Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
7c216695
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7c216695
编写于
6月 14, 2019
作者:
N
NazgulLee
提交者:
GitHub
6月 14, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
1. fix add bias logic; 2. fix several typo (#1687)
上级
5b197f4b
变更
21
显示空白变更内容
内联
并排
Showing
21 changed file
with
259 addition
and
95 deletion
+259
-95
metal/paddle-mobile-metallib/paddle-mobile-metallib/Common.metal
...addle-mobile-metallib/paddle-mobile-metallib/Common.metal
+10
-0
metal/paddle-mobile-metallib/paddle-mobile-metallib/ConcatKernel.metal
...mobile-metallib/paddle-mobile-metallib/ConcatKernel.metal
+13
-0
metal/paddle-mobile-metallib/paddle-mobile-metallib/ConvAddReluMetal.metal
...le-metallib/paddle-mobile-metallib/ConvAddReluMetal.metal
+128
-25
metal/paddle-mobile-metallib/paddle-mobile-metallib/Elementwise.metal
...-mobile-metallib/paddle-mobile-metallib/Elementwise.metal
+0
-10
metal/paddle-mobile-metallib/paddle-mobile-metallib/ElementwiseAddPreluKernel.metal
...ib/paddle-mobile-metallib/ElementwiseAddPreluKernel.metal
+0
-10
metal/paddle-mobile/paddle-mobile/Src/Common/MetalExtension.swift
...ddle-mobile/paddle-mobile/Src/Common/MetalExtension.swift
+12
-3
metal/paddle-mobile/paddle-mobile/Src/Common/PaddleMobileUnitTest.swift
...obile/paddle-mobile/Src/Common/PaddleMobileUnitTest.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Src/Framework/Loader.swift
metal/paddle-mobile/paddle-mobile/Src/Framework/Loader.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Src/Operators/ConvAddReluOp.swift
...le-mobile/paddle-mobile/Src/Operators/ConvAddReluOp.swift
+7
-1
metal/paddle-mobile/paddle-mobile/Src/Operators/FeedOp.swift
metal/paddle-mobile/paddle-mobile/Src/Operators/FeedOp.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddAddPreluKernel.swift
...-mobile/Src/Operators/Kernels/ConvAddAddPreluKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddBatchNormReluKernel.swift
...le/Src/Operators/Kernels/ConvAddBatchNormReluKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddKernel.swift
...e/paddle-mobile/Src/Operators/Kernels/ConvAddKernel.swift
+2
-2
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddPreluKernel.swift
...dle-mobile/Src/Operators/Kernels/ConvAddPreluKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddReluKernel.swift
...ddle-mobile/Src/Operators/Kernels/ConvAddReluKernel.swift
+42
-10
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvBNReluKernel.swift
...addle-mobile/Src/Operators/Kernels/ConvBNReluKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvKernel.swift
...bile/paddle-mobile/Src/Operators/Kernels/ConvKernel.swift
+3
-3
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvReluKernel.swift
.../paddle-mobile/Src/Operators/Kernels/ConvReluKernel.swift
+2
-2
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ElementwiseAddKernel.swift
...e-mobile/Src/Operators/Kernels/ElementwiseAddKernel.swift
+26
-20
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ReluKernel.swift
...bile/paddle-mobile/Src/Operators/Kernels/ReluKernel.swift
+5
-0
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ScaleOpKernel.swift
...e/paddle-mobile/Src/Operators/Kernels/ScaleOpKernel.swift
+2
-2
未找到文件。
metal/paddle-mobile-metallib/paddle-mobile-metallib/Common.metal
浏览文件 @
7c216695
...
@@ -107,6 +107,15 @@ inline void invtrans(int32_t trans[4], int32_t ipos[4], int32_t opos[4]) {
...
@@ -107,6 +107,15 @@ inline void invtrans(int32_t trans[4], int32_t ipos[4], int32_t opos[4]) {
}
}
}
}
struct ElementwiseAddParam {
int32_t fast;
int32_t axis;
int32_t ylen;
int32_t xdim[4];
int32_t xtrans[4];
int32_t ydim[4];
int32_t ytrans[4];
};
struct MetalConvParam {
struct MetalConvParam {
short offsetX;
short offsetX;
...
@@ -122,4 +131,5 @@ struct MetalConvParam {
...
@@ -122,4 +131,5 @@ struct MetalConvParam {
ushort oC;
ushort oC;
ushort hasAddOp;
ushort hasAddOp;
ushort hasReluOp;
ushort hasReluOp;
ElementwiseAddParam addParam;
};
};
metal/paddle-mobile-metallib/paddle-mobile-metallib/ConcatKernel.metal
浏览文件 @
7c216695
...
@@ -204,3 +204,16 @@ struct ConcatParam {
...
@@ -204,3 +204,16 @@ struct ConcatParam {
#undef N
#undef N
#undef R
#undef R
#undef V
#undef V
#define V VY
#define R 4
#define N 3
#define P float
#include "ConcatKernel.inc.metal"
#undef P
#define P half
#include "ConcatKernel.inc.metal"
#undef P
#undef N
#undef R
#undef V
metal/paddle-mobile-metallib/paddle-mobile-metallib/ConvAddReluMetal.metal
浏览文件 @
7c216695
...
@@ -17,6 +17,56 @@
...
