Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
7d3ae0ba
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7d3ae0ba
编写于
9月 26, 2020
作者:
Q
Qi Li
提交者:
GitHub
9月 26, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[X86] add interpolate op, test=develop (#4453)
上级
2da739da
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
498 addition
and
0 deletion
+498
-0
lite/backends/x86/math/CMakeLists.txt
lite/backends/x86/math/CMakeLists.txt
+1
-0
lite/backends/x86/math/interpolate.cc
lite/backends/x86/math/interpolate.cc
+266
-0
lite/backends/x86/math/interpolate.h
lite/backends/x86/math/interpolate.h
+65
-0
lite/kernels/x86/CMakeLists.txt
lite/kernels/x86/CMakeLists.txt
+1
-0
lite/kernels/x86/interpolate_compute.cc
lite/kernels/x86/interpolate_compute.cc
+120
-0
lite/kernels/x86/interpolate_compute.h
lite/kernels/x86/interpolate_compute.h
+43
-0
lite/tests/kernels/interp_compute_test.cc
lite/tests/kernels/interp_compute_test.cc
+2
-0
未找到文件。
lite/backends/x86/math/CMakeLists.txt
浏览文件 @
7d3ae0ba
...
@@ -63,3 +63,4 @@ math_library(search_fc DEPS blas dynload_mklml)
...
@@ -63,3 +63,4 @@ math_library(search_fc DEPS blas dynload_mklml)
# cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
# cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
math_library
(
box_coder DEPS math_function
)
math_library
(
box_coder DEPS math_function
)
math_library
(
prior_box DEPS math_function
)
math_library
(
prior_box DEPS math_function
)
math_library
(
interpolate DEPS math_function
)
lite/backends/x86/math/interpolate.cc
0 → 100644
浏览文件 @
7d3ae0ba
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "lite/backends/x86/math/interpolate.h"
#include <string>
#include <vector>
#include "lite/backends/x86/math/math_function.h"
namespace
paddle
{
namespace
lite
{
namespace
x86
{
namespace
math
{
void
bilinear_interp
(
const
float
*
input_data
,
float
*
output_data
,
const
float
ratio_h
,
const
float
ratio_w
,
const
int
in_h
,
const
int
in_w
,
const
int
n
,
const
int
c
,
const
int
out_h
,
const
int
out_w
,
const
bool
align_corners
,
const
bool
align_mode
)
{
bool
align_flag
=
(
align_mode
==
0
&&
!
align_corners
);
std
::
vector
<
int
>
vy_n
,
vy_s
;
std
::
vector
<
float
>
vd_n
,
vd_s
;
vy_n
.
reserve
(
out_h
);
vy_s
.
reserve
(
out_h
);
vd_n
.
reserve
(
out_h
);
vd_s
.
reserve
(
out_h
);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for
(
int
k
=
0
;
k
<
out_h
;
k
++
)
{
int
y_n
=
align_flag
?
static_cast
<
int
>
(
ratio_h
*
(
k
+
0.5
)
-
0.5
)
:
static_cast
<
int
>
(
ratio_h
*
k
);
y_n
=
(
y_n
>
0
)
?
y_n
:
0
;
int
y_s
=
(
y_n
+
1
)
<
(
in_h
-
1
)
?
(
y_n
+
1
)
:
(
in_h
-
1
);
float
idx_src_y
=
ratio_h
*
(
k
+
0.5
)
-
0.5
;
idx_src_y
=
(
idx_src_y
>
0
)
?
idx_src_y
:
0
;
float
d_n
=
align_flag
?
idx_src_y
-
y_n
:
ratio_h
*
k
-
y_n
;
float
d_s
=
1.
f
-
d_n
;
{
vy_n
[
k
]
=
y_n
;
vy_s
[
k
]
=
y_s
;
vd_n
[
k
]
=
d_n
;
vd_s
[
k
]
=
d_s
;
}
}
std
::
vector
<
int
>
vx_w
,
vx_e
;
std
::
vector
<
float
>
vd_w
,
vd_e
;
vx_w
.
reserve
(
out_w
);
vx_e
.
reserve
(
out_w
);
vd_w
.
reserve
(
out_w
);
vd_e
.
reserve
(
out_w
);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for
(
int
l
=
0
;
l
<
out_w
;
l
++
)
{
int
x_w
=
(
align_mode
==
0
&&
!
align_corners
)
?
static_cast
<
int
>
(
ratio_w
*
(
l
+
0.5
)
-
0.5
)
:
static_cast
<
int
>
(
ratio_w
*
l
);
x_w
=
(
x_w
>
0
)
?
x_w
:
0
;
int
x_e
=
(
x_w
+
1
)
<
(
in_w
-
1
)
?
