Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
7dca8ab1
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7dca8ab1
编写于
7月 09, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
dw3x3s2v2 and dw3x3s2bnreluv2
上级
9ce3a516
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
479 addition
and
8 deletion
+479
-8
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+23
-3
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
...operators/kernel/central-arm-func/conv_add_bn_relu_func.h
+6
-3
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
...erators/kernel/central-arm-func/depthwise_conv_arm_func.h
+6
-2
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+439
-0
src/operators/math/depthwise_conv_3x3.h
src/operators/math/depthwise_conv_3x3.h
+5
-0
未找到文件。
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
7dca8ab1
...
...
@@ -124,9 +124,29 @@ void ConvAddCompute(const FusionConvAddParam ¶m) {
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
param
.
Bias
(),
param
.
Output
(),
true
);
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// Tensor in,out,filter;
// auto inptr = in.mutable_data<float>({1,2,10,10});
// auto filterptr = filter.mutable_data<float>({2,1,3,3});
// auto outputptr= out.mutable_data<float>({1,2,5,5});
// for(int i = 0; i < in.numel(); ++i)
// {
// inptr[i] = i;
// }
// for (int i = 0; i < filter.numel(); ++i)
// {
// filterptr[i] = i;
// }
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), param.Bias(), param.Output(),
// false);
// math::DepthwiseConv3x3(&in, param.Strides(), param.Paddings(),
// &filter, param.Bias(), &out, false);
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
*
param
.
Bias
(),
true
);
}
else
{
ConvAddBasic
(
param
);
}
...
...
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
浏览文件 @
7dca8ab1
...
...
@@ -138,9 +138,12 @@ void ConvAddBNReluCompute(const FusionConvAddBNReluParam ¶m) {
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
math
::
DepthwiseConvAddBNRelu3x3s2p1
(
param
.
Input
(),
param
.
Filter
(),
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
math
::
DepthwiseConvAddBNRelu3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
1
);
param
.
NewBias
(),
true
);
}
else
{
ConvAddBNReluBasic
(
param
);
}
...
...
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
浏览文件 @
7dca8ab1
...
...
@@ -37,8 +37,12 @@ void DepthwiseConvCompute(const ConvParam ¶m) {
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
&
Bias
,
param
.
Output
(),
false
);
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), &Bias, param.Output(), false);
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
Bias
,
false
);
}
else
{
ConvBasic
(
param
);
}
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
7dca8ab1
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "operators/math/depthwise_conv_3x3.h"
#include <arm_neon.h>
#include <vector>
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -1010,6 +1011,444 @@ void DepthwiseConvAddBNRelu3x3s2p1(const Tensor *input, const Tensor *filter,
output_data
+=
output_batch_stride
;
}
}
void
DepthwiseConv3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
bias
,
bool
if_bias
)
{
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
bias_data
=
bias
.
data
<
float
>
();
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
out_w
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
out_l
=
out_h
;
const
int
in_l
=
in_h
;
const
int
inhxw
=
in_h
*
in_w
;
const
int
outhxw
=
out_h
*
out_w
;
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
const
int
w_times
=
(
out_w
-
2
)
/
3
;
float32x4_t
vbias
=
vdupq_n_f32
(
0.0
);
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
],
input_buff_top
[
w_times
+
1
];
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
int
out2in_mid
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
auto
input_const
=
input_data_tmp
;
if
(
if_bias
)
{
vbias
=
vdupq_n_f32
(
bias_data
[
j
]);
}
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
float
w10
=
filter_data_tmp
[
3
];
float
w11
=
filter_data_tmp
[
4
];
float
w12
=
filter_data_tmp
[
5
];
float
w20
=
filter_data_tmp
[
6
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
int
h_mid
=
0
;
for
(;
h_mid
<
out_h
-
1
;
h_mid
++
)
{
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
if
(
h_mid
==
0
)
{
elewise_res1
=
zero
;
elewise_res0
=
zero
;
elewise_res2
=
zero
;
}
else
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
}
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vaddq_f32
(
res3
,
vbias
);
vst1q_f32
(
output_row_ptr
,
res3
);
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
}
clock
();
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
if
(
!
