diff --git a/lite/kernels/mlu/bridges/dropout_op.cc b/lite/kernels/mlu/bridges/dropout_op.cc index 558d4018d70f4fad6fa191610e82f9774e210072..75024d8430779bcc99a6defb4b0b63dfd7d1737d 100644 --- a/lite/kernels/mlu/bridges/dropout_op.cc +++ b/lite/kernels/mlu/bridges/dropout_op.cc @@ -38,11 +38,12 @@ int DropoutConverter(void* ctx, OpLite* op, KernelBase* kernel) { auto output_tensor = graph->AddNode( out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, graph->FPType()); - // if(op_info->HasAttr("is_test")){ - // auto is_test = op_info->GetAttr("is_test"); - // CHECK(is_test != true); // The dropout op has no training - // implementation, only inference implementation - // } + // is_test is true by default + // if(op_info->HasAttr("is_test")){ + // auto is_test = op_info->GetAttr("is_test"); + // CHECK(is_test != true); + // } + auto dropout_implementation = op_info->GetAttr("dropout_implementation"); auto dropout_prob = op_info->GetAttr("dropout_prob"); @@ -53,12 +54,12 @@ int DropoutConverter(void* ctx, OpLite* op, KernelBase* kernel) { float beta = 0.; std::vector shape = {1, 1, 1, 1}; - - std::string prefix = string_format("_%p", op); + std::string alpha_var_name = string_format("dropout_alpha_%p", op); + std::string beta_var_name = string_format("dropout_beta_%p", op); auto alpha_tensor = graph->AddNode( - "Alpha" + prefix, shape, CNML_CONST, CNML_NHWC, graph->FPType()); + alpha_var_name, shape, CNML_CONST, CNML_NHWC, graph->FPType()); auto beta_tensor = graph->AddNode( - "Beta" + prefix, shape, CNML_CONST, CNML_NHWC, graph->FPType()); + beta_var_name, shape, CNML_CONST, CNML_NHWC, graph->FPType()); graph->BindConstRawData("Alpha" + prefix, &alpha, 1); graph->BindConstRawData("Beta" + prefix, &beta, 1);