Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
7e6c912d
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7e6c912d
编写于
6月 21, 2018
作者:
D
dolphin8
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
multithread executor
上级
5401bcdf
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
469 addition
and
38 deletion
+469
-38
src/common/depCore.h
src/common/depCore.h
+68
-0
src/common/threadpool.h
src/common/threadpool.h
+124
-0
src/io/io.cpp
src/io/io.cpp
+122
-37
src/io/io.h
src/io/io.h
+16
-1
tools/profile_show.sh
tools/profile_show.sh
+139
-0
未找到文件。
src/common/depCore.h
0 → 100644
浏览文件 @
7e6c912d
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#include <string>
#include <unordered_map>
#include <vector>
#include "framework/operator.h"
namespace
paddle_mobile
{
class
depCore
{
public:
template
<
typename
Dtype
>
void
analysisDep
(
const
std
::
vector
<
std
::
shared_ptr
<
framework
::
OperatorBase
<
Dtype
>>>&
ops
)
{
std
::
unordered_map
<
std
::
string
,
int
>
vars
;
size_t
nop
=
ops
.
size
();
for
(
size_t
i
=
0
;
i
<
nop
;
i
++
)
{
const
auto
&
op
=
ops
[
i
];
for
(
const
auto
&
kv
:
op
->
Outputs
())
{
for
(
const
auto
&
v
:
kv
.
second
)
{
vars
[
v
]
=
i
;
}
}
}
deps
.
resize
(
nop
);
next
.
resize
(
nop
);
for
(
size_t
i
=
0
;
i
<
nop
;
i
++
)
{
const
auto
&
op
=
ops
[
i
];
for
(
const
auto
&
kv
:
op
->
Inputs
())
{
for
(
const
auto
&
v
:
kv
.
second
)
{
if
(
vars
.
find
(
v
)
==
vars
.
end
())
{
continue
;
}
int
di
=
vars
[
v
];
if
(
di
==
i
)
{
continue
;
}
if
(
std
::
find
(
deps
[
i
].
begin
(),
deps
[
i
].
end
(),
di
)
!=
deps
[
i
].
end
())
{
continue
;
}
deps
[
i
].
push_back
(
di
);
next
[
di
].
push_back
(
i
);
}
}
}
}
const
std
::
vector
<
int
>&
getNext
(
int
i
)
{
return
next
[
i
];
}
const
std
::
vector
<
int
>&
getDeps
(
int
i
)
{
return
deps
[
i
];
}
std
::
vector
<
std
::
vector
<
int
>>
deps
;
std
::
vector
<
std
::
vector
<
int
>>
next
;
};
}
// namespace paddle_mobile
#endif
src/common/threadpool.h
0 → 100644
浏览文件 @
7e6c912d
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <condition_variable>
#include <functional>
#include <future>
#include <memory>
#include <mutex>
#include <queue>
#include <stdexcept>
#include <thread>
#include <vector>
class
ThreadPool
{
public:
static
ThreadPool
&
getThreadPool
();
static
int
getThreadPoolThreadId
();
explicit
ThreadPool
(
size_t
);
template
<
class
F
,
class
...
Args
>
auto
enqueue
(
F
&&
f
,
Args
&&
...
args
)
->
std
::
future
<
typename
std
::
result_of
<
F
(
Args
...)
>::
type
>
;
~
ThreadPool
();
int
getTid
(
const
std
::
thread
::
id
&
id
)
{
for
(
int
i
=
0
;
i
<
workers
.
size
();
i
++
)
{
if
(
workers
[
i
].
get_id
()
==
id
)
{
return
i
;
}
}
return
-
1
;
}
private:
// need to keep track of threads so we can join them
std
::
vector
<
std
::
thread
>
workers
;
// the task queue
std
::
queue
<
std
::
function
<
void
()
>>
tasks
;
// synchronization
std
::
mutex
queue_mutex
;
std
::
condition_variable
condition
;
bool
stop
;
};
// the constructor just launches some amount of workers
inline
ThreadPool
::
ThreadPool
(
size_t
threads
)
:
stop
(
false
)
{
for
(
size_t
i
=
0
;
i
<
threads
;
++
i
)
workers
.