@@ -17,6 +17,56 @@
using namespace metal;
using namespace metal;
half4 getBiasHalf(uint3 gid, constant ElementwiseAddParam &addParam, texture2d_array<half, access::sample> biasTexture) {
half4 output;
if (addParam.fast) {
output = biasTexture.read(gid.xy, gid.z);
} else {
int32_t x_xyzn[4] = {int32_t(gid.x), int32_t(gid.y), int32_t(gid.z), 0}, x_abcd[4], t_abcd[4];
int32_t y_abcd[4] = {0, 0, 0, 0}, y_xyzn[4];
int32_t xtrans[4] = {addParam.xtrans[0], addParam.xtrans[1], addParam.xtrans[2], addParam.xtrans[3]};
int32_t ytrans[4] = {addParam.ytrans[0], addParam.ytrans[1], addParam.ytrans[2], addParam.ytrans[3]};
int32_t yshift = 4 - addParam.ylen - addParam.axis;
for (int n = 0; n < 4; n++) {
x_xyzn[3] = n;
xyzn2abcd(addParam.xdim[3], x_xyzn, x_abcd);
invtrans(xtrans, x_abcd, t_abcd);
for (int k = addParam.axis; k < (addParam.axis + addParam.ylen); k++) {
y_abcd[yshift+k] = t_abcd[k];
}
trans(ytrans, y_abcd, t_abcd);
abcd2xyzn(addParam.ydim[3], t_abcd, y_xyzn);
output[n] = biasTexture.read(uint2(y_xyzn[0], y_xyzn[1]), y_xyzn[2])[y_xyzn[3]];
}
}
return output;
}
float4 getBias(uint3 gid, constant ElementwiseAddParam &addParam, texture2d_array<float, access::sample> biasTexture) {
float4 output;
if (addParam.fast) {
output = float4(biasTexture.read(gid.xy, gid.z));
} else {
int32_t x_xyzn[4] = {int32_t(gid.x), int32_t(gid.y), int32_t(gid.z), 0}, x_abcd[4], t_abcd[4];
int32_t y_abcd[4] = {0, 0, 0, 0}, y_xyzn[4];
int32_t xtrans[4] = {addParam.xtrans[0], addParam.xtrans[1], addParam.xtrans[2], addParam.xtrans[3]};
int32_t ytrans[4] = {addParam.ytrans[0], addParam.ytrans[1], addParam.ytrans[2], addParam.ytrans[3]};
int32_t yshift = 4 - addParam.ylen - addParam.axis;
for (int n = 0; n < 4; n++) {
x_xyzn[3] = n;
xyzn2abcd(addParam.xdim[3], x_xyzn, x_abcd);
invtrans(xtrans, x_abcd, t_abcd);
for (int k = addParam.axis; k < (addParam.axis + addParam.ylen); k++) {
y_abcd[yshift+k] = t_abcd[k];
}
trans(ytrans, y_abcd, t_abcd);
abcd2xyzn(addParam.ydim[3], t_abcd, y_xyzn);
output[n] = biasTexture.read(uint2(y_xyzn[0], y_xyzn[1]), y_xyzn[2])[y_xyzn[3]];
}
}
return output;
}
#pragma mark - convAdd
#pragma mark - convAdd
kernel void conv_add_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
kernel void conv_add_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::sample> biasTexture [[texture(1)]],
texture2d_array<float, access::sample> biasTexture [[texture(1)]],
...
@@ -39,7 +89,11 @@ kernel void conv_add_relu_1x1(texture2d_array<float, access::sample> inTexture [
...
@@ -39,7 +89,11 @@ kernel void conv_add_relu_1x1(texture2d_array<float, access::sample> inTexture [
uint input_arr_size = inTexture.get_array_size();
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = param.hasAddOp == 1 ? biasTexture.sample(sample, float2(gid.xy), gid.z) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = getBias(gid, addParam, biasTexture);
}
float4 input;
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
for (uint i = 0; i < input_arr_size; ++i) {
...
@@ -83,7 +137,11 @@ kernel void conv_add_relu_3x3(texture2d_array<float, access::sample> inTexture [
...
@@ -83,7 +137,11 @@ kernel void conv_add_relu_3x3(texture2d_array<float, access::sample> inTexture [
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = param.hasAddOp == 1 ? biasTexture.sample(sample, float2(gid.xy), gid.z) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = getBias(gid, addParam, biasTexture);
}
ushort dilation_x = param.dilationX;
ushort dilation_x = param.dilationX;
ushort dilation_y = param.dilationY;
ushort dilation_y = param.dilationY;
...
@@ -146,7 +204,11 @@ kernel void group_conv_add_relu_3x3(texture2d_array<float, access::sample> inTex
...
@@ -146,7 +204,11 @@ kernel void group_conv_add_relu_3x3(texture2d_array<float, access::sample> inTex
const uint kernelHXW = 9;
const uint kernelHXW = 9;
float4 output = param.hasAddOp == 1 ? biasTexture.sample(sample, float2(gid.xy), gid.z) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = getBias(gid, addParam, biasTexture);
}
ushort dilation_x = param.dilationX;
ushort dilation_x = param.dilationX;
ushort dilation_y = param.dilationY;
ushort dilation_y = param.dilationY;
...
@@ -205,7 +267,11 @@ kernel void conv_add_relu_5x1(texture2d_array<float, access::sample> inTexture [
...
@@ -205,7 +267,11 @@ kernel void conv_add_relu_5x1(texture2d_array<float, access::sample> inTexture [
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = param.hasAddOp == 1 ? biasTexture.sample(sample, float2(gid.xy), gid.z) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = getBias(gid, addParam, biasTexture);
}
ushort dilation_y = param.dilationY;
ushort dilation_y = param.dilationY;
float4 input[5];
float4 input[5];
...
@@ -262,7 +328,11 @@ kernel void conv_add_relu_1x5(texture2d_array<float, access::sample> inTexture [
...
@@ -262,7 +328,11 @@ kernel void conv_add_relu_1x5(texture2d_array<float, access::sample> inTexture [
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = param.hasAddOp == 1 ? biasTexture.sample(sample, float2(gid.xy), gid.z) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = getBias(gid, addParam, biasTexture);
}
ushort dilation_x = param.dilationX;
ushort dilation_x = param.dilationX;
float4 input[5];
float4 input[5];
...
@@ -313,7 +383,13 @@ kernel void depthwise_conv_add_relu_3x3(texture2d_array<float, access::sample> i
...
@@ -313,7 +383,13 @@ kernel void depthwise_conv_add_relu_3x3(texture2d_array<float, access::sample> i
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = param.hasAddOp == 1 ? biasTexture.sample(sample, float2(gid.xy), gid.z) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = getBias(gid, addParam, biasTexture);
}
float4 inputs[9];
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
...
@@ -358,7 +434,11 @@ kernel void conv_add_relu_1x1_half(texture2d_array<half, access::sample> inTextu
...
@@ -358,7 +434,11 @@ kernel void conv_add_relu_1x1_half(texture2d_array<half, access::sample> inTextu
uint input_arr_size = inTexture.get_array_size();
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = param.hasAddOp == 1 ? float4(biasTexture.sample(sample, float2(gid.xy), gid.z)) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = float4(getBiasHalf(gid, addParam, biasTexture));
}
float4 input;
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
for (uint i = 0; i < input_arr_size; ++i) {
...
@@ -399,7 +479,11 @@ kernel void conv_add_relu_3x3_half(texture2d_array<half, access::sample> inTextu
...
@@ -399,7 +479,11 @@ kernel void conv_add_relu_3x3_half(texture2d_array<half, access::sample> inTextu
uint input_arr_size = inTexture.get_array_size();
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = param.hasAddOp == 1 ? float4(biasTexture.sample(sample, float2(gid.xy), gid.z)) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = float4(getBiasHalf(gid, addParam, biasTexture));
}
ushort dilation_x = param.dilationX;
ushort dilation_x = param.dilationX;
ushort dilation_y = param.dilationY;
ushort dilation_y = param.dilationY;
...
@@ -452,7 +536,11 @@ kernel void group_conv_add_relu_3x3_half(texture2d_array<half, access::sample> i
...
