Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
82267790
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
82267790
编写于
5月 30, 2019
作者:
Z
zp7
提交者:
Jiaying Zhao
5月 30, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add reshape2, transpose2, split GPU operator (#1664)
* add reshape2, transpose2, split GPU operator * fix reshape2op && delete log
上级
52bd9465
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
527 addition
and
8 deletion
+527
-8
src/framework/executor.cpp
src/framework/executor.cpp
+17
-0
src/framework/load_ops.h
src/framework/load_ops.h
+3
-3
src/operators/kernel/cl/cl_kernel/scale_kernel.cl
src/operators/kernel/cl/cl_kernel/scale_kernel.cl
+1
-1
src/operators/kernel/cl/reshape2_kernel.cpp
src/operators/kernel/cl/reshape2_kernel.cpp
+150
-0
src/operators/kernel/cl/split_kernel.cpp
src/operators/kernel/cl/split_kernel.cpp
+116
-0
src/operators/kernel/cl/transpose2_kernel.cpp
src/operators/kernel/cl/transpose2_kernel.cpp
+135
-0
src/operators/op_param.h
src/operators/op_param.h
+3
-3
src/operators/reshape2_op.cpp
src/operators/reshape2_op.cpp
+47
-0
src/operators/split_op.cpp
src/operators/split_op.cpp
+3
-0
src/operators/transpose2_op.cpp
src/operators/transpose2_op.cpp
+52
-1
未找到文件。
src/framework/executor.cpp
浏览文件 @
82267790
...
...
@@ -971,6 +971,23 @@ void Executor<GPU_CL, float>::InitCombineMemory() {
program_
.
scope
->
GetCLScpoe
()
->
CommandQueue
();
const
TensorDesc
&
desc
=
var_desc
->
Tensor_desc
();
DDim
ddim
=
cl_image
->
dims
();
bool
shouldResize
=
true
;
if
(
ddim
.
size
()
>
4
)
{
for
(
int
i
=
0
;
i
<
ddim
.
size
()
-
4
;
++
i
)
{
if
(
ddim
[
i
]
!=
0
)
{
shouldResize
=
false
;
break
;
}
}
if
(
shouldResize
)
{
std
::
vector
<
int64_t
>
temp_intput_dims
;
temp_intput_dims
.
reserve
(
static_cast
<
size_t
>
(
4
));
for
(
int
i
=
ddim
.
size
()
-
4
;
i
<
ddim
.
size
();
++
i
)
{
temp_intput_dims
.
push_back
(
ddim
[
i
]);
}
ddim
=
framework
::
make_ddim
(
temp_intput_dims
);
}
}
// DDim ddim = make_ddim(desc.Dims());
cl_image
->
InitEmptyImage
(
context
,
command_queue
,
ddim
);
}
...
...
src/framework/load_ops.h
浏览文件 @
82267790
...
...
@@ -103,7 +103,7 @@ LOAD_OP2(fusion_elementwise_add_relu, CPU, FPGA);
LOAD_FUSION_MATCHER
(
fusion_elementwise_add_relu
);
#endif
#ifdef SPLIT_OP
LOAD_OP
1
(
split
,
CPU
);
LOAD_OP
2
(
split
,
CPU
,
GPU_CL
);
#endif
#ifdef RESIZE_OP
LOAD_OP1
(
resize
,
CPU
);
...
...
@@ -116,13 +116,13 @@ LOAD_FUSION_MATCHER(fusion_conv_add_bn_relu);
LOAD_OP2
(
reshape
,
CPU
,
GPU_CL
);
#endif
#ifdef RESHAPE2_OP
LOAD_OP
1
(
reshape2
,
CPU
);
LOAD_OP
2
(
reshape2
,
CPU
,
GPU_CL
);
#endif
#ifdef TRANSPOSE_OP
LOAD_OP2
(
transpose
,
CPU
,
GPU_CL
);
#endif
#ifdef TRANSPOSE2_OP
LOAD_OP
1
(
transpose2
,
CPU
);
LOAD_OP
2
(
transpose2
,
CPU
,
GPU_CL
);
#endif
#ifdef PRIORBOX_OP
LOAD_OP2
(
prior_box
,
CPU
,
GPU_CL
);
...
...
src/operators/kernel/cl/cl_kernel/scale_kernel.cl
浏览文件 @
82267790
...
...