emplace_back
([
this
]
{
for
(;;)
{
std
::
function
<
void
()
>
task
;
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
this
->
queue_mutex
);
this
->
condition
.
wait
(
lock
,
[
this
]
{
return
this
->
stop
||
!
this
->
tasks
.
empty
();
});
// for (;;) {
// if (this->stop || !this->tasks.empty()) {
// break;
// }
// lock.unlock();
// lock.lock();
// }
if
(
this
->
stop
&&
this
->
tasks
.
empty
())
return
;
task
=
std
::
move
(
this
->
tasks
.
front
());
this
->
tasks
.
pop
();
}
task
();
}
});
}
// add new work item to the pool
template
<
class
F
,
class
...
Args
>
auto
ThreadPool
::
enqueue
(
F
&&
f
,
Args
&&
...
args
)
->
std
::
future
<
typename
std
::
result_of
<
F
(
Args
...)
>::
type
>
{
using
return_type
=
typename
std
::
result_of
<
F
(
Args
...)
>::
type
;
auto
task
=
std
::
make_shared
<
std
::
packaged_task
<
return_type
()
>>
(
std
::
bind
(
std
::
forward
<
F
>
(
f
),
std
::
forward
<
Args
>
(
args
)...));
std
::
future
<
return_type
>
res
=
task
->
get_future
();
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
queue_mutex
);
// don't allow enqueueing after stopping the pool
// if(stop)
// throw std::runtime_error("enqueue on stopped ThreadPool");
tasks
.
emplace
([
task
]()
{
(
*
task
)();
});
}
condition
.
notify_one
();
return
res
;
}
// the destructor joins all threads
inline
ThreadPool
::~
ThreadPool
()
{
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
queue_mutex
);
stop
=
true
;
}
condition
.
notify_all
();
for
(
std
::
thread
&
worker
:
workers
)
worker
.
join
();
}
ThreadPool
&
ThreadPool
::
getThreadPool
()
{
static
ThreadPool
threadPool
(
3
);
return
threadPool
;
}
int
ThreadPool
::
getThreadPoolThreadId
()
{
return
getThreadPool
().
getTid
(
std
::
this_thread
::
get_id
());
}
src/io/io.cpp
浏览文件 @
7e6c912d
...
...
@@ -12,15 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "io.h"
#include "io
/io
.h"
#include <vector>
#define PADDLE_MOBILE_PROFILE
#ifdef PADDLE_MOBILE_PROFILE
#include <algorithm>
#include <ctime>
#include <unordered_map>
#endif
#include "common/enforce.h"
#include "common/log.h"
#include "framework/framework.pb-c.h"
...
...
@@ -31,6 +24,12 @@ limitations under the License. */
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#include <algorithm>
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
namespace
paddle_mobile
{
using
framework
::
Variable
;
...
...
@@ -142,8 +141,6 @@ const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
}
}
// originProgramDesc->Description("program: ");
if
(
optimize
)
{
framework
::
ProgramOptimize
program_optimize
;
program
.
optimizeProgram
=
...
...
@@ -164,7 +161,6 @@ template class Loader<FPGA, Precision::FP32>;
template
class
Loader
<
GPU_MALI
,
Precision
::
FP32
>;
#pragma mark - executor
template
<
typename
Dtype
,
Precision
P
>
Executor
<
Dtype
,
P
>::
Executor
(
const
framework
::
Program
<
Dtype
>
p
,
int
batch_size
,
bool
use_optimize
)
...
...
@@ -178,6 +174,9 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
variable_ptr
[
0
].
SetValue
<
int
>
(
batch_size
);
const
std
::
vector
<
std
::
shared_ptr
<
framework
::
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
#ifdef PADDLE_EXECUTOR_MULTITHREAD
depManager
.
resize
(
blocks
.
size
());
#endif
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
...
...
@@ -188,8 +187,10 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
op_base
->
InferShape
();
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
op_base
);
#ifdef PADDLE_EXECUTOR_MULTITHREAD
depManager
[
i
].
analysisDep
(
ops_of_block_
[
*
block_desc
.
get
()]);
#endif
}
}
if
(
program_
.
is_commbine
)
{
...
...