@@ -452,7 +536,11 @@ kernel void group_conv_add_relu_3x3_half(texture2d_array<half, access::sample> i
const uint kernelHXW = 9;
const uint kernelHXW = 9;
float4 output = param.hasAddOp == 1 ? float4(biasTexture.sample(sample, float2(gid.xy), gid.z)) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = float4(getBiasHalf(gid, addParam, biasTexture));
}
ushort dilation_x = param.dilationX;
ushort dilation_x = param.dilationX;
ushort dilation_y = param.dilationY;
ushort dilation_y = param.dilationY;
...
@@ -505,7 +593,13 @@ kernel void depthwise_conv_add_relu_3x3_half(texture2d_array<half, access::sampl
...
@@ -505,7 +593,13 @@ kernel void depthwise_conv_add_relu_3x3_half(texture2d_array<half, access::sampl
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = param.hasAddOp == 1 ? float4(biasTexture.sample(sample, float2(gid.xy), gid.z)) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = float4(getBiasHalf(gid, addParam, biasTexture));
}
half4 inputs[9];
half4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
...
@@ -584,7 +678,7 @@ kernel void depthwise_conv_add_relu_3x3_half_winograd(texture2d_array<half, acce
...
@@ -584,7 +678,7 @@ kernel void depthwise_conv_add_relu_3x3_half_winograd(texture2d_array<half, acce
for (int c = 0; c < 4; ++c) {
for (int c = 0; c < 4; ++c) {
if (hasComputedC + c >= param.oC) {
if (hasComputedC + c >= param.oC) {
return
;
break
;
}
}
half I[16];
half I[16];
for (int i = 0; i < 16; ++i) {
for (int i = 0; i < 16; ++i) {
...
@@ -644,13 +738,14 @@ kernel void depthwise_conv_add_relu_3x3_half_winograd(texture2d_array<half, acce
...
@@ -644,13 +738,14 @@ kernel void depthwise_conv_add_relu_3x3_half_winograd(texture2d_array<half, acce
}
}
if (param.hasAddOp == 1) {
if (param.hasAddOp == 1) {
half4 base = biasTexture.sample(sample, float2(tx, ty), tc);
constant ElementwiseAddParam &addParam = param.addParam;
half4 base = getBiasHalf(uint3(tx, ty, tc), addParam, biasTexture);
res[0] += base;
res[0] += base;
base =
biasTexture.sample(sample, float2(tx + 1, ty), tc
);
base =
getBiasHalf(uint3(tx + 1, ty, tc), addParam, biasTexture
);
res[1] += base;
res[1] += base;
base =
biasTexture.sample(sample, float2(tx, ty + 1), tc
);
base =
getBiasHalf(uint3(tx, ty + 1, tc), addParam, biasTexture
);
res[2] += base;
res[2] += base;
base =
biasTexture.sample(sample, float2(tx + 1, ty + 1), tc
);
base =
getBiasHalf(uint3(tx + 1, ty + 1, tc), addParam, biasTexture
);
res[3] += base;
res[3] += base;
}
}
...
@@ -690,7 +785,11 @@ kernel void conv_add_relu_5x1_half(texture2d_array<half, access::sample> inTextu
...
@@ -690,7 +785,11 @@ kernel void conv_add_relu_5x1_half(texture2d_array<half, access::sample> inTextu
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = param.hasAddOp == 1 ? float4(biasTexture.sample(sample, float2(gid.xy), gid.z)) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = float4(getBiasHalf(gid, addParam, biasTexture));
}
ushort dilation_y = param.dilationY;
ushort dilation_y = param.dilationY;
half4 input[5];
half4 input[5];
...
@@ -747,7 +846,11 @@ kernel void conv_add_relu_1x5_half(texture2d_array<half, access::sample> inTextu
...
@@ -747,7 +846,11 @@ kernel void conv_add_relu_1x5_half(texture2d_array<half, access::sample> inTextu
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = param.hasAddOp == 1 ? float4(biasTexture.sample(sample, float2(gid.xy), gid.z)) : float4(0.0, 0.0, 0.0, 0.0);
float4 output = float4(0.0, 0.0, 0.0, 0.0);
if (param.hasAddOp) {
constant ElementwiseAddParam &addParam = param.addParam;
output = float4(getBiasHalf(gid, addParam, biasTexture));
}
ushort dilation_x = param.dilationX;
ushort dilation_x = param.dilationX;
half4 input[5];
half4 input[5];
...
...
metal/paddle-mobile-metallib/paddle-mobile-metallib/Elementwise.metal
浏览文件 @
7c216695
...
@@ -17,16 +17,6 @@
...
@@ -17,16 +17,6 @@
using namespace metal;
using namespace metal;
struct ElementwiseAddParam {
int32_t fast;
int32_t axis;
int32_t ylen;
int32_t xdim[4];
int32_t xtrans[4];
int32_t ydim[4];
int32_t ytrans[4];
};
kernel void elementwise_add(texture2d_array<float, access::read> inputX [[texture(0)]],
kernel void elementwise_add(texture2d_array<float, access::read> inputX [[texture(0)]],
texture2d_array<float, access::read> inputY [[texture(1)]],
texture2d_array<float, access::read> inputY [[texture(1)]],
texture2d_array<float, access::write> outTexture [[texture(2)]],
texture2d_array<float, access::write> outTexture [[texture(2)]],
...
...
metal/paddle-mobile-metallib/paddle-mobile-metallib/ElementwiseAddPreluKernel.metal
浏览文件 @
7c216695
...
@@ -16,16 +16,6 @@
...
@@ -16,16 +16,6 @@
#include "Common.metal"
#include "Common.metal"
using namespace metal;
using namespace metal;
struct ElementwiseAddParam {
int32_t fast;
int32_t axis;
int32_t ylen;
int32_t xdim[4];
int32_t xtrans[4];
int32_t ydim[4];
int32_t ytrans[4];
};
#define P float
#define P float
#define PRELU_CHANNEL prelu_channel
#define PRELU_CHANNEL prelu_channel
...
...
metal/paddle-mobile/paddle-mobile/Src/Common/MetalExtension.swift
浏览文件 @
7c216695
...
@@ -287,7 +287,13 @@ extension MTLDevice {
...
@@ -287,7 +287,13 @@ extension MTLDevice {
var
rcount
:
Int
=
(
ndim
[
0
]
*
ndim
[
3
]
+
3
)
/
4
var
rcount
:
Int
=
(
ndim
[
0
]
*
ndim
[
3
]
+
3
)
/
4
rcount
=
rcount
*
4
*
ndim
[
1
]
*
ndim
[
2
]
rcount
=
rcount
*
4
*
ndim
[
1
]
*
ndim
[
2
]
var
nvalue
:
[
Float32
]
=
.
init
(
repeating
:
0.0
,
count
:
rcount
)
var
nvalue
:
[
Float32
]
=
.
init
(
repeating
:
0.0
,
count
:
rcount
)
var
value32
:
[
Float32
]?
if
value
is
[
Float16
]
{
var
value16
=
value
as!
