_image_height;
CHECK(input_dim.production() == input_v.size());
CHECK_LE(input_dim.production(),
4 * input_image_height * input_image_width);
CHECK(filter_dim.production() == filter_v.size());
CHECK_LE(filter_dim.production(),
4 * filter_image_width * filter_image_height);
paddle::lite::CLImageConverterDefault default_convertor;
SHADOW_LOG << "set mapped input ...";
std::vector<float> x_image_v(
input_image_width * input_image_height * 4); // 4 : RGBA
std::vector<float> filter_image_v(
filter_image_width * filter_image_height * 4); // 4 :RGBA
std::vector<float> bias_image_v(
bias_image_width * bias_image_height * 4); // 4 : RGBA
std::vector<float> out_image_v(
out_image_width * out_image_height * 4); // 4 : RGBA
default_convertor.NCHWToImage(
input_v.data(), x_image_v.data(), input_dim);
SHADOW_LOG << "set mapped filter ...";
paddle::lite::CLImageConverterNWBlock nw_convertor;
nw_convertor.NCHWToImage(
filter_v.data(), filter_image_v.data(), filter_dim);
auto* input_image2d = input.mutable_data<float, cl::Image2D>(
input_image_width, input_image_height, x_image_v.data());
// assign filter as target arm
filter.Assign<float, lite::DDim, TARGET(kARM)>(filter_v.data(),
filter_dim);
// auto* filter_image2d =
// filter.mutable_data<float, cl::Image2D>(
// filter_image_width,
// filter_image_height,
// filter_image_v.data());
SHADOW_LOG << "卷积核: ---- ";
for (int i = 0; i < filter_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << filter_v[i];
}
SHADOW_LOG << "卷积核1: ---- ";
const float* filter_p = filter.data<float>();
for (int i = 0; i < filter_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << *filter_p;
filter_p++;
}
SHADOW_LOG << "卷积核2: ---- ";
const float* filter_p2 = filter.mutable_data<float>();
for (int i = 0; i < filter_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << *filter_p2;
filter_p2++;
}
if (bias_flag) {
for (int i = 0; i < bias_dim.production(); ++i) {
bias_v[i] = static_cast<int>(gen(engine));
}
bias.Assign<float, lite::DDim, TARGET(kARM)>(bias_v.data(),
bias_dim);
// CLImageConverterFolder folder_convertor;
// folder_convertor.NCHWToImage(
// bias_v.data(), bias_image_v.data(),
// bias_dim);
//
// auto* bias_data = bias.mutable_data<float,
// cl::Image2D>(
// bias_image_width, bias_image_height,
// bias_image_v.data());
}
SHADOW_LOG << "resize output ...";
output.Resize(out_dim);
// cpu conv basic calc
lite::Tensor out_ref;
out_ref.Resize(out_dim);
SHADOW_LOG << "prepare kernel ready";
SHADOW_LOG << "kernel launch ...";
kernel->Launch();
SHADOW_LOG << "mutable output ...";
auto* output_image2d = output.mutable_data<float, cl::Image2D>(
out_image_width, out_image_height);
auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
auto* out_ptr = param.output->data<float, cl::Image2D>();
auto it = wait_list->find(out_ptr);
if (it != wait_list->end()) {
SHADOW_LOG << "--- Find the sync event for the target cl "
"tensor. ---";
auto& event = *(it->second);
event.wait();
} else {
LOG(FATAL) << "Could not find the sync event for the target"
"cl tensor.";
}
TargetWrapperCL::ImgcpySync(out_image_v.data(),
output.data<float, cl::Image2D>(),
out_image_width,
out_image_height,
cl_image2d_row_pitch,
cl_image2d_slice_pitch,
IoDirection::DtoH);
DDim out_image_shape =
default_convertor.InitImageDimInfoWith(output.dims());
