Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
813123f5
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
813123f5
编写于
3月 13, 2020
作者:
J
Jiaying Zhao
提交者:
GitHub
3月 13, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Lite][OpenCL]Add conv2d_3x3_opt_kernel. test=develop (#3170)
上级
c1bfa65c
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
364 addition
and
2 deletion
+364
-2
lite/backends/opencl/cl_kernel/image/conv2d_3x3_opt_kernel.cl
.../backends/opencl/cl_kernel/image/conv2d_3x3_opt_kernel.cl
+217
-0
lite/kernels/opencl/conv_image_compute.cc
lite/kernels/opencl/conv_image_compute.cc
+146
-2
lite/kernels/opencl/conv_image_compute.h
lite/kernels/opencl/conv_image_compute.h
+1
-0
未找到文件。
lite/backends/opencl/cl_kernel/image/conv2d_3x3_opt_kernel.cl
0 → 100644
浏览文件 @
813123f5
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
<cl_common.h>
__kernel
void
conv2d_3x3
(
__private
const
int
item_ch,
__private
const
int
item_w,
__private
const
int
item_h,
__read_only
image2d_t
input_image,
__read_only
image2d_t
filter_image,
#
if
defined
(
BIASE_CH
)
|
| defined(BIASE_ELE)
__read_only image2d_t bias,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int pad,
__private const int dilation,
__private const int in_ch,
__private const int in_w,
__private const int in_h,
__private const int out_w,
__private const int out_h) {
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
| CLK_FILTER_NEAREST;
// item_id
const int item_ch_id = get_global_id(0);
const int item_w_id = get_global_id(1);
const int item_h_id = get_global_id(2);
// out_width_id_per_blk and out_batch_id
int out_batch_id = item_h_id / in_h;
int out_w_base_id = item_ch_id * out_w;
int out_w_id0 = item_w_id;
int out_w_id1 = out_w_id0 + item_w;
int out_w_id2 = out_w_id1 + item_w;
int out_w_id3 = out_w_id2 + item_w;
int out_w_id4 = out_w_id3 + item_w;
// in_width_id_per_blk and in_height_id_per_batch
int in_h_id = (item_h_id % out_h) * stride - pad;
int in_w_id0 = item_w_id * stride - pad;
int in_w_id1 = in_w_id0 + item_w * stride;
int in_w_id2 = in_w_id1 + item_w * stride;
int in_w_id3 = in_w_id2 + item_w * stride;
int in_w_id4 = in_w_id3 + item_w * stride;
#ifdef BIASE_CH
CL_DTYPE4 output[5];
output[0] = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, (int2)(item_ch_id, 0));
output[1] = output[0];
output[2] = output[0];
output[3] = output[0];
output[4] = output[0];
#elif defined(BIASE_ELE)
CL_DTYPE4 output[5];
output[0] =
READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, (int2)(out_w_base_id + out_w_id0, item_h_id));
if (out_w_id1 < out_w) {
output[1] = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler,
(int2)(out_w_base_id + out_w_id1, item_h_id));
}
if (out_w_id2 < out_w) {
output[2] = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler,
(int2)(out_w_base_id + out_w_id2, item_h_id));
}
if (out_w_id3 < out_w) {
output[3] = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler,
(int2)(out_w_base_id + out_w_id3, item_h_id));
}
if (out_w_id4 < out_w) {
output[4] = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler,
(int2)(out_w_base_id + out_w_id4, item_h_id));
}
#else
CL_DTYPE4 output[5] = {0.0f};
#endif
CL_DTYPE4 filter[4] = {0.0f};
CL_DTYPE4 filter_trans[4] = {0.0f};
CL_DTYPE4 input[5] = {0.0f};
int filter_h_val0 = item_ch_id * 4 * 3;
int filter_h_val1 = filter_h_val0 + 3;
int filter_h_val2 = filter_h_val1 + 3;
int filter_h_val3 = filter_h_val2 + 3;
for (int ch = 0; ch < (in_ch + 3) / 4; ch++) {