[
Float16
]
value32
=
float16To32
(
input
:
&
value16
,
count
:
value
.
count
)
}
else
{
value32
=
value
as?
[
Float32
]
}
for
i0
in
0
..<
tdim
[
0
]
{
for
i0
in
0
..<
tdim
[
0
]
{
for
i1
in
0
..<
tdim
[
1
]
{
for
i1
in
0
..<
tdim
[
1
]
{
for
i2
in
0
..<
tdim
[
2
]
{
for
i2
in
0
..<
tdim
[
2
]
{
...
@@ -298,8 +304,11 @@ extension MTLDevice {
...
@@ -298,8 +304,11 @@ extension MTLDevice {
let
jg
=
transpose
.
map
{
ig
[
$0
]
}
let
jg
=
transpose
.
map
{
ig
[
$0
]
}
let
k
=
jg
[
0
]
*
ndim
[
3
]
+
jg
[
3
]
let
k
=
jg
[
0
]
*
ndim
[
3
]
+
jg
[
3
]
let
jx
=
((
k
/
4
)
*
ndim
[
1
]
*
ndim
[
2
]
*
4
)
+
(
jg
[
1
]
*
ndim
[
2
]
*
4
)
+
(
jg
[
2
]
*
4
)
+
(
k
%
4
)
let
jx
=
((
k
/
4
)
*
ndim
[
1
]
*
ndim
[
2
]
*
4
)
+
(
jg
[
1
]
*
ndim
[
2
]
*
4
)
+
(
jg
[
2
]
*
4
)
+
(
k
%
4
)
if
let
value32
=
value32
{
nvalue
[
jx
]
=
value
[
ix
]
as!
Float32
nvalue
[
jx
]
=
value32
[
ix
]
}
else
{
fatalError
(
"tensor2texture tensor value type not support"
)
}
}
}
}
}
}
}
...
...
metal/paddle-mobile/paddle-mobile/Src/Common/PaddleMobileUnitTest.swift
浏览文件 @
7c216695
...
@@ -325,7 +325,7 @@ public class PaddleMobileUnitTest {
...
@@ -325,7 +325,7 @@ public class PaddleMobileUnitTest {
let
fC
=
4
let
fC
=
4
let
oC
=
4
let
oC
=
4
let
metalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
0
,
strideX
:
UInt16
(
stride
.
0
),
strideY
:
UInt16
(
stride
.
1
),
dilationX
:
UInt16
(
1
),
dilationY
:
UInt16
(
1
),
groups
:
UInt16
(
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
))
let
metalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
0
,
strideX
:
UInt16
(
stride
.
0
),
strideY
:
UInt16
(
stride
.
1
),
dilationX
:
UInt16
(
1
),
dilationY
:
UInt16
(
1
),
groups
:
UInt16
(
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
)
,
addParam
:
ElementwiseAddMetalParam
()
)
let
param
=
ConvAddBatchNormReluTestParam
.
init
(
inInputTexture
:
inputeTexture
,
inOutputTexture
:
outputTexture
,
inMetalParam
:
metalParam
,
inFilterBuffer
:
filterBuffer
,
inBiaseBuffer
:
biaseBuffer
,
inNewScaleBuffer
:
newScalueBuffer
,
inNewBiaseBuffer
:
newBiaseBuffer
,
inFilterSize
:
filterSize
)
let
param
=
ConvAddBatchNormReluTestParam
.
init
(
inInputTexture
:
inputeTexture
,
inOutputTexture
:
outputTexture
,
inMetalParam
:
metalParam
,
inFilterBuffer
:
filterBuffer
,
inBiaseBuffer
:
biaseBuffer
,
inNewScaleBuffer
:
newScalueBuffer
,
inNewBiaseBuffer
:
newBiaseBuffer
,
inFilterSize
:
filterSize
)
...
...
metal/paddle-mobile/paddle-mobile/Src/Framework/Loader.swift
浏览文件 @
7c216695
...
@@ -105,8 +105,8 @@ public class Loader<P: PrecisionProtocol>: Loaderable {
...
@@ -105,8 +105,8 @@ public class Loader<P: PrecisionProtocol>: Loaderable {
}
while
(
false
)
}
while
(
false
)
}
else
{
}
else
{
fseek
(
file
,
MemoryLayout
<
CChar
>.
size
*
tensorDescSize
,
SEEK_CUR
)
fseek
(
file
,
MemoryLayout
<
CChar
>.
size
*
tensorDescSize
,
SEEK_CUR
)
}
nowIndex
+=
MemoryLayout
<
CChar
>.
size
*
tensorDescSize
nowIndex
+=
MemoryLayout
<
CChar
>.
size
*
tensorDescSize
}
/*
/*
这里没有根据 Data Type 去判断, 而是从外部泛型直接指定了精度
这里没有根据 Data Type 去判断, 而是从外部泛型直接指定了精度
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/ConvAddReluOp.swift
浏览文件 @
7c216695
...
@@ -24,6 +24,11 @@ class ConvAddReluParam<P: PrecisionProtocol>: OpParam {
...
@@ -24,6 +24,11 @@ class ConvAddReluParam<P: PrecisionProtocol>: OpParam {
paddings
=
try
ConvAddReluParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
ConvAddReluParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvAddReluParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
dilations
=
try
ConvAddReluParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvAddReluParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
groups
=
try
ConvAddReluParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
do
{
axis
=
try
ConvAddReluParam
.
getAttr
(
key
:
"axis"
,
attrs
:
opDesc
.
attrs
)
}
catch
{
axis
=
-
1
}
do
{
do
{
y
=
try
ConvAddReluParam
.
inputY
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
y
=
try
ConvAddReluParam
.
inputY
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
}
catch
{
}
catch
{
...
@@ -32,7 +37,7 @@ class ConvAddReluParam<P: PrecisionProtocol>: OpParam {
...
@@ -32,7 +37,7 @@ class ConvAddReluParam<P: PrecisionProtocol>: OpParam {
let
device
=
input
.
metalTexture
!.
device
let
device
=
input
.
metalTexture
!.
device
y
=
Texture
.
init
(
device
:
device
,
inDim
:
yTensor
.
dim
)
y
=
Texture
.
init
(
device
:
device
,
inDim
:
yTensor
.
dim
)
let
value
:
[
P
]
=
Array
(
UnsafeBufferPointer
(
start
:
yTensor
.
data
.
pointer
,
count
:
yTensor
.
dim
.
numel
()))
let
value
:
[
P
]
=
Array
(
UnsafeBufferPointer
(
start
:
yTensor
.
data
.
pointer
,
count
:
yTensor
.
dim
.
numel
()))
y
?
.
metalTexture
=
device
.
tensor2texture
(
value
:
value
,
dim
:
yTensor
.
dim
.
dims
,
transpose
:
[
0
,
2
,
3
,
1
],
inComputePrecision
:
GlobalConfig
.
shared
.
computePrecision
)
y
?