default_convertor.ImageToNCHW(out_image_v.data(),
output_v.data(),
out_image_shape,
output.dims());
SHADOW_LOG << "mutable_data out_ref_data: ";
// run cpu ref
auto* out_ref_data = out_ref.mutable_data<float>(TARGET(kARM));
SHADOW_LOG << " conv_basic beigin ..... ";
conv_basic<float, float>(input_v.data(),
out_ref_data,
batch_size,
oc,
oh,
ow,
ic,
ih,
iw,
filter_v.data(),
bias_v.data(), // mapped_bias,
group,
ksize,
ksize,
stride,
stride,
dilation,
dilation,
pad,
pad,
bias_flag,
relu_flag);
SHADOW_LOG << " conv_basic end ..... ";
SHADOW_LOG << " out_dim: " << out_dim;
const DDim& out_image_dims = lite::DDim{std::vector<int64_t>(
{static_cast<int64_t>(out_image_width),
static_cast<int64_t>(out_image_height)})};
for (int i = 0; i < out_dim.production(); i++) {
EXPECT_NEAR(output_v[i], out_ref_data[i], 1e-2);
if (abs(output_v[i] - out_ref_data[i]) > 1e-2) {
LOG(FATAL) << "error idx:" << i;
}
}
#ifdef LOOP_TEST
}
}
}
}
}
}
}
#else
// nothing to do.
#endif
}
#undef LOOP_TEST
#undef PRINT_RESULT
// #define PRINT_RESULT
// #define LOOP_TEST
TEST(conv2d, compute_image2d_5x5) {
// conv infos
const int ksize = 5;
const int stride = 1;
const int pad = 2;
const int group = 1;
const int dilation = 1;
// int loop_cnt = 0;
#ifdef LOOP_TEST
for (int batch_size = 2; batch_size < 4; ++batch_size) {
for (int oc = 1; oc < 10; oc += 1) { // oc
for (int ih = 5; ih < 9; ih += 1) { // ih
int iw = ih;
for (int ic = 1; ic < 10; ic += 1) { // ic
for (bool bias_flag : {true, false}) {
for (std::string relu_flag : {/*true,*/ "relu"}) {
#else
const int batch_size = 2;
const int oc = 1;
const int ih = 5;
const int iw = 5;
const int ic = 1;
const bool bias_flag = true;
const std::string relu_flag = "relu";
#endif
const int oh =
ConvOutputSize(ih, ksize, dilation, pad, pad, stride);
const int ow =
ConvOutputSize(iw, ksize, dilation, pad, pad, stride);
SHADOW_LOG << "to get kernel ...";
auto kernels =
KernelRegistry::Global().Create("conv2d",
TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault));
ASSERT_FALSE(kernels.empty());
auto kernel = std::move(kernels.front());
SHADOW_LOG << "created conv2d kernel";
SHADOW_LOG << "prepare kernel ------";
lite::Tensor input, filter, bias, output;
operators::ConvParam param;
param.x = &input;
param.filter = &filter;
param.output = &output;
if (bias_flag) {
param.bias = &bias;
}
if (relu_flag == "relu") {
param.fuse_relu = true;
} else if (relu_flag == "None") {
param.fuse_relu = false;
} else if (relu_flag == "relu6") {
param.activation_param.Relu_clipped_coef = 6.f;
param.activation_param.has_active = true;
param.activation_param.active_type =
lite_api::ActivationType::kRelu6;
}
std::vector<int> paddings = {pad, pad, pad, pad};
std::vector<int> dilations = {dilation, dilation};
param.paddings = std::make_shared<std::vector<int>>(paddings);
param.dilations = std::make_shared<std::vector<int>>(dilations);
param.strides = std::vector<int>{stride, stride};
std::unique_ptr<KernelContext> context(new KernelContext);
context->As<OpenCLContext>().InitOnce();
std::unique_ptr<KernelContext> conv_1x1_context(
new KernelContext);
context->As<OpenCLContext>().CopySharedTo(
&(conv_1x1_context->As<OpenCLContext>()));
kernel->SetContext(std::move(conv_1x1_context));
const DDim& input_dim =
lite::DDim{std::vector<int64_t>({batch_size, ic, ih, iw})};