@@ -18,7 +18,7 @@ __kernel void scale(__read_only image2d_t input,
__write_only
image2d_t
output,
__private
float
scale,
__private
float
bias,
__private
floa
t
out_width
)
{
__private
in
t
out_width
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
...
...
src/operators/kernel/cl/reshape2_kernel.cpp
0 → 100644
浏览文件 @
82267790
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef RESHAPE2_OP
#include "operators/kernel/reshape2_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
Reshape2Kernel
<
GPU_CL
,
float
>::
Init
(
Reshape2Param
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"reshape"
,
"reshape.cl"
);
return
true
;
}
inline
framework
::
DDim
ValidateShape
(
const
std
::
vector
<
int
>
shape
,
const
framework
::
DDim
&
in_dims
)
{
const
int64_t
in_size
=
framework
::
product
(
in_dims
);
// only one dimension can be set to -1, whose size will be automatically
// infered.
const
int64_t
unk_dim_val
=
-
1
;
const
int64_t
copy_dim_val
=
0
;
std
::
vector
<
int64_t
>
output_shape
(
shape
.
size
(),
0
);
int64_t
capacity
=
1
;
int
unk_dim_idx
=
-
1
;
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
{
if
(
shape
[
i
]
==
unk_dim_val
)
{
PADDLE_MOBILE_ENFORCE
(
unk_dim_idx
==
-
1
,
"Only one input dimension of Attr(shape) can be unknown."
);
unk_dim_idx
=
i
;
}
else
if
(
shape
[
i
]
==
copy_dim_val
)
{
PADDLE_MOBILE_ENFORCE
(
static_cast
<
int
>
(
i
)
<
in_dims
.
size
(),
"The index of dimension to copy from input shape must be less "
"than the size of input shape."
);
}
else
{
PADDLE_MOBILE_ENFORCE
(
shape
[
i
]
>
0
,
"Each input dimension of Attr(shape) must not be negtive except "
"one unknown dimension."
);
}
capacity
*=
(
shape
[
i
]
?
shape
[
i
]
:
in_dims
[
i
]);
output_shape
[
i
]
=
(
shape
[
i
]
?
static_cast
<
int64_t
>
(
shape
[
i
])
:
in_dims
[
i
]);
}
if
(
unk_dim_idx
!=
-
1
)
{
output_shape
[
unk_dim_idx
]
=
-
in_size
/
capacity
;
PADDLE_MOBILE_ENFORCE
(
output_shape
[
unk_dim_idx
]
*
capacity
==
-
in_size
,
"Invalid shape is given."
);
}
else
{
PADDLE_MOBILE_ENFORCE
(
capacity
==
in_size
,
"Invalid shape is given."
);
}
return
framework
::
make_ddim
(
output_shape
);
}
template
<
>
void
Reshape2Kernel
<
GPU_CL
,
float
>::
Compute
(
const
Reshape2Param
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Out
());
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
auto
input_image
=
input
->
GetCLImage
();
auto
output_image
=
output
->
GetCLImage
();
const
auto
&
inputDim
=
input
->
dims
();
const
auto
&
outputDim
=
output
->
dims
();
int
input_dims
[
4
]
=
{
1
,
1
,
1
,
1
};
int
output_dims
[
4
]
=
{
1
,
1
,
1
,
1
};
// 1 1000 1 1
for
(
int
i
=
0
;
i
<
inputDim
.
size
();
i
++
)
{
input_dims
[
4
-
inputDim
.
size
()
+
i
]
=
inputDim
[
i
];
}
// 1 1 1 1000
for
(
int
i
=
0
;
i
<
outputDim
.
size
();
i
++
)
{
output_dims
[
4
-
outputDim
.