@@ -350,48 +351,132 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
feed_tensor
->
ShareDataWith
(
t
);
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
0
);
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
#ifdef PADDLE_MOBILE_PROFILE
std
::
unordered_map
<
std
::
string
,
clock_t
>
_profile
;
std
::
vector
<
ProfInfo
>
profile
(
ops
.
size
())
;
#endif
for
(
int
j
=
0
;
j
<
ops_of_block_
[
*
to_predict_block
.
get
()].
size
();
++
j
)
{
auto
op
=
ops_of_block_
[
*
to_predict_block
.
get
()][
j
];
#ifdef PADDLE_EXECUTOR_MULTITHREAD
std
::
mutex
m
;
std
::
condition_variable
cv
;
std
::
queue
<
int
>
next
;
next
.
push
(
0
);
int
rsize
=
ops
.
size
();
std
::
vector
<
int
>
status
(
rsize
,
0
);
auto
&
threadPool
=
ThreadPool
::
getThreadPool
();
auto
&
dep
=
depManager
[
0
];
auto
finishF
=
[
&
ops
,
&
m
,
&
cv
,
&
next
,
&
status
,
&
rsize
,
&
dep
](
int
opi
)
{
std
::
lock_guard
<
std
::
mutex
>
lk
(
m
);
rsize
--
;
status
[
opi
]
=
2
;
for
(
int
i
:
dep
.
getNext
(
opi
))
{
bool
ok
=
true
;
for
(
int
j
:
dep
.
getDeps
(
i
))
{
if
(
status
[
j
]
!=
2
)
{
ok
=
false
;
break
;
}
}
if
(
ok
&&
(
status
[
i
]
==
0
))
{
next
.
push
(
i
);
}
}
cv
.
notify_one
();
};
for
(;;)
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
m
);
cv
.
wait
(
lk
,
[
&
next
,
&
rsize
]
{
return
rsize
==
0
||
!
next
.
empty
();
});
if
(
rsize
==
0
)
{
break
;
}
while
(
next
.
size
()
>
0
)
{
int
opi
=
next
.
front
();
next
.
pop
();
status
[
opi
]
=
1
;
threadPool
.
enqueue
([
opi
,
&
ops
,
&
finishF
,
&
profile
]
{
auto
&
op
=
ops
[
opi
];
#ifdef PADDLE_MOBILE_PROFILE
_profile
[
op
->
Type
()]
-=
clock
();
struct
timespec
ts
;
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
profile
[
opi
].
runBegin
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
profile
[
opi
].
tid
=
ThreadPool
::
getThreadPoolThreadId
();
#endif
op
->
Run
();
ops
[
opi
]
->
Run
();
#ifdef PADDLE_MOBILE_PROFILE
_profile
[
op
->
Type
()]
+=
clock
();
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
profile
[
opi
].
runEnd
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
#endif
finishF
(
opi
);
});
}
#ifdef PADDLE_MOBILE_PROFILE
{
std
::
cout
<<
"====================[ profile ]======================
\n
"
;
using
prof_t
=
std
::
pair
<
std
::
string
,
clock_t
>
;
std
::
vector
<
prof_t
>
_tprofile
(
_profile
.
begin
(),
_profile
.
end
());
clock_t
_ptotal
=
0
;
for
(
auto
const
&
p
:
_tprofile
)
{
_ptotal
+=
p
.
second
;
}
auto
compf
=
[](
const
prof_t
&
a
,
const
prof_t
&
b
)
{
return
a
.
second
>
b
.
second
;
};
std
::
sort
(
_tprofile
.
begin
(),
_tprofile
.
end
(),
compf
);
_tprofile
.
push_back
(
std
::
make_pair
(
"total"
,
_ptotal
));
for
(
auto
const
&
p
:
_tprofile
)
{
printf
(
"%-16s
\t
%-10.0f
\t
%-.4f
\n
"
,
p
.
first
.
c_str
(),
(
float
)
p
.
second
,
(
float
)
p
.
second
/
_ptotal
*
100.0
);
}
std
::
cout
<<
"====================[---------]======================
\n
"
;
#else
for
(
int
i
=
0
;
i
<
ops
.