const DDim& filter_dim =
lite::DDim{std::vector<int64_t>({oc, ic, ksize, ksize})};
const DDim& out_dim =
lite::DDim{std::vector<int64_t>({batch_size, oc, oh, ow})};
// element wise bias
const DDim& bias_dim = lite::DDim{std::vector<int64_t>({oc})};
param.x->Resize(input_dim);
param.filter->Resize(filter_dim);
param.output->Resize(out_dim);
if (bias_flag) {
param.bias->Resize(bias_dim);
}
kernel->SetParam(param);
size_t input_image_width = iw * ((ic + 3) / 4);
size_t input_image_height = ih * batch_size;
size_t out_image_width = ow * ((oc + 3) / 4);
size_t out_image_height = oh * batch_size;
size_t bias_image_width = ow * ((oc + 3) / 4);
size_t bias_image_height = oh * batch_size;
size_t filter_image_width = ksize * ((ic + 3) / 4);
size_t filter_image_height = oc * ksize;
const size_t cl_image2d_row_pitch{0};
const size_t cl_image2d_slice_pitch{0};
std::default_random_engine engine;
std::uniform_real_distribution<float> gen(-5, 5);
std::vector<float> input_v(batch_size * ic * ih * iw);
std::vector<float> filter_v(oc * ic * ksize * ksize);
std::vector<float> output_v(batch_size * oc * oh * ow);
std::vector<float> bias_v(oc);
SHADOW_LOG << "gen input and filter ...";
for (auto& i : input_v) {
i = gen(engine);
}
for (auto& f : filter_v) {
f = gen(engine);
}
SHADOW_LOG << "after gen input and filter ...";
SHADOW_LOG << "input_v.size(): " << input_v.size();
SHADOW_LOG << "filter_v.size(): " << filter_v.size();
SHADOW_LOG << "output_v.size(): " << output_v.size();
SHADOW_LOG << "bias_v.size(): " << bias_v.size();
SHADOW_LOG << "input_dim.production(): "
<< input_dim.production();
SHADOW_LOG << "filter_dim.production(): "
<< filter_dim.production();
SHADOW_LOG << "out_dim.production(): " << out_dim.production();
SHADOW_LOG << "bias_dim.production(): " << bias_dim.production();
SHADOW_LOG << "4 * input_image_height *input_image_width: "
<< 4 * input_image_height * input_image_width;
SHADOW_LOG << "4 * filter_image_width * filter_image_height: "
<< 4 * filter_image_width * filter_image_height;
CHECK(input_dim.production() == input_v.size());
CHECK_LE(input_dim.production(),
4 * input_image_height * input_image_width);
CHECK(filter_dim.production() == filter_v.size());
CHECK_LE(filter_dim.production(),
4 * filter_image_width * filter_image_height);
paddle::lite::CLImageConverterDefault default_convertor;
SHADOW_LOG << "set mapped input ...";
std::vector<float> x_image_v(input_image_width *
input_image_height * 4); // 4 :RGBA
std::vector<float> filter_image_v(
filter_image_width * filter_image_height * 4); // 4 : RGBA
std::vector<float> bias_image_v(
bias_image_width * bias_image_height * 4); // 4 : RGBA
std::vector<float> out_image_v(out_image_width *
out_image_height * 4); // 4 :RGBA
default_convertor.NCHWToImage(
input_v.data(), x_image_v.data(), input_dim);
SHADOW_LOG << "输入: ---- ";
for (int i = 0; i < input_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << input_v[i];
}
SHADOW_LOG << "输入image : ---- ";
for (int i = 0; i < x_image_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << x_image_v[i];
}
SHADOW_LOG << "set mapped filter ...";
CLImageConverterFolder folder_convertor;
folder_convertor.NCHWToImage(
filter_v.data(), filter_image_v.data(), filter_dim);
SHADOW_LOG << "卷积核: ---- ";