size
()
+
i
]
=
outputDim
[
i
];
}
int
out_C
=
output_dims
[
1
];
int
out_H
=
output_dims
[
2
];
int
out_W
=
output_dims
[
3
];
int
in_W
=
input_dims
[
3
];
int
in_H
=
input_dims
[
2
];
int
in_Stride0
=
in_W
;
int
in_Stride1
=
input_dims
[
2
]
*
input_dims
[
3
];
int
in_Stride2
=
input_dims
[
1
]
*
input_dims
[
2
]
*
input_dims
[
3
];
int
out_Stride0
=
out_W
;
int
out_Stride1
=
out_H
*
out_W
;
int
out_Stride2
=
out_C
*
out_H
*
out_W
;
DLOG
<<
"out_C="
<<
out_C
;
DLOG
<<
"out_H="
<<
out_H
;
DLOG
<<
"out_W="
<<
out_W
;
DLOG
<<
"in_W="
<<
in_W
;
DLOG
<<
"default_work_size="
<<
default_work_size
;
DLOG
<<
"in_Stride0="
<<
in_Stride0
;
DLOG
<<
"in_Stride1="
<<
in_Stride1
;
DLOG
<<
"out_Stride0="
<<
out_Stride0
;
DLOG
<<
"out_Stride1="
<<
out_Stride1
;
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
out_C
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
out_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
out_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
&
in_W
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
in_H
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
in_Stride0
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
in_Stride1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
in_Stride2
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
out_Stride0
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
out_Stride1
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
out_Stride2
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
template
class
Reshape2Kernel
<
GPU_CL
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/cl/split_kernel.cpp
0 → 100644
浏览文件 @
82267790
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SPLIT_OP
#include "operators/kernel/split_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
SplitKernel
<
GPU_CL
,
float
>::
Init
(
SplitParam
<
GPU_CL
>*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"fetch"
,
"fetch_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"feed"
,
"feed_kernel.cl"
);
return
true
;
}
// Strided numel memory copy from src to dst by the specified axis
//
// For example, for a tensor dims [4, 20, 100], the strieded numel is
// [8000, 2000, 100]
//
// NOTE: The src and dst tensor should have the same elements
// except the specified axis.
template
<
typename
T
>
void
StridedNumelCopyWithAxis
(
int64_t
axis
,
T
*
dst
,
const
framework
::
DDim
&
dst_stride_numel
,
const
T
*
src
,
const
framework
::
DDim
&
src_stride_numel
,
int64_t
size
)
{
int64_t
before
=
dst_stride_numel
[
0
]
/
dst_stride_numel
[
axis
];
int64_t
src_after
=
src_stride_numel
[
axis
];
int64_t
dst_after
=
dst_stride_numel
[
axis
];
PADDLE_MOBILE_ENFORCE
(
src_stride_numel
.
size
()
==
dst_stride_numel
.
size
(),
"src and dst tensor should have the same dims size."
);
for
(
int64_t
i
=
0
;
i
<
axis
;
++
i
)
{
if
(
i
<
axis
)
{
PADDLE_MOBILE_ENFORCE
(
src_stride_numel
[
i
]
/
src_stride_numel
[
axis
]
==
dst_stride_numel
[
i
]
/
dst_stride_numel
[
axis
],
"src and dst should have the same elements "
"except the specified axis."
);
}
else
if
(
i
==
axis
)
{
continue
;
}
else
{
PADDLE_MOBILE_ENFORCE
(
src_stride_numel
[
i
]
==
dst_stride_numel
[
i
],
"src and dst should have the same elements "
"except the specified axis."
);
}
}
for
(
int64_t
i
=
0
;
i
<
before
;
++
i
)
{
memory
::
Copy
(
dst
+
i
*
dst_after
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
size
);
}
}
template
<
>
void
SplitKernel
<
GPU_CL
,
float
>::
Compute
(
const
SplitParam
<
GPU_CL
>&
param
)
{
auto
kernel0
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel1
=
this
->
cl_helper_
.
KernelAt
(
1
);
auto
*
input_image
=
param
.
InputX
();
auto
in_stride
=
framework
::
stride_numel
(
input_image
->
dims
());
auto
input_dims
=
input_image
->
dims
();
auto
outs_images
=
param
.
Outs
();
int64_t
axis
=
param
.
Axis
();
Tensor
*
input_tensor
=
new
Tensor
();
input_tensor
->
Resize
(
input_image
->
dims
());
input_tensor
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
input_image
,
input_tensor
,
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
(),
kernel0
);
size_t
input_offset
=
0
;
for
(
auto
out
:
outs_images
)
{
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
Tensor
*
temp_out
=
new
Tensor
();
temp_out
->
Resize
(
out
->
dims
());
temp_out
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
out
,
temp_out
,
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
(),
kernel0
);
StridedNumelCopyWithAxis
<
float
>
(
axis
,
temp_out
->
data
<
float
>
(),
out_stride
,
input_tensor
->
data
<
float
>
()
+
input_offset
,
in_stride
,
out_stride
[
axis
]);
input_offset
+=
out_stride
[
axis
];
out
->
InitEmptyImage
(
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
(),
temp_out
->
dims
());
framework
::
TensorToCLImage
(
temp_out
,
out
,
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
(),
kernel1
);
outs_images
.