int ch_surplus = (ch + 1) * 4 - in_ch > 0 ? (ch + 1) * 4 - in_ch : 0;
const int in_w_base_id = mul24(ch, in_w);
int filter_w_val = ch * 3;
for (int h = 0; h < 3; h++) {
int in_h_val = select(out_batch_id * in_h + in_h_id + h, -1,
(out_batch_id * in_h + in_h_id + h < 0 ||
out_batch_id * in_h + in_h_id + h >= in_h));
for (int w = 0; w < 3; w++) {
int in_w_val0 = select(in_w_base_id + in_w_id0 + w, -1,
(in_w_id0 + w < 0 || in_w_id0 + w >= in_w));
int in_w_val1 = select(in_w_base_id + in_w_id1 + w, -1,
(in_w_id1 + w < 0 || in_w_id1 + w >= in_w));
int in_w_val2 = select(in_w_base_id + in_w_id2 + w, -1,
(in_w_id2 + w < 0 || in_w_id2 + w >= in_w));
int in_w_val3 = select(in_w_base_id + in_w_id3 + w, -1,
(in_w_id3 + w < 0 || in_w_id3 + w >= in_w));
int in_w_val4 = select(in_w_base_id + in_w_id4 + w, -1,
(in_w_id4 + w < 0 |
|
in_w_id4
+
w
>=
in_w
)
)
;
filter[0]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
filter_image,
sampler,
(
int2
)(
filter_w_val
+
w,
filter_h_val0
+
h
))
; // in_ch:0-3,out_ch:0
filter[1]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
filter_image,
sampler,
(
int2
)(
filter_w_val
+
w,
filter_h_val1
+
h
))
; // in_ch:0-3,out_ch:1
filter[2]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
filter_image,
sampler,
(
int2
)(
filter_w_val
+
w,
filter_h_val2
+
h
))
; // in_ch:0-3,out_ch:2
filter[3]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
filter_image,
sampler,
(
int2
)(
filter_w_val
+
w,
filter_h_val3
+
h
))
; // in_ch:0-3,out_ch:3
filter_trans[0]
=
(
CL_DTYPE4
)(
filter[0].x,
filter[1].x,
filter[2].x,
filter[3].x
)
; // in_ch:0,out_ch:0-3
filter_trans[1]
=
(
CL_DTYPE4
)(
filter[0].y,
filter[1].y,
filter[2].y,
filter[3].y
)
; // in_ch:1,out_ch:0-3
filter_trans[2]
=
(
CL_DTYPE4
)(
filter[0].z,
filter[1].z,
filter[2].z,
filter[3].z
)
; // in_ch:2,out_ch:0-3
filter_trans[3]
=
(
CL_DTYPE4
)(
filter[0].w,
filter[1].w,
filter[2].w,
filter[3].w
)
; // in_ch:3,out_ch:0-3
input[0]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input_image,
sampler,
(
int2
)(
in_w_val0,
in_h_val
))
;
input[1]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input_image,
sampler,
(
int2
)(
in_w_val1,
in_h_val
))
;
input[2]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input_image,
sampler,
(
int2
)(
in_w_val2,
in_h_val
))
;
input[3]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input_image,
sampler,
(
int2
)(
in_w_val3,
in_h_val
))
;
input[4]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input_image,
sampler,
(
int2
)(
in_w_val4,
in_h_val
))
;
output[0]
=
mad
(
input[0].x,
filter_trans[0],
output[0]
)
;
output[1]
=
mad
(
input[1].x,
filter_trans[0],
output[1]
)
;
output[2]
=
mad
(
input[2].x,
filter_trans[0],
output[2]
)
;
output[3]
=
mad
(
input[3].x,
filter_trans[0],
output[3]
)
;
output[4]
=
mad
(
input[4].x,
filter_trans[0],
output[4]
)
;
if
(
ch_surplus
<
3
)
{
output[0]
=
mad
(
input[0].y,
filter_trans[1],
output[0]
)
;
output[1]
=
mad
(
input[1].y,
filter_trans[1],
output[1]
)
;
output[2]
=
mad
(
input[2].y,
filter_trans[1],
output[2]
)
;
output[3]
=
mad
(
input[3].y,
filter_trans[1],
output[3]
)
;
output[4]
=
mad
(
input[4].y,
filter_trans[1],
output[4]
)
;
}
if
(
ch_surplus
<
2
)
{
output[0]
=
mad
(
input[0].z,
filter_trans[2],
output[0]
)
;
output[1]
=
mad
(
input[1].z,
filter_trans[2],
output[1]
)
;
output[2]
=
mad
(
input[2].z,
filter_trans[2],
output[2]
)
;
output[3]
=
mad
(
input[3].z,
filter_trans[2],
output[3]
)
;
output[4]