for (int i = 0; i < filter_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << filter_v[i];
}
SHADOW_LOG << "卷积核image: ---- ";
for (int i = 0; i < filter_image_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << filter_image_v[i];
}
auto* input_image2d = input.mutable_data<float, cl::Image2D>(
input_image_width, input_image_height, x_image_v.data());
// assign filter as target arm
filter.Assign<float, lite::DDim, TARGET(kARM)>(filter_v.data(),
filter_dim);
// filter kernel
// auto* filter_image2d = filter.mutable_data<float,
// cl::Image2D>(
// filter_image_width,
// filter_image_height,
// filter_image_v.data());
if (bias_flag) {
for (int i = 0; i < bias_dim.production(); ++i) {
bias_v[i] = static_cast<int>(gen(engine));
}
bias.Assign<float, lite::DDim, TARGET(kARM)>(bias_v.data(),
bias_dim);
// CLImageConverterFolder folder_convertor;
// folder_convertor.NCHWToImage(
// bias_v.data(), bias_image_v.data(),
// bias_dim);
//
// auto* bias_data = bias.mutable_data<float,
// cl::Image2D>(
// bias_image_width, bias_image_height,
// bias_image_v.data());
}
SHADOW_LOG << "resize output ...";
output.Resize(out_dim);
// cpu conv basic calc
lite::Tensor out_ref;
out_ref.Resize(out_dim);
SHADOW_LOG << "prepare kernel ready";
SHADOW_LOG << "kernel launch ...";
kernel->Launch();
SHADOW_LOG << "mutable output ...";
auto* output_image2d = output.mutable_data<float, cl::Image2D>(
out_image_width, out_image_height);
auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
auto* out_ptr = param.output->data<float, cl::Image2D>();
auto it = wait_list->find(out_ptr);
if (it != wait_list->end()) {
SHADOW_LOG << "--- Find the sync event for the target cl "
"tensor. ---";
auto& event = *(it->second);
event.wait();
} else {
LOG(FATAL) << "Could not find the sync event for the target "
"cl tensor.";
}
TargetWrapperCL::ImgcpySync(out_image_v.data(),
output.data<float, cl::Image2D>(),
out_image_width,
out_image_height,
cl_image2d_row_pitch,
cl_image2d_slice_pitch,
IoDirection::DtoH);
DDim out_image_shape =
default_convertor.InitImageDimInfoWith(output.dims());
default_convertor.ImageToNCHW(out_image_v.data(),
output_v.data(),
out_image_shape,
output.dims());
SHADOW_LOG << "输出: ---- ";
for (int i = 0; i < output_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << output_v[i];
}
SHADOW_LOG << "输出image: ---- ";
for (int i = 0; i < out_image_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << out_image_v[i];
}
SHADOW_LOG << "mutable_data out_ref_data: ";
// run cpu ref
auto* out_ref_data = out_ref.mutable_data<float>(TARGET(kARM));
SHADOW_LOG << " conv_basic beigin ..... ";
conv_basic<float, float>(input_v.data(),
out_ref_data,
batch_size,
oc,
oh,
ow,
ic,
ih,
iw,
filter_v.data(),
bias_v.data(), // mapped_bias,
group,
ksize,
ksize,
stride,
stride,
dilation,
dilation,
pad,
pad,
bias_flag,
relu_flag);
SHADOW_LOG << " conv_basic end ..... ";
SHADOW_LOG << " out_dim: " << out_dim;
const DDim& out_image_dims = lite::DDim{std::vector<int64_t>(
{static_cast<int64_t>(out_image_width),
static_cast<int64_t>(out_image_height)})};
for (int i = 0; i < out_dim.production(); i++) {
EXPECT_NEAR(output_v[i], out_ref_data[i], 1e-2);
if (abs(output_v[i] - out_ref_data[i]) > 1e-2) {
LOG(FATAL) << "error idx:" << i;
}
}
#ifdef LOOP_TEST
}
}
}
}
}
}
#else
// nothing to do.