size
();
i
++
)
{
#ifdef PADDLE_MOBILE_PROFILE
struct
timespec
ts
;
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
profile
[
i
].
runBegin
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
#endif
ops
[
i
]
->
Run
();
#ifdef PADDLE_MOBILE_PROFILE
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
profile
[
i
].
runEnd
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
#endif
}
#endif
auto
ops
=
ops_of_block_
[
*
to_predict_program_
->
Block
(
0
)];
auto
last_op
=
ops
.
rbegin
();
auto
output_map
=
(
*
last_op
)
->
Outputs
();
std
::
vector
<
std
::
string
>
out_keys
=
(
*
last_op
)
->
GetOutKeys
();
PADDLE_MOBILE_ENFORCE
(
out_keys
.
size
()
>
0
,
"the last op contains no output"
);
framework
::
LoDTensor
*
output_tensor
=
framework
::
GetVarValue
<
framework
::
LoDTensor
>
(
out_keys
[
0
],
output_map
,
*
(
program_
.
scope
));
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
// TODO expose profile info as an interface, user can get them to analysis
// the performance of their deepnet.
FILE
*
df
=
fopen
(
"net.dot"
,
"w"
);
fprintf
(
df
,
"digraph {
\n
"
);
for
(
int
i
=
0
;
i
<
ops
.
size
();
i
++
)
{
for
(
int
j
:
dep
.
getNext
(
i
))
{
fprintf
(
df
,
"op_%d -> op_%d
\n
"
,
i
,
j
);
}
}
for
(
int
i
=
0
;
i
<
ops
.
size
();
i
++
)
{
fprintf
(
df
,
"op_%d[label=
\"
%s (%d)
\"
]
\n
"
,
i
,
ops
[
i
]
->
Type
().
c_str
(),
i
);
}
fprintf
(
df
,
"}
\n
"
);
fclose
(
df
);
#endif
FILE
*
pf
=
fopen
(
"profile.out"
,
"w"
);
std
::
unordered_map
<
std
::
string
,
uint64_t
>
_tp
;
for
(
int
i
=
0
;
i
<
profile
.
size
();
i
++
)
{
const
auto
&
pInfo
=
profile
[
i
];
uint64_t
timeCost
=
pInfo
.
runEnd
-
pInfo
.
runBegin
;
_tp
[
ops
[
i
]
->
Type
()]
+=
timeCost
;
fprintf
(
pf
,
"%d
\t
%s
\t
%d
\t
%llu
\t
%llu
\t
%llu
\n
"
,
i
,
ops
[
i
]
->
Type
().
c_str
(),
pInfo
.
tid
,
pInfo
.
runBegin
,
pInfo
.
runEnd
,
timeCost
);
}
fclose
(
pf
);
printf
(
"====================[ profile ]======================
\n
"
);
using
prof_t
=
std
::
pair
<
std
::
string
,
uint64_t
>
;
std
::
vector
<
prof_t
>
_tv
(
_tp
.
begin
(),
_tp
.
end
());
uint64_t
_ptotal
=
0
;
for
(
auto
const
&
p
:
_tv
)
{
_ptotal
+=
p
.
second
;
}
auto
compf
=
[](
const
prof_t
&
a
,
const
prof_t
&
b
)
{
return
a
.
second
>
b
.
second
;
};
std
::
sort
(
_tv
.
begin
(),
_tv
.
end
(),
compf
);
_tv
.
push_back
(
std
::
make_pair
(
"total"
,
_ptotal
));
for
(
auto
const
&
p
:
_tv
)
{
printf
(
"%-16s
\t
%-10.0f
\t
%-2.4f
\n
"
,
p
.
first
.
c_str
(),
(
float
)
p
.
second
,
(
float
)
p
.
second
/
_ptotal
*
100.0
);
}
printf
(
"====================[---------]======================
\n
"
);
#endif
return
std
::
shared_ptr
<
framework
::
Tensor
>
(
output_tensor
);
}
template
<
typename
Dtype
,
Precision
P
>
...
...
src/io/io.h
浏览文件 @
7e6c912d
...
...