.
metalTexture
=
device
.
tensor2texture
(
value
:
value
,
dim
:
yTensor
.
dim
.
dims
,
transpose
:
[
0
,
1
,
2
,
3
],
inComputePrecision
:
GlobalConfig
.
shared
.
computePrecision
)
self
.
yTensor
=
yTensor
self
.
yTensor
=
yTensor
}
catch
{
}
catch
{
}
}
...
@@ -49,6 +54,7 @@ class ConvAddReluParam<P: PrecisionProtocol>: OpParam {
...
@@ -49,6 +54,7 @@ class ConvAddReluParam<P: PrecisionProtocol>: OpParam {
let
paddings
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
let
groups
:
Int
let
axis
:
Int
var
y
:
Texture
?
var
y
:
Texture
?
var
yTensor
:
Tensor
<
P
>
?
var
yTensor
:
Tensor
<
P
>
?
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/FeedOp.swift
浏览文件 @
7c216695
...
@@ -64,7 +64,7 @@ class FeedOp<P: PrecisionProtocol>: Operator<Texture2DTo2DArrayKernel<P>, FeedPa
...
@@ -64,7 +64,7 @@ class FeedOp<P: PrecisionProtocol>: Operator<Texture2DTo2DArrayKernel<P>, FeedPa
func
delogOutput
()
{
func
delogOutput
()
{
print
(
"
\(
type
)
output: "
)
print
(
"
\(
type
)
output: "
)
print
(
para
.
output
.
metalTexture
)
print
(
para
.
output
.
metalTexture
)
print
(
para
.
output
.
metalTexture
.
toTensor
(
dim
:
(
n
:
para
.
output
.
padToFourDim
[
0
],
c
:
para
.
output
.
padToFourDim
[
3
],
h
:
para
.
output
.
padToFourDim
[
2
],
w
:
para
.
output
.
padToFourDim
[
1
])
)
.
strideArray
())
print
(
para
.
output
.
toTensor
(
)
.
strideArray
())
}
}
}
}
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddAddPreluKernel.swift
浏览文件 @
7c216695
...
@@ -135,7 +135,7 @@ class ConvAddAddPreluKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -135,7 +135,7 @@ class ConvAddAddPreluKernel<P: PrecisionProtocol>: Kernel, Computable {
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
inMetalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
))
let
inMetalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
)
,
addParam
:
ElementwiseAddMetalParam
()
)
// print("metal param: ")
// print("metal param: ")
// print(inMetalParam)
// print(inMetalParam)
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddBatchNormReluKernel.swift
浏览文件 @
7c216695
...
@@ -98,7 +98,7 @@ class ConvAddBatchNormReluKernel<P: PrecisionProtocol>: Kernel, Computable, Test
...
@@ -98,7 +98,7 @@ class ConvAddBatchNormReluKernel<P: PrecisionProtocol>: Kernel, Computable, Test
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
metalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
))
metalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
)
,
addParam
:
ElementwiseAddMetalParam
()
)
var
invs
:
[
P
]
=
[]
var
invs
:
[
P
]
=
[]
let
varianceContents
=
param
.
variance
.
buffer
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
let
varianceContents
=
param
.
variance
.
buffer
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddKernel.swift
浏览文件 @
7c216695
...
@@ -16,11 +16,11 @@ import Foundation
...
@@ -16,11 +16,11 @@ import Foundation
import
MetalPerformanceShaders
import
MetalPerformanceShaders
class
ConvAddKernel
<
P
:
PrecisionProtocol
>
:
ConvAddReluKernel
<
P
>
{
class
ConvAddKernel
<
P
:
PrecisionProtocol
>
:
ConvAddReluKernel
<
P
>
{
override
func
hasAddOp
()
->
Bool
{
override
class
func
hasAddOp
()
->
Bool
{
return
true
return
true
}
}
override
func
hasReluOp
()
->
Bool
{
override
class
func
hasReluOp
()
->
Bool
{
return
false
return
false
}
}
}
}
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddPreluKernel.swift
浏览文件 @
7c216695
...
@@ -135,7 +135,7 @@ class ConvAddPreluKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -135,7 +135,7 @@ class ConvAddPreluKernel<P: PrecisionProtocol>: Kernel, Computable {
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
inMetalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
))
let
inMetalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
)
,
addParam
:
ElementwiseAddMetalParam
()
)
// print("metal param: ")
// print("metal param: ")
// print(inMetalParam)
// print(inMetalParam)
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvAddReluKernel.swift
浏览文件 @
7c216695
...
@@ -29,6 +29,7 @@ public struct MetalConvParam {
...
@@ -29,6 +29,7 @@ public struct MetalConvParam {
let
oC
:
UInt16
let
oC
:
UInt16
let
hasAddOp
:
UInt16
let
hasAddOp
:
UInt16
let
hasReluOp
:
UInt16
let
hasReluOp
:
UInt16
let
addParam
:
ElementwiseAddMetalParam
}
}
@available
(
iOS
11.0
,
*
)
@available
(
iOS
11.0
,
*
)
...
@@ -124,7 +125,7 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -124,7 +125,7 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
if
#available(iOS 11.0, *)
,
(
initContext
.
useMPS
||
initContext
.
useAggressiveOptimization
)
{
if
#available(iOS 11.0, *)
,
(
initContext
.
useMPS
||
initContext
.
useAggressiveOptimization
)
{
let
inputChannel
=
param
.
input
.
tensorDim
[
1
]
let
inputChannel
=
param
.
input
.
tensorDim
[
1
]
let
outputChannel
=
param
.
output
.
tensorDim
[
1
]
let
outputChannel
=
param
.
output
.
tensorDim
[
1
]
if
(
inputChannel
==
1
||
inputChannel
>
4
)
&&
(
outputChannel
==
1
||
outputChannel
>
4
)
{
if
inputChannel
>
4
&&
outputChannel
>
4
{
shouldUseMPS
=
true
shouldUseMPS
=
true
}
}
}
}
...
@@ -135,6 +136,11 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -135,6 +136,11 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
if
!
isDepthWise
&&
param
.
groups
>
1
{
if
!
isDepthWise
&&
param
.
groups
>
1
{
shouldUseMPS
=
false
shouldUseMPS
=
false
}
}
if
type
(
of
:
self
)
.
hasAddOp
()
{
if
!
(
type
(
of
:
self
)
.
canAddUseMPS
(
param
:
param
))
{
shouldUseMPS
=
false
}
}
if
shouldUseMPS
{
if
shouldUseMPS
{
super
.
init
(
device
:
device
,
inFunctionName
:
nil
,
initContext
:
initContext
)
super
.
init
(
device
:
device
,
inFunctionName
:
nil
,
initContext
:
initContext
)
setupWithMPS
(
device
:
device
,
param
:
param
)
setupWithMPS
(
device
:
device
,
param
:
param
)
...