(
x_w
+
1
)
:
(
in_w
-
1
);
float
idx_src_x
=
ratio_w
*
(
l
+
0.5
)
-
0.5
;
idx_src_x
=
(
idx_src_x
>
0
)
?
idx_src_x
:
0
;
float
d_w
=
align_flag
?
idx_src_x
-
x_w
:
ratio_w
*
l
-
x_w
;
float
d_e
=
1.
f
-
d_w
;
{
vx_w
[
l
]
=
x_w
;
vx_e
[
l
]
=
x_e
;
vd_w
[
l
]
=
d_w
;
vd_e
[
l
]
=
d_e
;
}
}
int
total_count
=
n
*
c
;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for
(
int
i
=
0
;
i
<
total_count
;
i
++
)
{
for
(
int
h
=
0
;
h
<
out_h
;
h
++
)
{
for
(
int
w
=
0
;
w
<
out_w
;
w
++
)
{
// bilinear interpolation
const
float
*
input_data_ptr
=
input_data
+
i
*
in_h
*
in_w
;
float
*
output_data_ptr
=
output_data
+
i
*
out_h
*
out_w
+
h
*
out_w
+
w
;
*
output_data_ptr
=
input_data_ptr
[
vy_n
[
h
]
*
in_w
+
vx_w
[
w
]]
*
vd_s
[
h
]
*
vd_e
[
w
]
+
input_data_ptr
[
vy_s
[
h
]
*
in_w
+
vx_w
[
w
]]
*
vd_n
[
h
]
*
vd_e
[
w
]
+
input_data_ptr
[
vy_n
[
h
]
*
in_w
+
vx_e
[
w
]]
*
vd_s
[
h
]
*
vd_w
[
w
]
+
input_data_ptr
[
vy_s
[
h
]
*
in_w
+
vx_e
[
w
]]
*
vd_n
[
h
]
*
vd_w
[
w
];
}
}
}
}
void
nearest_interp
(
const
float
*
input_data
,
float
*
output_data
,
const
float
ratio_h
,
const
float
ratio_w
,
const
int
n
,
const
int
c
,
const
int
in_h
,
const
int
in_w
,
const
int
out_h
,
const
int
out_w
,
const
bool
align_corners
)
{
int
total_count
=
n
*
c
;
if
(
align_corners
)
{
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for
(
int
i
=
0
;
i
<
total_count
;
++
i
)
{
for
(
int
h
=
0
;
h
<
out_h
;
++
h
)
{
for
(
int
w
=
0
;
w
<
out_w
;
++
w
)
{
const
float
*
input_data_ptr
=
input_data
+
i
*
in_h
*
in_w
;
float
*
output_data_ptr
=
output_data
+
i
*
out_h
*
out_w
+
h
*
out_w
+
w
;
int
near_y
=
static_cast
<
int
>
(
ratio_h
*
h
+
0.5
);
int
near_x
=
static_cast
<
int
>
(
ratio_w
*
w
+
0.5
);
*
output_data_ptr
=
input_data_ptr
[
near_y
*
in_w
+
near_x
];
}
}
}
}
else
{
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for
(
int
i
=
0
;
i
<
total_count
;
++
i
)
{
for
(
int
h
=
0
;
h
<
out_h
;
++
h
)
{
for
(
int
w
=
0
;
w
<
out_w
;
++
w
)
{
const
float
*
input_data_ptr
=
input_data
+
i
*
in_h
*
in_w
;
float
*
output_data_ptr
=
output_data
+
i
*
out_h
*
out_w
+
h
*
out_w
+
w
;
int
near_y
=
static_cast
<
int
>
(
ratio_h
*
h
);
int
near_x
=
static_cast
<
int
>
(
ratio_w
*
w
);
*
output_data_ptr
=
input_data_ptr
[
near_y
*
in_w
+
near_x
];
}
}
}
}
}
inline
std
::
vector
<
int
>
get_new_shape
(
std
::
vector
<
const
lite
::
Tensor
*>
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
tensor
->
data
<
int32_t
>
()));
}
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
auto
*
new_data
=
new_data_tensor
->
data
<
T
>
();
lite
::
Tensor
cpu_starts_tensor
;
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
dims
().