=
mad
(
input[4].z,
filter_trans[2],
output[4]
)
;
}
if
(
ch_surplus
<
1
)
{
output[0]
=
mad
(
input[0].w,
filter_trans[3],
output[0]
)
;
output[1]
=
mad
(
input[1].w,
filter_trans[3],
output[1]
)
;
output[2]
=
mad
(
input[2].w,
filter_trans[3],
output[2]
)
;
output[3]
=
mad
(
input[3].w,
filter_trans[3],
output[3]
)
;
output[4]
=
mad
(
input[4].w,
filter_trans[3],
output[4]
)
;
}
}
}
}
#
ifdef
RELU
output[0]
=
activation_type4
(
output[0]
)
;
output[1]
=
activation_type4
(
output[1]
)
;
output[2]
=
activation_type4
(
output[2]
)
;
output[3]
=
activation_type4
(
output[3]
)
;
output[4]
=
activation_type4
(
output[4]
)
;
#
endif
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
(
int2
)(
out_w_base_id
+
out_w_id0,
item_h_id
)
,
output[0]
)
;
if
(
out_w_id1
<
out_w
)
{
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
(
int2
)(
out_w_base_id
+
out_w_id1,
item_h_id
)
,
output[1]
)
;
}
if
(
out_w_id2
<
out_w
)
{
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
(
int2
)(
out_w_base_id
+
out_w_id2,
item_h_id
)
,
output[2]
)
;
}
if
(
out_w_id3
<
out_w
)
{
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
(
int2
)(
out_w_base_id
+
out_w_id3,
item_h_id
)
,
output[3]
)
;
}
if
(
out_w_id4
<
out_w
)
{
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
(
int2
)(
out_w_base_id
+
out_w_id4,
item_h_id
)
,
output[4]
)
;
}
}
lite/kernels/opencl/conv_image_compute.cc
浏览文件 @
813123f5
...
...
@@ -143,7 +143,7 @@ void ConvImageCompute::PrepareForRun() {
}
else
if
(
kernel_h
==
3
&&
kernel_h
==
3
)
{
// conv2d_3x3
kernel_func_names_
.
push_back
(
"conv2d_3x3"
);
kernel_func_paths_
.
push_back
(
"image/conv2d_3x3_kernel.cl"
);
kernel_func_paths_
.
push_back
(
"image/conv2d_3x3_
opt_
kernel.cl"
);
CLImageConverterFolder
converter
;
const
DDim
&
filter_image_dims
=
converter
.
InitImageDimInfoWith
(
filter_dims
);
...
...
@@ -153,7 +153,7 @@ void ConvImageCompute::PrepareForRun() {
filter_gpu_image_
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
filter_image_dims
[
0
],
filter_image_dims
[
1
],
filter_image_v
.
data
());
impl_
=
&
ConvImageCompute
::
Conv2d3x3
;
impl_
=
&
ConvImageCompute
::
Conv2d3x3
opt
;
}
else
if
(
kernel_h
==
5
&&
kernel_w
==
5
)
{
// conv2d_5x5
kernel_func_names_
.
push_back
(
"conv2d_5x5"
);
...
...
@@ -554,6 +554,150 @@ void ConvImageCompute::Conv2d3x3() {
context
.
cl_wait_list
()
->
emplace
(
out_image
,
event_
);
}
void
ConvImageCompute
::
Conv2d3x3opt
()
{
const
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
input_dims
=
param
.
x
->
dims
();
auto
paddings
=
*
param
.
paddings
;
auto
strides
=
param
.
strides
;
auto
dilations
=
*
param
.
dilations
;
auto
*
input_image
=
param
.
x
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
filter_image
=
filter_gpu_image_
.
data
<
half_t
,
cl
::
Image2D
>
();
auto
filter_dims
=
param
.
filter
->
dims
();
auto
output_dims
=
param
.
output
->
dims
();
int
input_width
=
input_dims
[
3
];
int
input_height
=
input_dims
[
2
];
int
input_channel
=
input_dims
[
1
];
int
output_width
=
output_dims
[
3
];
int
output_height
=
output_dims
[
2
];
int
output_channel
=
output_dims
[
1
];
auto
out_image_shape
=
InitImageDimInfoWith
(
output_dims
);
auto
*
out_image
=
param
.
output
->
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_image_shape
[
"width"
],
out_image_shape
[
"height"
]);
const
bool
has_bias
=
param
.
bias
!=
nullptr
;
const
bool
is_element_wise_bias
=
has_bias
&&
param
.
output
->
dims
()
==
param
.