@@ -195,11 +201,11 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -195,11 +201,11 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
param
.
input
.
useMPS
=
true
param
.
input
.
useMPS
=
true
param
.
output
.
useMPS
=
true
param
.
output
.
useMPS
=
true
if
#available(iOS 11.3, *)
{
if
#available(iOS 11.3, *)
{
if
param
.
y
!=
nil
{
if
type
(
of
:
self
)
.
hasAddOp
()
&&
type
(
of
:
self
)
.
canMPSAddByElement
(
param
:
param
)
&&
!
type
(
of
:
self
)
.
canMPSAddByChannel
(
param
:
param
)
{
mpsAddOp
=
MPSCNNAdd
(
device
:
device
)
mpsAddOp
=
MPSCNNAdd
(
device
:
device
)
if
hasReluOp
()
{
mpsReluOp
=
MPSCNNNeuronReLU
(
device
:
device
,
a
:
0.0
)
}
}
if
type
(
of
:
self
)
.
hasReluOp
()
{
mpsReluOp
=
MPSCNNNeuronReLU
(
device
:
device
,
a
:
0.0
)
}
}
}
}
let
neuronFilter
:
MPSCNNNeuron
?
=
param
.
y
!=
nil
?
nil
:
(
neuronFilterForMPSLayer
(
device
:
device
)
as?
MPSCNNNeuron
)
let
neuronFilter
:
MPSCNNNeuron
?
=
param
.
y
!=
nil
?
nil
:
(
neuronFilterForMPSLayer
(
device
:
device
)
as?
MPSCNNNeuron
)
...
@@ -217,7 +223,11 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -217,7 +223,11 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
desc
.
strideInPixelsX
=
Int
(
param
.
stride
[
0
])
desc
.
strideInPixelsX
=
Int
(
param
.
stride
[
0
])
desc
.
strideInPixelsY
=
Int
(
param
.
stride
[
1
])
desc
.
strideInPixelsY
=
Int
(
param
.
stride
[
1
])
let
_
=
param
.
filter
.
convert
(
converter
:
MPSPointerConverter
<
P
>.
init
())
let
_
=
param
.
filter
.
convert
(
converter
:
MPSPointerConverter
<
P
>.
init
())
let
dataSource
=
ConvDataSource
.
init
(
inDesc
:
desc
,
inWeights
:
param
.
filter
,
inBiasTerms
:
param
.
yTensor
)
var
biasTerms
:
Tensor
<
P
>
?
=
nil
if
type
(
of
:
self
)
.
hasAddOp
()
&&
type
(
of
:
self
)
.
canMPSAddByChannel
(
param
:
param
)
{
biasTerms
=
param
.
yTensor
}
let
dataSource
=
ConvDataSource
.
init
(
inDesc
:
desc
,
inWeights
:
param
.
filter
,
inBiasTerms
:
biasTerms
)
let
conv
=
MPSCNNConvolution
.
init
(
device
:
device
,
weights
:
dataSource
)
let
conv
=
MPSCNNConvolution
.
init
(
device
:
device
,
weights
:
dataSource
)
conv
.
offset
=
MPSOffset
.
init
(
x
:
offsetX
,
y
:
offsetY
,
z
:
0
)
conv
.
offset
=
MPSOffset
.
init
(
x
:
offsetX
,
y
:
offsetY
,
z
:
0
)
...
@@ -233,7 +243,11 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -233,7 +243,11 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
inMetalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
hasAddOp
()
?
1
:
0
),
hasReluOp
:
UInt16
(
hasReluOp
()
?
1
:
0
))
var
addParam
=
ElementwiseAddMetalParam
()
if
let
inputY
=
param
.
y
{
addParam
=
ElementwiseAddKernel
<
P
>.
metalParamFrom
(
inputX
:
param
.
output
,
inputY
:
inputY
,
axis
:
param
.
axis
)
}
let
inMetalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
type
(
of
:
self
)
.
hasAddOp
()
?
1
:
0
),
hasReluOp
:
UInt16
(
type
(
of
:
self
)
.
hasReluOp
()
?
1
:
0
),
addParam
:
addParam
)
metalParam
=
inMetalParam
metalParam
=
inMetalParam
if
type
(
of
:
self
)
.
isWinoGrad
(
functionName
:
functionName
)
{
if
type
(
of
:
self
)
.
isWinoGrad
(
functionName
:
functionName
)
{
...
@@ -304,7 +318,7 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -304,7 +318,7 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
}
}
open
func
neuronFilterForMPSLayer
(
device
:
MTLDevice
)
->
AnyObject
?
{
open
func
neuronFilterForMPSLayer
(
device
:
MTLDevice
)
->
AnyObject
?
{
if
hasReluOp
()
{
if
type
(
of
:
self
)
.
hasReluOp
()
{
if
#available(iOS 10.0, *)
{
if
#available(iOS 10.0, *)
{
return
MPSCNNNeuronReLU
(
device
:
device
,
a
:
0
)
return
MPSCNNNeuronReLU
(
device
:
device
,
a
:
0
)
}
}
...
@@ -312,11 +326,29 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -312,11 +326,29 @@ class ConvAddReluKernel<P: PrecisionProtocol>: Kernel, Computable {
return
nil
return
nil
}
}
open
func
hasAddOp
()
->
Bool
{
open
class
func
canAddUseMPS
(
param
:
ConvAddReluParam
<
P
>
)
->
Bool
{
return
canMPSAddByChannel
(
param
:
param
)
||
canMPSAddByElement
(
param
:
param
)
}
private
class
func
canMPSAddByChannel
(
param
:
ConvAddReluParam
<
P
>
)
->
Bool
{
if
let
yTensor
=
param
.
yTensor
,
yTensor
.
dim
.
cout
()
==
1
{
return
true
}
return
false
}
private
class
func
canMPSAddByElement
(
param
:
ConvAddReluParam
<
P
>
)
->
Bool
{
if
let
y
=
param
.
y
,
y
.
dim
.
dims
==
param
.
input
.
dim
.
dims
{
return
true
}
return
false
}
open
class
func
hasAddOp
()
->
Bool
{
return
true
return
true
}
}
open
func
hasReluOp
()
->
Bool
{
open
class
func
hasReluOp
()
->
Bool
{
return
true
return
true
}
}
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvBNReluKernel.swift
浏览文件 @
7c216695
...
@@ -105,7 +105,7 @@ class ConvBNReluKernel<P: PrecisionProtocol>: Kernel, Computable, Testable {
...