#endif
}
#undef LOOP_TEST
#undef PRINT_RESULT
// #define LOOP_TEST
TEST(conv2d, compute_image2d_7x7) {
// conv infos
const int ksize = 7;
const int stride = 1;
const int pad = 2;
const int group = 1;
const int dilation = 1;
// int loop_cnt = 0;
#ifdef LOOP_TEST
for (int batch_size = 2; batch_size < 4; ++batch_size) {
for (int oc = 1; oc < 10; oc += 1) { // oc
for (int ih = 7; ih < 15; ih += 1) { // ih
int iw = ih;
for (int ic = 1; ic < 10; ic += 1) { // ic
for (bool bias_flag : {true, false}) {
for (std::string relu_flag : {"relu"}) {
#else
const int batch_size = 2;
const int oc = 1;
const int ih = 7;
const int iw = 7;
const int ic = 1;
const bool bias_flag = false;
const std::string relu_flag = "";
#endif
const int oh =
ConvOutputSize(ih, ksize, dilation, pad, pad, stride);
const int ow =
ConvOutputSize(iw, ksize, dilation, pad, pad, stride);
SHADOW_LOG << "to get kernel ...";
auto kernels =
KernelRegistry::Global().Create("conv2d",
TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault));
ASSERT_FALSE(kernels.empty());
auto kernel = std::move(kernels.front());
SHADOW_LOG << "created conv2d kernel";
SHADOW_LOG << "prepare kernel ------";
lite::Tensor input, filter, bias, output;
operators::ConvParam param;
param.x = &input;
param.filter = &filter;
param.output = &output;
if (bias_flag) {
param.bias = &bias;
}
if (relu_flag == "relu") {
param.fuse_relu = true;
} else if (relu_flag == "None") {
param.fuse_relu = false;
} else if (relu_flag == "relu6") {
param.activation_param.Relu_clipped_coef = 6.f;
param.activation_param.has_active = true;
param.activation_param.active_type =
lite_api::ActivationType::kRelu6;
}
std::vector<int> paddings = {pad, pad, pad, pad};
std::vector<int> dilations = {dilation, dilation};
param.paddings = std::make_shared<std::vector<int>>(paddings);
param.dilations = std::make_shared<std::vector<int>>(dilations);
param.strides = std::vector<int>{stride, stride};
std::unique_ptr<KernelContext> context(new KernelContext);
context->As<OpenCLContext>().InitOnce();
std::unique_ptr<KernelContext> conv_1x1_context(
new KernelContext);
context->As<OpenCLContext>().CopySharedTo(
&(conv_1x1_context->As<OpenCLContext>()));
kernel->SetContext(std::move(conv_1x1_context));
const DDim& input_dim =
lite::DDim{std::vector<int64_t>({batch_size, ic, ih, iw})};
const DDim& filter_dim =
lite::DDim{std::vector<int64_t>({oc, ic, ksize, ksize})};
const DDim& out_dim =
lite::DDim{std::vector<int64_t>({batch_size, oc, oh, ow})};
// element wise bias
const DDim& bias_dim = lite::DDim{std::vector<int64_t>({oc})};
param.x->Resize(input_dim);
param.filter->Resize(filter_dim);
param.output->Resize(out_dim);
if (bias_flag) {
param.bias->Resize(bias_dim);
}
kernel->SetParam(param);
size_t input_image_width = iw * ((ic + 3) / 4);
size_t input_image_height = ih * batch_size;
size_t out_image_width = ow * ((oc + 3) / 4);
size_t out_image_height = oh * batch_size;
size_t bias_image_width = ow * ((oc + 3) / 4);
size_t bias_image_height = oh * batch_size;
size_t filter_image_width = ksize * ((ic + 3) / 4);
size_t filter_image_height = oc * ksize;