bias
->
dims
();
const
std
::
vector
<
size_t
>&
default_work_size
=
DefaultWorkSize
(
output_dims
,
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
static_cast
<
int64_t
>
(
out_image_shape
[
"width"
]),
static_cast
<
int64_t
>
(
out_image_shape
[
"height"
])}));
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
int
w_blk_size
=
5
;
int
w_blk
=
(
w
+
w_blk_size
-
1
)
/
w_blk_size
;
// default_work_size[1] = w_blk;
int
h_blk_size
=
1
;
int
h_blk
=
(
nh
+
h_blk_size
-
1
)
/
h_blk_size
;
// default_work_size[2] = h_blk;
VLOG
(
4
)
<<
"============ conv2d params ============"
;
// VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
// << input_image_shape["height"];
// VLOG(4) << "input_image: " << input_image;
VLOG
(
4
)
<<
"input_dims: "
<<
input_dims
;
VLOG
(
4
)
<<
"filter_dims: "
<<
filter_dims
;
// VLOG(4) << "filter_image: " << filter_image;
VLOG
(
4
)
<<
"output_dims: "
<<
output_dims
;
VLOG
(
4
)
<<
"out_image_shape: "
<<
out_image_shape
[
"width"
]
<<
", "
<<
out_image_shape
[
"height"
];
VLOG
(
4
)
<<
"paddings: "
<<
paddings
[
0
]
<<
","
<<
paddings
[
1
];
VLOG
(
4
)
<<
"has bias: "
<<
has_bias
;
VLOG
(
4
)
<<
"is_element_wise_bias : "
<<
is_element_wise_bias
;
VLOG
(
4
)
<<
"strides: "
<<
strides
[
0
]
<<
","
<<
strides
[
1
];
VLOG
(
4
)
<<
"dilations.size : "
<<
dilations
.
size
();
VLOG
(
4
)
<<
"dilations: "
<<
dilations
[
0
]
<<
", "
<<
dilations
[
1
];
VLOG
(
4
)
<<
"default work size{c_block, w, nh}: "
<<
"{"
<<
c_block
<<
", "
<<
w
<<
", "
<<
nh
<<
""
<<
"}"
;
CHECK_GE
(
dilations
.
size
(),
2
);
CHECK
(
dilations
[
0
]
==
dilations
[
1
]);
CHECK_GE
(
input_dims
.
size
(),
4
);
CHECK_GE
(
paddings
.
size
(),
2
);
CHECK
(
paddings
[
0
]
==
paddings
[
1
]);
CHECK_GE
(
strides
.
size
(),
2
);
CHECK
(
strides
[
0
]
==
strides
[
1
]);
const
cl
::
Image2D
*
bias_image
=
nullptr
;
if
(
has_bias
)
{
bias_image
=
bias_gpu_image_
.
data
<
half_t
,
cl
::
Image2D
>
();
}
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_names_
[
0
]
<<
build_options_
[
0
];
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
VLOG
(
4
)
<<
"kernel_key: "
<<
kernel_key
.
str
();
VLOG
(
4
)
<<
"kernel ready ... "
<<
kernel_key
.
str
();
cl_int
status
;
int
arg_idx
=
0
;
status
=
kernel
.
setArg
(
arg_idx
,
c_block
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
w_blk
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
h_blk
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
input_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
filter_image
);
CL_CHECK_FATAL
(
status
);
if
(
has_bias
)
{
VLOG
(
4
)
<<
"set bias_image: "
;
status
=
kernel
.
setArg
(
++
arg_idx
,
*
bias_image
);
CL_CHECK_FATAL
(
status
);
}
status
=
kernel
.
setArg
(
++
arg_idx
,
*
out_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
strides
[
0
]);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
paddings
[
0
]);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
dilations
[
0
]);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
input_channel
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
input_width
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
input_height
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
output_width
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
output_height
);
CL_CHECK_FATAL
(
status
);
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
size_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
size_t
>
(
w_blk
),
static_cast
<
size_t
>
(
h_blk
)};
// VLOG(4) << "out_image: " << out_image;
VLOG
(
4
)
<<
"global_work_size[3D]: {"
<<
global_work_size
[
0
]
<<
","
<<
global_work_size
[
1
]
<<
","
<<
global_work_size
[
2
]
<<
"}"
;
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_image
,
event_
);
}
void
ConvImageCompute
::
Conv2d5x5
()
{
const
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
input_dims
=
param
.
x
->
dims
();
...
...
lite/kernels/opencl/conv_image_compute.h
浏览文件 @
813123f5
...
...
@@ -43,6 +43,7 @@ class ConvImageCompute : public KernelLite<TARGET(kOpenCL),
private:
void
Conv2d1x1
();
void
Conv2d3x3
();
void
Conv2d3x3opt
();
void
Conv2d5x5
();
void
Conv2d7x7
();
void
DepthwiseConv2d3x3s1
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录