push_back
(
out
);
delete
(
temp_out
);
}
delete
(
input_tensor
);
}
template
class
SplitKernel
<
GPU_CL
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/cl/transpose2_kernel.cpp
0 → 100644
浏览文件 @
82267790
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE2_OP
#include "operators/kernel/transpose2_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
Transpose2Kernel
<
GPU_CL
,
float
>::
Init
(
Transpose2Param
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"fetch"
,
"fetch_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"feed"
,
"feed_kernel.cl"
);
return
true
;
}
inline
bool
IsShuffleChannel
(
const
std
::
vector
<
int
>
&
axis
)
{
bool
is_shuffle_channel
=
true
;
if
(
axis
.
size
()
>
2
&&
axis
[
0
]
==
0
&&
axis
[
1
]
==
2
&&
axis
[
2
]
==
1
)
{
for
(
int
i
=
3
;
i
<
axis
.
size
();
++
i
)
{
if
(
axis
[
i
]
!=
i
)
{
is_shuffle_channel
=
false
;
break
;
}
}
}
else
{
return
false
;
}
return
is_shuffle_channel
;
}
template
<
typename
Dtype
>
void
ShuffleChannelCompute
(
const
Transpose2Param
<
GPU_CL
>
&
param
,
cl_context
context
,
cl_command_queue
commandQueue
,
cl_kernel
kernel0
,
cl_kernel
kernel1
)
{
auto
axis
=
param
.
Axis
();
int
axis_size
=
axis
.
size
();
bool
shouldResize
=
true
;
int
diff_dim
=
0
;
if
(
axis_size
>
4
)
{
for
(
int
i
=
0
;
i
<
axis_size
-
4
;
++
i
)
{
if
(
axis
[
i
]
!=
i
)
{
shouldResize
=
false
;
break
;
}
else
{
diff_dim
++
;
}
}
if
(
shouldResize
)
{
std
::
vector
<
int
>
temp_axis_dims
;
temp_axis_dims
.
reserve
(
static_cast
<
size_t
>
(
4
));
for
(
int
i
=
axis_size
-
4
;
i
<
axis_size
;
++
i
)
{
temp_axis_dims
.
push_back
(
axis
[
i
]
-
diff_dim
);
}
axis
.
resize
(
4
);
axis
.
clear
();
axis
.
insert
(
axis
.
begin
(),
temp_axis_dims
.
begin
(),
temp_axis_dims
.
end
());
}
}
auto
input
=
param
.
InputX
();
Tensor
*
input_tensor
=
new
Tensor
();
input_tensor
->
Resize
(
input
->
dims
());
input_tensor
->
mutable_data
<
float
>
();
framework
::
CLImageToTensor
(
input
,
input_tensor
,
context
,
commandQueue
,
kernel0
);
const
Dtype
*
input_ptr
=
input_tensor
->
data
<
Dtype
>
();
auto
output
=
param
.
Out
();
Tensor
*
output_tensor
=
new
Tensor
();
output_tensor
->
Resize
(
input
->
dims
());
output_tensor
->
mutable_data
<
float
>
();
Dtype
*
output_ptr
=
output_tensor
->
mutable_data
<
Dtype
>
();
// input and output's shape dimension must >= 2 && <= 6.
const
framework
::
DDim
&
in_dim
=
input
->
dims
();
const
framework
::
DDim
&
out_dim
=
output
->
dims
();
size_t
offset
=
1
;
for
(
int
i
=
2
;
i
<
axis
.
size
();
++
i
)
{
offset
*=
in_dim
[
i
];
}
#pragma omp parallel for collapse(2)
for
(
int
c1
=
0
;
c1
<
out_dim
[
0
];
++
c1
)
{
for
(
int
c2
=
0
;
c2
<
out_dim
[
1
];
++
c2
)
{
size_t
out_offset
=
(
c1
*
out_dim
[
1
]
+
c2
)
*
offset
;
size_t
in_offset
=
(
c2
*
in_dim
[
1
]
+
c1
)
*
offset
;
memcpy
(
output_ptr
+
out_offset
,
input_ptr
+
in_offset
,
offset
*
sizeof
(
Dtype
));
}
}
output
->
InitEmptyImage
(
context
,
commandQueue
,
output_tensor
->
dims
());
framework
::
TensorToCLImage
(
output_tensor
,
output
,
context
,
commandQueue
,
kernel1
);
delete
(
input_tensor
);
delete
(
output_tensor
);
}
template
<
>
void
Transpose2Kernel
<
GPU_CL
,
float
>::
Compute
(
const
Transpose2Param
<
GPU_CL
>
&
param
)
{
auto
kernel0
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel1
=
this
->
cl_helper_
.