if_pad
)
{
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
}
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vaddq_f32
(
res3
,
vbias
);
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
}
else
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
}
else
if
(
out_l
-
2
-
w_times
*
3
==
2
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
}
}
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
input_const
[
in_l
]
*
w21
+
input_const
[
in_l
+
1
]
*
w22
;
out2in_mid
=
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
-
1
]
=
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
;
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
(
1
-
if_pad
)
*
(
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
*
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
(
1
-
if_pad
)
*
(
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
if
(
if_bias
)
{
output_data_tmp
[
0
]
+=
bias_data
[
j
];
output_data_tmp
[
out_l
-
1
]
+=
bias_data
[
j
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
+=
bias_data
[
j
];
output_data_tmp
[
out_l
*
out_l
-
1
]
+=
bias_data
[
j
];
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
out2in_mid
=
i
*
2
*
in_w
;
output_data_tmp
[
i
*
out_l
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
if
(
if_bias
)
{
output_data_tmp
[
i
*
out_l
]
+=
bias_data
[
j
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
+=
bias_data
[
j
];
}
}
filter_data_tmp
+=
9
;
}
input_data
+=
inhxw
*
c
;
output_data
+=
outhxw
*
c
;
}
}
void
DepthwiseConvAddBNRelu3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
out_w
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
out_l
=
out_h
;
const
int
in_l
=
in_h
;
const
int
inhxw
=
in_h
*
in_w
;
const
int
outhxw
=
out_h
*
out_w
;
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
const
int
w_times
=
(
out_w
-
2
)
/
3
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
],
input_buff_top
[
w_times
+
1
];
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
int
out2in_mid
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
auto
input_const
=
input_data_tmp
;
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
float
w10
=
filter_data_tmp
[
3
];
float
w11
=
filter_data_tmp
[
4
];
float
w12
=
filter_data_tmp
[
5
];
float
w20
=
filter_data_tmp
[
6
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
int
h_mid
=
0
;
for
(;
h_mid
<
out_h
-
1
;
h_mid
++
)
{
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
if
(
h_mid
==
0
)
{
elewise_res1
=
zero
;
elewise_res0
=
zero
;
elewise_res2
=
zero
;
}
else
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
}
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
vst1q_f32
(
output_row_ptr
,
res3
);
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
}
clock
();
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
if
(
!
if_pad
)
{
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
}
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
}
else
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
}
else
if
(
out_l
-
2
-
w_times
*
3
==
2
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
}
}
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
input_const
[
in_l
]
*
w21
+
input_const
[
in_l
+
1
]
*
w22
;
out2in_mid
=
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
-
1
]
=
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
;
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
(
1
-
if_pad
)
*
(
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
*
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
(
1
-
if_pad
)
*
(
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
-
1
]
=
output_data_tmp
[
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
<
0
?
0
:
output_data_tmp
[
0
];
output_data_tmp
[
out_l
-
1
]
=
output_data_tmp
[
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
-
1
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
<
0
?
0
:
output_data_tmp
[
out_l
*
(
out_l
-
1
)];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
*
out_l
-
1
];
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
out2in_mid
=
i
*
2
*
in_w
;
output_data_tmp
[
i
*
out_l
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
i
*
out_l
]
=
output_data_tmp
[
i
*
out_l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
i
*
out_l
]
=
output_data_tmp
[
i
*
out_l
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
+
out_l
-
1
];
}
}
filter_data_tmp
+=
9
;
}
input_data
+=
inhxw
*
c
;
output_data
+=
outhxw
*
c
;
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/depthwise_conv_3x3.h
浏览文件 @
7dca8ab1
...
...
@@ -38,6 +38,11 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
void
DepthwiseConvAddBNRelu3x3s2p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
);
void
DepthwiseConv3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
bias
,
bool
if_bias
);
void
DepthwiseConvAddBNRelu3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录