production
());
return
vec_new_data
;
}
void
interpolate
(
lite
::
Tensor
*
input
,
lite
::
Tensor
*
out_size
,
std
::
vector
<
const
lite
::
Tensor
*>
list_new_size_tensor
,
lite
::
Tensor
*
scale_tensor
,
lite
::
Tensor
*
output
,
float
scale
,
int
out_h
,
int
out_w
,
const
int
align_mode
,
const
bool
align_corners
,
const
std
::
string
interpolate_type
)
{
// format NCHW
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
in_h
=
input
->
dims
()[
2
];
int
in_w
=
input
->
dims
()[
3
];
if
(
list_new_size_tensor
.
size
()
>
0
)
{
// have size tensor
auto
new_size
=
get_new_shape
(
list_new_size_tensor
);
out_h
=
new_size
[
0
];
out_w
=
new_size
[
1
];
}
else
{
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
scale
=
scale_data
[
0
];
}
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
}
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
}
output
->
Resize
({
n
,
c
,
out_h
,
out_w
});
float
ratio_h
=
0.
f
;
float
ratio_w
=
0.
f
;
if
(
out_h
>
1
)
{
ratio_h
=
(
align_corners
)
?
static_cast
<
float
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
static_cast
<
float
>
(
in_h
)
/
out_h
;
}
if
(
out_w
>
1
)
{
ratio_w
=
(
align_corners
)
?
static_cast
<
float
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
static_cast
<
float
>
(
in_w
)
/
out_w
;
}
const
float
*
input_data
=
input
->
data
<
float
>
();
float
*
output_data
=
output
->
mutable_data
<
float
>
();
if
(
"Bilinear"
==
interpolate_type
)
{
bilinear_interp
(
input_data
,
output_data
,
ratio_h
,
ratio_w
,
in_h
,
in_w
,
n
,
c
,
out_h
,
out_w
,
align_corners
,
align_mode
);
}
else
if
(
"Nearest"
==
interpolate_type
)
{
nearest_interp
(
input_data
,
output_data
,
ratio_h
,
ratio_w
,
n
,
c
,
in_h
,
in_w
,
out_h
,
out_w
,
align_corners
);
}
else
{
LOG
(
FATAL
)
<<
"Not supported interpolate_type: "
<<
interpolate_type
;
}
}
}
// namespace math
}
// namespace x86
}
// namespace lite
}
// namespace paddle
lite/backends/x86/math/interpolate.h
0 → 100644
浏览文件 @
7d3ae0ba
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "lite/core/tensor.h"
namespace
paddle
{
namespace
lite
{
namespace
x86
{
namespace
math
{
void
bilinear_interp
(
const
float
*
input_data
,
float
*
output_data
,
const
float
ratio_h
,
const
float
ratio_w
,
const
int
in_h
,
const
int
in_w
,
const
int
n
,
const
int
c
,
const
int
out_h
,
const
int
out_w
,
const
bool
align_corners
,
const
bool
align_mode
);
void
nearest_interp
(
const
float
*
input_data
,
float
*
output_data
,
const
float
ratio_h
,
const
float
ratio_w
,
const
int
n
,
const
int
c
,
const
int
in_h
,
const
int
in_w
,
const
int
out_h
,
const
int
out_w
,
const
bool
align_corners
);
void
interpolate
(
lite
::
Tensor
*
input
,
lite
::
Tensor
*
out_size
,
std
::
vector
<
const
lite
::
Tensor
*>
list_new_size_tensor
,
lite
::
Tensor
*
scale_tensor
,
lite
::
Tensor
*
output
,
float
scale
,
int
out_h
,
int
out_w
,
const
int
align_mode
,
const
bool
align_corners
,
const
std
::
string
interpolate_type
);
}
// namespace math
}
// namespace x86
}
// namespace lite
}
// namespace paddle
lite/kernels/x86/CMakeLists.txt
浏览文件 @
7d3ae0ba
...
@@ -70,6 +70,7 @@ add_kernel(search_fc_compute_x86 X86 basic SRCS search_fc_compute.cc DEPS ${lite
...