const size_t cl_image2d_row_pitch{0};
const size_t cl_image2d_slice_pitch{0};
std::default_random_engine engine;
std::uniform_real_distribution<float> gen(-5, 5);
std::vector<float> input_v(batch_size * ic * ih * iw);
std::vector<float> filter_v(oc * ic * ksize * ksize);
std::vector<float> output_v(batch_size * oc * oh * ow);
std::vector<float> bias_v(oc);
SHADOW_LOG << "gen input and filter ...";
for (auto& i : input_v) {
i = gen(engine);
// i = 1;
}
for (auto& f : filter_v) {
f = gen(engine);
// f = 1;
}
LOG(INFO) << "bias: " << bias_flag;
LOG(INFO) << "relu: " << relu_flag;
LOG(INFO) << "inputdims : " << input_dim;
LOG(INFO) << "filterdims: " << filter.dims();
LOG(INFO) << "outputdims : " << output.dims();
SHADOW_LOG << "after gen input and filter ...";
SHADOW_LOG << "input_v.size(): " << input_v.size();
SHADOW_LOG << "filter_v.size(): " << filter_v.size();
SHADOW_LOG << "output_v.size(): " << output_v.size();
SHADOW_LOG << "bias_v.size(): " << bias_v.size();
SHADOW_LOG << "input_dim.production(): "
<< input_dim.production();
SHADOW_LOG << "filter_dim.production(): "
<< filter_dim.production();
SHADOW_LOG << "out_dim.production(): " << out_dim.production();
SHADOW_LOG << "bias_dim.production(): " << bias_dim.production();
SHADOW_LOG << "4 * input_image_height * input_image_width: "
<< 4 * input_image_height * input_image_width;
SHADOW_LOG << "4 * filter_image_width * filter_image_height: "
<< 4 * filter_image_width * filter_image_height;
CHECK(input_dim.production() == input_v.size());
CHECK_LE(input_dim.production(),
4 * input_image_height * input_image_width);
CHECK(filter_dim.production() == filter_v.size());
CHECK_LE(filter_dim.production(),
4 * filter_image_width * filter_image_height);
paddle::lite::CLImageConverterDefault default_convertor;
SHADOW_LOG << "set mapped input ...";
std::vector<float> x_image_v(input_image_width *
input_image_height * 4); // 4 : RGBA
std::vector<float> filter_image_v(
filter_image_width * filter_image_height * 4); // 4 : RGBA
std::vector<float> bias_image_v(
bias_image_width * bias_image_height * 4); // 4 : RGBA
std::vector<float> out_image_v(out_image_width *
out_image_height * 4); // 4 : RGBA
default_convertor.NCHWToImage(
input_v.data(), x_image_v.data(), input_dim);
SHADOW_LOG << "输入: ---- ";
for (int i = 0; i < input_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << input_v[i];
}
SHADOW_LOG << "输入image : ---- ";
for (int i = 0; i < x_image_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << x_image_v[i];
}
SHADOW_LOG << "set mapped filter ...";
CLImageConverterFolder folder_convertor;
folder_convertor.NCHWToImage(
filter_v.data(), filter_image_v.data(), filter_dim);
SHADOW_LOG << "卷积核: ---- ";
for (int i = 0; i < filter_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << filter_v[i];
}
SHADOW_LOG << "卷积核image: ---- ";
for (int i = 0; i < filter_image_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << filter_image_v[i];
}
auto* input_image2d = input.mutable_data<float, cl::Image2D>(
input_image_width, input_image_height, x_image_v.data());
// assign filter as target arm