@@ -105,7 +105,7 @@ class ConvBNReluKernel<P: PrecisionProtocol>: Kernel, Computable, Testable {
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
metalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
))
metalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
0
),
hasReluOp
:
UInt16
(
0
)
,
addParam
:
ElementwiseAddMetalParam
()
)
var
invs
:
[
P
]
=
[]
var
invs
:
[
P
]
=
[]
let
varianceContents
=
param
.
variance
.
buffer
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
let
varianceContents
=
param
.
variance
.
buffer
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvKernel.swift
浏览文件 @
7c216695
...
@@ -66,7 +66,7 @@ class ConvKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -66,7 +66,7 @@ class ConvKernel<P: PrecisionProtocol>: Kernel, Computable {
throw
PaddleMobileError
.
predictError
(
message
:
" encode is nil"
)
throw
PaddleMobileError
.
predictError
(
message
:
" encode is nil"
)
}
}
encoder
.
setTexture
(
param
.
input
.
metalTexture
,
index
:
0
)
encoder
.
setTexture
(
param
.
input
.
metalTexture
,
index
:
0
)
encoder
.
setTexture
(
param
.
output
.
metalTexture
,
index
:
1
)
encoder
.
setTexture
(
param
.
output
.
metalTexture
,
index
:
2
)
encoder
.
setBytes
(
&
metalParam
,
length
:
MemoryLayout
<
MetalConvParam
>.
size
,
index
:
0
)
encoder
.
setBytes
(
&
metalParam
,
length
:
MemoryLayout
<
MetalConvParam
>.
size
,
index
:
0
)
encoder
.
setBuffer
(
param
.
filter
.
buffer
,
offset
:
0
,
index
:
1
)
encoder
.
setBuffer
(
param
.
filter
.
buffer
,
offset
:
0
,
index
:
1
)
encoder
.
setBuffer
(
blankTensor
?
.
buffer
,
offset
:
0
,
index
:
2
)
encoder
.
setBuffer
(
blankTensor
?
.
buffer
,
offset
:
0
,
index
:
2
)
...
@@ -111,7 +111,7 @@ class ConvKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -111,7 +111,7 @@ class ConvKernel<P: PrecisionProtocol>: Kernel, Computable {
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
iC
=
param
.
input
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
fC
=
param
.
filter
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
oC
=
param
.
output
.
tensorDim
[
1
];
let
inMetalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
hasAddOp
()
?
1
:
0
),
hasReluOp
:
UInt16
(
hasReluOp
()
?
1
:
0
))
let
inMetalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
dilationX
:
UInt16
(
param
.
dilations
[
0
]),
dilationY
:
UInt16
(
param
.
dilations
[
1
]),
groups
:
UInt16
(
param
.
groups
),
iC
:
UInt16
(
iC
),
fC
:
UInt16
(
fC
),
oC
:
UInt16
(
oC
),
hasAddOp
:
UInt16
(
hasAddOp
()
?
1
:
0
),
hasReluOp
:
UInt16
(
hasReluOp
()
?
1
:
0
)
,
addParam
:
ElementwiseAddMetalParam
()
)
metalParam
=
inMetalParam
metalParam
=
inMetalParam
if
type
(
of
:
self
)
.
isWinoGrad
(
functionName
:
functionName
)
{
if
type
(
of
:
self
)
.
isWinoGrad
(
functionName
:
functionName
)
{
...
@@ -130,7 +130,7 @@ class ConvKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -130,7 +130,7 @@ class ConvKernel<P: PrecisionProtocol>: Kernel, Computable {
}
else
if
param
.
filter
.
channel
==
1
&&
param
.
filter
.
n
==
param
.
input
.
tensorDim
[
1
]
{
}
else
if
param
.
filter
.
channel
==
1
&&
param
.
filter
.
n
==
param
.
input
.
tensorDim
[
1
]
{
if
useAggressiveOptimization
{
if
useAggressiveOptimization
{
let
couldUseWinograd
=
param
.
filter
.
width
==
3
&&
param
.
filter
.
height
==
3
let
couldUseWinograd
=
param
.
filter
.
width
==
3
&&
param
.
filter
.
height
==
3
&&
param
.
filter
.
n
=
=
16
&&
param
.
stride
[
0
]
==
1
&&
param
.
stride
[
1
]
==
1
&&
param
.
filter
.
n
<
=
16
&&
param
.
stride
[
0
]
==
1
&&
param
.
stride
[
1
]
==
1
&&
param
.
dilations
[
0
]
==
1
&&
param
.
dilations
[
1
]
==
1
&&
param
.
dilations
[
0
]
==
1
&&
param
.
dilations
[
1
]
==
1
if
couldUseWinograd
{
if
couldUseWinograd
{
return
"depthwise_conv_add_relu_3x3_half_winograd"
return
"depthwise_conv_add_relu_3x3_half_winograd"
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ConvReluKernel.swift
浏览文件 @
7c216695
...
@@ -16,11 +16,11 @@ import Foundation
...
@@ -16,11 +16,11 @@ import Foundation
import
MetalPerformanceShaders
import
MetalPerformanceShaders
class
ConvReluKernel
<
P
:
PrecisionProtocol
>
:
ConvAddReluKernel
<
P
>
{
class
ConvReluKernel
<
P
:
PrecisionProtocol
>
:
ConvAddReluKernel
<
P
>
{
override
func
hasAddOp
()
->
Bool
{
override
class
func
hasAddOp
()
->
Bool
{
return
false
return
false
}
}
override
func
hasReluOp
()
->
Bool
{
override
class
func
hasReluOp
()
->
Bool
{
return
true
return
true
}
}
}
}
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ElementwiseAddKernel.swift
浏览文件 @
7c216695
...
@@ -34,27 +34,8 @@ class ElementwiseAddKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -34,27 +34,8 @@ class ElementwiseAddKernel<P: PrecisionProtocol>: Kernel, Computable {
throw
error
throw
error
}
}
metalParam
=
ElementwiseAdd
MetalParam
.
init
(
)
metalParam
=
ElementwiseAdd
Kernel
.
metalParamFrom
(
inputX
:
param
.
inputX
,
inputY
:
param
.
inputY
,
axis
:
param
.
axis
)
let
xdim
:
[
Int32
]
=
(
0
..<
4
)
.
map
{
Int32
(
param
.
inputX
.
dim
[
$0
])
}
let
ydim
:
[
Int32
]
=
(
0
..<
4
)
.
map
{
Int32
(
param
.
inputY
.
dim
[
$0
])
}
let
xtrans
:
[
Int32
]
=
(
0
..<
4
)
.
map
{
Int32
(
param
.
inputX
.
transpose
[
$0
])
}
let
ytrans
:
[
Int32
]
=
(
0
..<
4
)
.
map
{
Int32
(
param
.
inputY
.
transpose
[
$0
])
}
metalParam
.
xdim
=
(
xdim
[
0
],
xdim
[
1
],
xdim
[
2
],
xdim
[
3
])
metalParam
.
ydim
=
(
ydim
[
0
],
ydim
[
1
],
ydim
[
2
],
ydim
[
3
])
metalParam
.