@@ -70,6 +70,7 @@ add_kernel(search_fc_compute_x86 X86 basic SRCS search_fc_compute.cc DEPS ${lite
add_kernel
(
matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS
${
lite_kernel_deps
}
blas
)
add_kernel
(
matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS
${
lite_kernel_deps
}
blas
)
add_kernel
(
box_coder_compute_x86 X86 basic SRCS box_coder_compute.cc DEPS
${
lite_kernel_deps
}
box_coder
)
add_kernel
(
box_coder_compute_x86 X86 basic SRCS box_coder_compute.cc DEPS
${
lite_kernel_deps
}
box_coder
)
add_kernel
(
density_prior_box_compute_x86 X86 basic SRCS density_prior_box_compute.cc DEPS
${
lite_kernel_deps
}
prior_box
)
add_kernel
(
density_prior_box_compute_x86 X86 basic SRCS density_prior_box_compute.cc DEPS
${
lite_kernel_deps
}
prior_box
)
add_kernel
(
interpolate_compute_x86 X86 basic SRCS interpolate_compute.cc DEPS
${
lite_kernel_deps
}
interpolate
)
lite_cc_test
(
test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86
)
lite_cc_test
(
test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86
)
lite_cc_test
(
test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86
)
lite_cc_test
(
test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86
)
...
...
lite/kernels/x86/interpolate_compute.cc
0 → 100644
浏览文件 @
7d3ae0ba
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/interpolate_compute.h"
#include <string>
#include <vector>
#include "lite/backends/x86/math/interpolate.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
void
BilinearInterpCompute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
InterpolateParam
>
();
// required input
lite
::
Tensor
*
X
=
param
.
X
;
// optionla inputs
lite
::
Tensor
*
OutSize
=
param
.
OutSize
;
auto
SizeTensor
=
param
.
SizeTensor
;
auto
Scale
=
param
.
Scale
;
// output
lite
::
Tensor
*
Out
=
param
.
Out
;
// optional attributes
float
scale
=
param
.
scale
;
int
out_w
=
param
.
out_w
;
int
out_h
=
param
.
out_h
;
int
align_mode
=
param
.
align_mode
;
// required attributes
bool
align_corners
=
param
.
align_corners
;
std
::
string
interp_method
=
"Bilinear"
;
lite
::
x86
::
math
::
interpolate
(
X
,
OutSize
,
SizeTensor
,
Scale
,
Out
,
scale
,
out_h
,
out_w
,
align_mode
,
align_corners
,
interp_method
);
}
void
NearestInterpCompute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
InterpolateParam
>
();
// required input
lite
::
Tensor
*
X
=
param
.
X
;
// optionla inputs
lite
::
Tensor
*
OutSize
=
param
.
OutSize
;
auto
SizeTensor
=
param
.
SizeTensor
;
auto
Scale
=
param
.
Scale
;
// output
lite
::
Tensor
*
Out
=
param
.
Out
;
// optional attributes
float
scale
=
param
.
scale
;
int
out_w
=
param
.
out_w
;
int
out_h
=
param
.
out_h
;
int
align_mode
=
param
.
align_mode
;
// required attributes
bool
align_corners
=
param
.
align_corners
;
std
::
string
interp_method
=
"Nearest"
;
lite
::
x86
::
math
::
interpolate
(
X
,
OutSize
,
SizeTensor
,
Scale
,
Out
,
scale
,
out_h
,
out_w
,
align_mode
,
align_corners
,
interp_method
);
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
bilinear_interp
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
BilinearInterpCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"OutSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
),
PRECISION
(
kInt32
))})
.
BindInput
(
"SizeTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
),
PRECISION
(
kInt32
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
nearest_interp
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
NearestInterpCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"OutSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
),
PRECISION
(
kInt32
))})
.
BindInput
(
"SizeTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
),
PRECISION
(
kInt32
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
lite/kernels/x86/interpolate_compute.h
0 → 100644
浏览文件 @
7d3ae0ba
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
class
BilinearInterpCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
void
Run
()
override
;
virtual
~
BilinearInterpCompute
()
=
default
;
};
class
NearestInterpCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
void
Run
()
override
;
virtual
~
NearestInterpCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/tests/kernels/interp_compute_test.cc
浏览文件 @
7d3ae0ba
...
@@ -453,6 +453,8 @@ TEST(Interp, precision) {
...
@@ -453,6 +453,8 @@ TEST(Interp, precision) {
abs_error
=
1e-2
;
// precision_mode default is force_fp16
abs_error
=
1e-2
;
// precision_mode default is force_fp16
#elif defined(LITE_WITH_ARM)
#elif defined(LITE_WITH_ARM)
place
=
TARGET
(
kARM
);
place
=
TARGET
(
kARM
);
#elif defined(LITE_WITH_X86)
place
=
TARGET
(
kX86
);
#else
#else
return
;
return
;
#endif
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录