filter.Assign<float, lite::DDim, TARGET(kARM)>(filter_v.data(),
filter_dim);
// auto* filter_image2d = filter.mutable_data<float,
// cl::Image2D>(
// filter_image_width,
// filter_image_height,
// filter_image_v.data());
if (bias_flag) {
for (int i = 0; i < bias_dim.production(); ++i) {
bias_v[i] = static_cast<int>(gen(engine));
}
bias.Assign<float, lite::DDim, TARGET(kARM)>(bias_v.data(),
bias_dim);
// CLImageConverterFolder folder_convertor;
// folder_convertor.NCHWToImage(
// bias_v.data(), bias_image_v.data(),
// bias_dim);
//
// auto* bias_data = bias.mutable_data<float,
// cl::Image2D>(
// bias_image_width, bias_image_height,
// bias_image_v.data());
}
SHADOW_LOG << "resize output ...";
output.Resize(out_dim);
// cpu conv basic calc
lite::Tensor out_ref;
out_ref.Resize(out_dim);
SHADOW_LOG << "prepare kernel ready";
SHADOW_LOG << "kernel launch ...";
kernel->Launch();
SHADOW_LOG << "mutable output ...";
auto* output_image2d = output.mutable_data<float, cl::Image2D>(
out_image_width, out_image_height);
auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
auto* out_ptr = param.output->data<float, cl::Image2D>();
auto it = wait_list->find(out_ptr);
if (it != wait_list->end()) {
SHADOW_LOG << "--- Find the sync event for the target cl "
"tensor. ---";
auto& event = *(it->second);
event.wait();
} else {
LOG(FATAL) << "Could not find the sync event for the target "
"cl tensor.";
}
TargetWrapperCL::ImgcpySync(out_image_v.data(),
output.data<float, cl::Image2D>(),
out_image_width,
out_image_height,
cl_image2d_row_pitch,
cl_image2d_slice_pitch,
IoDirection::DtoH);
DDim out_image_shape =
default_convertor.InitImageDimInfoWith(output.dims());
default_convertor.ImageToNCHW(out_image_v.data(),
output_v.data(),
out_image_shape,
output.dims());
SHADOW_LOG << "输出: ---- ";
for (int i = 0; i < output_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << output_v[i];
}
SHADOW_LOG << "输出image: ---- ";
for (int i = 0; i < out_image_v.size(); i++) {
SHADOW_LOG << "(" << i << ")" << out_image_v[i];
}
SHADOW_LOG << "mutable_data out_ref_data: ";
// run cpu ref
auto* out_ref_data = out_ref.mutable_data<float>(TARGET(kARM));
SHADOW_LOG << " conv_basic beigin ..... ";
conv_basic<float, float>(input_v.data(),
out_ref_data,
batch_size,
oc,
oh,
ow,
ic,
ih,
iw,
filter_v.data(),
bias_v.data(), // mapped_bias,
group,
ksize,
ksize,
stride,
stride,
dilation,
dilation,
pad,
pad,
bias_flag,
relu_flag);
SHADOW_LOG << " conv_basic end ..... ";
SHADOW_LOG << " out_dim: " << out_dim;
const DDim& out_image_dims = lite::DDim{std::vector<int64_t>(
{static_cast<int64_t>(out_image_width),
static_cast<int64_t>(out_image_height)})};
for (int i = 0; i < out_dim.production(); i++) {
EXPECT_NEAR(output_v[i], out_ref_data[i], 1e-2);
if (abs(output_v[i] - out_ref_data[i]) > 1e-2) {
LOG(FATAL) << "error idx:" << i;
}
}
#ifdef LOOP_TEST
}
}
}
}
}
}
#else
// nothing to do.
#endif
}
#undef LOOP_TEST
#undef PRINT_RESULT
#undef SHADOW_LOG
} // namespace lite
} // namespace paddle
USE_LITE_KERNEL(conv2d, kOpenCL, kFloat, kImageDefault, image2d);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册