@@ -18,12 +18,17 @@ limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "common/types.h"
#include "framework/lod_tensor.h"
#include "framework/operator.h"
#include "framework/program/program.h"
#include "framework/tensor.h"
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#include <condition_variable>
#include <mutex>
#include <thread>
#include "common/depCore.h"
#endif
namespace
paddle_mobile
{
...
...
@@ -92,6 +97,16 @@ class Executor {
std
::
vector
<
std
::
shared_ptr
<
framework
::
OperatorBase
<
Dtype
>>>>
ops_of_block_
;
bool
use_optimize_
=
false
;
#ifdef PADDLE_EXECUTOR_MULTITHREAD
std
::
vector
<
depCore
>
depManager
;
#endif
#ifdef PADDLE_MOBILE_PROFILE
struct
ProfInfo
{
int
tid
=
0
;
uint64_t
runBegin
=
0UL
;
uint64_t
runEnd
=
0UL
;
};
#endif
};
}
// namespace paddle_mobile
tools/profile_show.sh
0 → 100644
浏览文件 @
7e6c912d
#!/usr/bin/env sh
cat
<<
EOF
<html>
<head>
<style>
html, body {
position: absolute;
width: 100%;
height: 100%;
margin: 0;
}
div.timeview {
width: 100%;
position: relative;
overflow: scroll;
}
ul {
position: absolute;
margin: 0;
list-style:none;
padding: 0;
margin: 0;
}
li {
height: 15px;
position: absolute;
background: blue;
}
li:nth-child(odd) {
background: blue;
}
li:nth-child(even) {
background: rebeccapurple;
}
ul.timeline {
z-index: -1;
}
ul.timeline li {
position: relative;
height: 15px;
width: 100%;
}
ul.timeline li:nth-child(odd) {
background: beige;
}
ul.timeline li:nth-child(even) {
background: antiquewhite;
}
</style>
</head>
<body>
<div class="timeview">
<ul>
EOF
min
=
$(
awk
'NR==1{min=$4} NR>1{if($4 < min) min=$4} END{print min}'
$1
)
max
=
$(
awk
'NR==1{max=$5} NR>1{if($5 > max) max=$5} END{print max}'
$1
)
sort
$1
-k1
,1n |
awk
-v
max
=
"
$max
"
-v
min
=
"
$min
"
'
BEGIN {
total = max - min
}
{
opid = $1
optype = $2
tid = $3
cb = $4
ce = $5
cl = $6
sum += $4 - $3
print "<li class=\"timeline\"" \
" data-opid=\"" opid "\"" \
" data-optype=\"" optype "\"" \
" data-tid=\"" tid "\"" \
" data-begin=\"" cb "\"" \
" data-end=\"" ce "\"" \
"></li>"
}
'
cat
<<
EOF
</ul>
</div>
<pre>
EOF
echo
"==================[ profile ]==================="
cat
$1
|
awk
'
NR>1{
optype = $2
sum += $5 - $4
count[$2] += $6
}
END {
for (t in count) {
msg = sprintf("%-16s\t%-10d\t%-.4f", t, count[t], count[t]*100 / sum);
print msg
}
}'
|
sort
-k2
,2nr
cat
$1
|
awk
'
NR>1{
sum += $5 - $4
}
END {
msg = sprintf("%-16s\t%-10d\t%-.4f", "total", sum, 100);
print msg
}'
cat
<<
EOF
</pre>
<script>
const min=
$min
;
const max=
$max
;
const px_per_nanosecond = 1/1000000;
const scale = px_per_nanosecond;
const li = document.querySelectorAll('li');
const thread = new Set();
for (let i = 0; i < li.length; i++) {
const prof = li[i].dataset;
li[i].style.width = (prof.end - prof.begin)*scale + 'px';
li[i].style.left = (prof.begin - min)*scale + 'px';
li[i].style.top = prof.tid * 15 + 'px';
thread.add(prof.tid);
}
const ul = document.createElement('ul');
ul.classList.add('timeline');
ul.style.width = (max - min)*scale + 'px';
thread.forEach(i => {
const l = document.createElement('li');
ul.appendChild(l);
});
const timeview = document.querySelector('.timeview');
timeview.appendChild(ul);
timeview.style.height = thread.size * 15 + 'px';
</script>
</body>
</html>
EOF
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录