KernelAt
(
1
);
const
std
::
vector
<
int
>
&
axis
=
param
.
Axis
();
bool
shuffle_channel
=
IsShuffleChannel
(
axis
);
if
(
shuffle_channel
)
{
ShuffleChannelCompute
<
float
>
(
param
,
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
(),
kernel0
,
kernel1
);
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
"axis not support"
);
}
}
template
class
Transpose2Kernel
<
GPU_CL
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/op_param.h
浏览文件 @
82267790
...
...
@@ -1362,7 +1362,7 @@ class Transpose2Param : public OpParam {
axis_
=
GetAttr
<
vector
<
int
>>
(
"axis"
,
attrs
);
}
const
GType
*
InputX
()
const
{
return
input_x_
;
}
GType
*
InputX
()
const
{
return
input_x_
;
}
GType
*
Out
()
const
{
return
out_
;
}
...
...
@@ -1510,7 +1510,7 @@ class Reshape2Param : public OpParam {
}
}
const
GType
*
InputX
()
const
{
return
input_x_
;
}
GType
*
InputX
()
const
{
return
input_x_
;
}
const
GType
*
InputShape
()
const
{
return
input_shape_
;
}
...
...
@@ -2807,7 +2807,7 @@ class SplitParam : public OpParam {
// out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
// }
}
const
GType
*
InputX
()
const
{
return
input_x_
;
}
GType
*
InputX
()
const
{
return
input_x_
;
}
std
::
vector
<
GType
*>
Outs
()
const
{
return
outs_
;
}
int
Axis
()
const
{
return
axis
;
}
int
Num
()
const
{
return
num
;
}
...
...
src/operators/reshape2_op.cpp
浏览文件 @
82267790
...
...
@@ -24,8 +24,52 @@ template <typename Dtype, typename T>
void
Reshape2Op
<
Dtype
,
T
>::
InferShape
()
const
{
auto
&
shape
=
this
->
param_
.
Shape
();
auto
input_x_dims
=
this
->
param_
.
InputX
()
->
dims
();
#ifdef PADDLE_MOBILE_CL
auto
input_dim_size
=
input_x_dims
.
size
();
bool
shouldResize
=
true
;
if
(
input_dim_size
>
4
)
{
for
(
int
i
=
0
;
i
<
input_dim_size
-
4
;
++
i
)
{
if
(
input_x_dims
[
i
]
!=
0
&&
input_x_dims
[
i
]
!=
1
)
{
shouldResize
=
false
;
break
;
}
}
if
(
shouldResize
)
{
std
::
vector
<
int64_t
>
temp_intput_dims
;
temp_intput_dims
.
reserve
(
static_cast
<
size_t
>
(
4
));
for
(
int
i
=
input_dim_size
-
4
;
i
<
input_dim_size
;
++
i
)
{
temp_intput_dims
.
push_back
(
input_x_dims
[
i
]);
}
framework
::
DDim
temp_ddim
=
framework
::
make_ddim
(
temp_intput_dims
);
this
->
param_
.
InputX
()
->
Resize
(
temp_ddim
);
input_x_dims
=
this
->
param_
.
InputX
()
->
dims
();
}
}
#endif
auto
out_dims
=
ValidateShape
(
shape
,
input_x_dims
);
this
->
param_
.
Out
()
->
Resize
(
out_dims
);
#ifdef PADDLE_MOBILE_CL
input_x_dims
=
this
->
param_
.