xtrans
=
(
xtrans
[
0
],
xtrans
[
1
],
xtrans
[
2
],
xtrans
[
3
])
metalParam
.
ytrans
=
(
ytrans
[
0
],
ytrans
[
1
],
ytrans
[
2
],
ytrans
[
3
])
if
param
.
axis
==
-
1
{
metalParam
.
axis
=
4
-
Int32
(
param
.
inputY
.
tensorDim
.
cout
())
}
else
{
metalParam
.
axis
=
4
-
Int32
(
param
.
inputX
.
tensorDim
.
cout
())
+
Int32
(
param
.
axis
)
}
metalParam
.
ylen
=
Int32
(
param
.
inputY
.
tensorDim
.
cout
())
if
(
param
.
inputX
.
dim
==
param
.
inputY
.
dim
)
&&
(
param
.
inputX
.
transpose
==
param
.
inputY
.
transpose
)
{
// print("===> elementwise_add fast!!!")
metalParam
.
fast
=
1
}
if
GlobalConfig
.
shared
.
computePrecision
==
.
Float32
{
if
GlobalConfig
.
shared
.
computePrecision
==
.
Float32
{
super
.
init
(
device
:
device
,
inFunctionName
:
"elementwise_add"
,
initContext
:
initContext
)
super
.
init
(
device
:
device
,
inFunctionName
:
"elementwise_add"
,
initContext
:
initContext
)
}
else
if
GlobalConfig
.
shared
.
computePrecision
==
.
Float16
{
}
else
if
GlobalConfig
.
shared
.
computePrecision
==
.
Float16
{
...
@@ -75,4 +56,29 @@ class ElementwiseAddKernel<P: PrecisionProtocol>: Kernel, Computable {
...
@@ -75,4 +56,29 @@ class ElementwiseAddKernel<P: PrecisionProtocol>: Kernel, Computable {
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
output
.
metalTexture
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
output
.
metalTexture
)
encoder
.
endEncoding
()
encoder
.
endEncoding
()
}
}
static
func
metalParamFrom
(
inputX
:
Texture
,
inputY
:
Texture
,
axis
:
Int
)
->
ElementwiseAddMetalParam
{
var
metalParam
=
ElementwiseAddMetalParam
.
init
()
let
xdim
:
[
Int32
]
=
(
0
..<
4
)
.
map
{
Int32
(
inputX
.
dim
[
$0
])
}
let
ydim
:
[
Int32
]
=
(
0
..<
4
)
.
map
{
Int32
(
inputY
.
dim
[
$0
])
}
let
xtrans
:
[
Int32
]
=
(
0
..<
4
)
.
map
{
Int32
(
inputX
.
transpose
[
$0
])
}
let
ytrans
:
[
Int32
]
=
(
0
..<
4
)
.
map
{
Int32
(
inputY
.
transpose
[
$0
])
}
metalParam
.
xdim
=
(
xdim
[
0
],
xdim
[
1
],
xdim
[
2
],
xdim
[
3
])
metalParam
.
ydim
=
(
ydim
[
0
],
ydim
[
1
],
ydim
[
2
],
ydim
[
3
])
metalParam
.
xtrans
=
(
xtrans
[
0
],
xtrans
[
1
],
xtrans
[
2
],
xtrans
[
3
])
metalParam
.
ytrans
=
(
ytrans
[
0
],
ytrans
[
1
],
ytrans
[
2
],
ytrans
[
3
])
if
axis
==
-
1
{
metalParam
.
axis
=
4
-
Int32
(
inputY
.
tensorDim
.
cout
())
}
else
{
metalParam
.
axis
=
4
-
Int32
(
inputX
.
tensorDim
.
cout
())
+
Int32
(
axis
)
}
metalParam
.
ylen
=
Int32
(
inputY
.
tensorDim
.
cout
())
if
(
inputX
.
dim
==
inputY
.
dim
)
&&
(
inputX
.
transpose
==
inputY
.
transpose
)
{
// print("===> elementwise_add fast!!!")
metalParam
.
fast
=
1
}
return
metalParam
}
}
}
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ReluKernel.swift
浏览文件 @
7c216695
...
@@ -26,6 +26,11 @@ class ReluKernel<P: PrecisionProtocol>: Kernel, Computable{
...
@@ -26,6 +26,11 @@ class ReluKernel<P: PrecisionProtocol>: Kernel, Computable{
}
}
required
init
(
device
:
MTLDevice
,
param
:
ReluParam
<
P
>
,
initContext
:
InitContext
)
throws
{
required
init
(
device
:
MTLDevice
,
param
:
ReluParam
<
P
>
,
initContext
:
InitContext
)
throws
{
do
{
try
param
.
output
.
initTexture
(
device
:
device
,
inTranspose
:
param
.
input
.
transpose
,
computePrecision
:
GlobalConfig
.
shared
.
computePrecision
)
}
catch
let
error
{
throw
error
}
if
GlobalConfig
.
shared
.
computePrecision
==
.
Float32
{
if
GlobalConfig
.
shared
.
computePrecision
==
.
Float32
{
super
.
init
(
device
:
device
,
inFunctionName
:
"relu"
,
initContext
:
initContext
)
super
.
init
(
device
:
device
,
inFunctionName
:
"relu"
,
initContext
:
initContext
)
}
else
if
GlobalConfig
.
shared
.
computePrecision
==
.
Float16
{
}
else
if
GlobalConfig
.
shared
.
computePrecision
==
.
Float16
{
...
...
metal/paddle-mobile/paddle-mobile/Src/Operators/Kernels/ScaleOpKernel.swift
浏览文件 @
7c216695
...
@@ -34,10 +34,10 @@ class ScaleOpKernel<P: PrecisionProtocol>: Kernel, Computable{
...
@@ -34,10 +34,10 @@ class ScaleOpKernel<P: PrecisionProtocol>: Kernel, Computable{
}
}
var
shouldUseMPS
=
false
var
shouldUseMPS
=
false
if
initContext
.
useMPS
&&
param
.
biasAfterScale
{
if
initContext
.
useMPS
&&
param
.
biasAfterScale
&&
param
.
input
.
tensorDim
.
cout
()
==
4
&&
param
.
output
.
tensorDim
.
cout
()
==
4
{
let
inputChannel
=
param
.
input
.
tensorDim
[
1
]
let
inputChannel
=
param
.
input
.
tensorDim
[
1
]
let
outputChannel
=
param
.
output
.
tensorDim
[
1
]
let
outputChannel
=
param
.
output
.
tensorDim
[
1
]
if
(
inputChannel
==
1
||
inputChannel
>
4
)
&&
(
outputChannel
==
1
||
outputChannel
>
4
)
{
if
(
inputChannel
>
4
)
&&
(
outputChannel
>
4
)
{
shouldUseMPS
=
true
shouldUseMPS
=
true
}
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录