InputX
()
->
dims
();
shouldResize
=
true
;
if
(
out_dims
.
size
()
>
4
)
{
for
(
int
i
=
0
;
i
<
out_dims
.
size
()
-
4
;
++
i
)
{
if
(
out_dims
[
i
]
!=
0
&&
out_dims
[
i
]
!=
1
)
{
shouldResize
=
false
;
break
;
}
}
if
(
shouldResize
)
{
std
::
vector
<
int64_t
>
temp_output_dims
;
temp_output_dims
.
reserve
(
static_cast
<
size_t
>
(
4
));
for
(
int
i
=
out_dims
.
size
()
-
4
;
i
<
out_dims
.
size
();
++
i
)
{
temp_output_dims
.
push_back
(
out_dims
[
i
]);
}
framework
::
DDim
temp_ddim
=
framework
::
make_ddim
(
temp_output_dims
);
this
->
param_
.
Out
()
->
Resize
(
temp_ddim
);
}
}
#endif
std
::
vector
<
int64_t
>
xshape_dims
(
input_x_dims
.
size
()
+
1
,
0
);
for
(
int
i
=
0
;
i
<
input_x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
input_x_dims
[
i
];
...
...
@@ -40,6 +84,9 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
reshape2
,
ops
::
Reshape2Op
);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL
(
reshape2
,
ops
::
Reshape2Op
);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA
(
reshape2
,
ops
::
Reshape2Op
);
#endif
...
...
src/operators/split_op.cpp
浏览文件 @
82267790
...
...
@@ -86,5 +86,8 @@ REGISTER_OPERATOR_CPU(split, ops::SplitOp);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA
(
split
,
ops
::
SplitOp
);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL
(
split
,
ops
::
SplitOp
);
#endif
#endif // SPLIT_OP
src/operators/transpose2_op.cpp
浏览文件 @
82267790
...
...
@@ -29,6 +29,55 @@ void Transpose2Op<Dtype, T>::InferShape() const {
size_t
x_dims_size
=
input_x_dims
.
size
();
size_t
axis_size
=
axis
.
size
();
#ifdef PADDLE_MOBILE_CL
bool
shouldResize
=
true
;
int
diff_dim
=
0
;
if
(
axis_size
>
4
)
{
for
(
int
i
=
0
;
i
<
axis_size
-
4
;
++
i
)
{
if
(
axis
[
i
]
!=
i
)
{
shouldResize
=
false
;
break
;
}
else
{
diff_dim
++
;
}
}
if
(
shouldResize
)
{
std
::
vector
<
int
>
temp_axis_dims
;
temp_axis_dims
.
reserve
(
static_cast
<
size_t
>
(
4
));
for
(
int
i
=
axis_size
-
4
;
i
<
axis_size
;
++
i
)
{
temp_axis_dims
.
push_back
(
axis
[
i
]
-
diff_dim
);
}
axis
.
resize
(
4
);
axis
.
clear
();
axis
.
insert
(
axis
.
begin
(),
temp_axis_dims
.
begin
(),
temp_axis_dims
.
end
());
}
}
auto
input_dim_size
=
input_x_dims
.
size
();
shouldResize
=
true
;
if
(
input_dim_size
>
4
)
{
for
(
int
i
=
0
;
i
<
input_dim_size
-
4
;
++
i
)
{
if
(
input_x_dims
[
i
]
!=
0
&&
input_x_dims
[
i
]
!=
1
)
{
shouldResize
=
false
;
break
;
}
}
if
(
shouldResize
)
{
std
::
vector
<
int64_t
>
temp_intput_dims
;
temp_intput_dims
.
reserve
(
static_cast
<
size_t
>
(
4
));
for
(
int
i
=
input_dim_size
-
4
;
i
<
input_dim_size
;
++
i
)
{
temp_intput_dims
.
push_back
(
input_x_dims
[
i
]);
}
framework
::
DDim
temp_ddim
=
framework
::
make_ddim
(
temp_intput_dims
);
this
->
param_
.
InputX
()
->
Resize
(
temp_ddim
);
}
}
axis_size
=
axis
.
size
();
input_x_dims
=
this
->
param_
.
InputX
()
->
dims
();
x_dims_size
=
input_x_dims
.
size
();
#endif
PADDLE_MOBILE_ENFORCE
((
x_dims_size
==
axis_size
),
"input_dims must "
"be equal to the axis_size. "
)
...
...
@@ -63,5 +112,7 @@ REGISTER_OPERATOR_CPU(transpose2, ops::Transpose2Op);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA
(
transpose2
,
ops
::
Transpose2Op
);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL
(
transpose2
,
ops
::
Transpose2Op
);
#endif
#endif // TRANSPOSE_OP
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录