Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
706a44d8
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
706a44d8
编写于
3月 09, 2020
作者:
X
xiaogang
提交者:
GitHub
3月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Opencl eltwisesub (#3116)
* feat: add opencl elementwise_sub op & ut
上级
b086e835
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
681 addition
and
1 deletion
+681
-1
lite/backends/opencl/cl_kernel/image/elementwise_sub_kernel.cl
...backends/opencl/cl_kernel/image/elementwise_sub_kernel.cl
+85
-0
lite/kernels/opencl/CMakeLists.txt
lite/kernels/opencl/CMakeLists.txt
+9
-1
lite/kernels/opencl/elementwise_sub_image_compute.cc
lite/kernels/opencl/elementwise_sub_image_compute.cc
+173
-0
lite/kernels/opencl/elementwise_sub_image_compute.h
lite/kernels/opencl/elementwise_sub_image_compute.h
+53
-0
lite/kernels/opencl/elementwise_sub_image_compute_test.cc
lite/kernels/opencl/elementwise_sub_image_compute_test.cc
+292
-0
lite/kernels/opencl/fusion_elementwise_sub_activation_image_compute.cc
...opencl/fusion_elementwise_sub_activation_image_compute.cc
+69
-0
未找到文件。
lite/backends/opencl/cl_kernel/image/elementwise_sub_kernel.cl
0 → 100644
浏览文件 @
706a44d8
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
<cl_common.h>
__kernel
void
elementwise_sub
(
__read_only
image2d_t
input,
__read_only
image2d_t
bias,
__write_only
image2d_t
outputImage
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
coords
;
coords.x
=
x
;
coords.y
=
y
;
CL_DTYPE4
in
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
coords
)
;
CL_DTYPE4
biase
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
bias,
sampler,
coords
)
;
CL_DTYPE4
output
=
activation_type4
(
in
-
biase
)
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
outputImage,coords,output
)
;
}
__kernel
void
channel_sub
(
__read_only
image2d_t
input,
__read_only
image2d_t
bias,
__write_only
image2d_t
outputImage,
int
w
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
coords
;
coords.x
=
x
;
coords.y
=
y
;
int2
coords_bias
;
coords_bias.x
=
x
%
w
;
coords_bias.y
=
0
;
CL_DTYPE4
in
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
coords
)
;
CL_DTYPE4
biase
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
bias,
sampler,
coords_bias
)
;
CL_DTYPE4
output
=
in
-
(
CL_DTYPE4
)(
biase.x
)
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
outputImage,
coords,
output
)
;
}
__kernel
void
width_sub
(
__read_only
image2d_t
input,
__read_only
image2d_t
bias,
__write_only
image2d_t
outputImage,
int
w
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
coords
;
coords.x
=
x
;
coords.y
=
y
;
int2
coords_bias
;
coords_bias.x
=
x
%
w
;
coords_bias.y
=
0
;
CL_DTYPE4
in
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
coords
)
;
CL_DTYPE4
biase
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
bias,
sampler,
coords_bias
)
;
CL_DTYPE4
output
;
output.x
=
in.x
-
biase.x
;
output.y
=
in.y
-
biase.x
;
output.z
=
in.z
-
biase.x
;
output.w
=
in.w
-
biase.x
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
outputImage,
coords,
output
)
;
}
lite/kernels/opencl/CMakeLists.txt
浏览文件 @
706a44d8
...
...
@@ -9,10 +9,14 @@ set(cl_kernel_deps op_params cl_runtime cl_context cl_wrapper cl_target_wrapper
#####################
# basic
add_kernel
(
elementwise_add_opencl OPENCL basic SRCS elementwise_add_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
elementwise_sub_opencl OPENCL basic SRCS elementwise_sub_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
elementwise_mul_opencl OPENCL basic SRCS elementwise_mul_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
fusion_elementwise_add_activation_opencl
OPENCL basic SRCS fusion_elementwise_add_activation_image_compute.cc
DEPS elementwise_add_opencl
${
cl_kernel_deps
}
)
add_kernel
(
fusion_elementwise_sub_activation_opencl
OPENCL basic SRCS fusion_elementwise_sub_activation_image_compute.cc
DEPS elementwise_sub_opencl
${
cl_kernel_deps
}
)
add_kernel
(
pool_opencl OPENCL basic SRCS pool_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
activation_opencl OPENCL basic SRCS activation_image_compute.cc DEPS
${
cl_kernel_deps
}
)
...
...
@@ -66,7 +70,11 @@ lite_cc_test(test_layout_image_opencl SRCS layout_image_compute_test.cc
DEPS layout_opencl op_registry program context
)
lite_cc_test
(
test_elementwise_add_image_opencl SRCS elementwise_add_image_compute_test.cc
DEPS elementwise_add_opencl fusion_elementwise_add_activation_opencl op_registry program context
)
DEPS elementwise_add_opencl fusion_elementwise_add_activation_opencl op_registry program context
ARGS --cl_path=
${
CMAKE_SOURCE_DIR
}
/lite/backends/opencl
)
lite_cc_test
(
test_elementwise_sub_image_opencl SRCS elementwise_sub_image_compute_test.cc
DEPS elementwise_sub_opencl fusion_elementwise_sub_activation_opencl op_registry program context
ARGS --cl_path=
${
CMAKE_SOURCE_DIR
}
/lite/backends/opencl
)
lite_cc_test
(
test_grid_sampler_image_opencl SRCS grid_sampler_image_compute_test.cc
DEPS grid_sampler_opencl op_registry program context
)
...
...
lite/kernels/opencl/elementwise_sub_image_compute.cc
0 → 100644
浏览文件 @
706a44d8
// Copyright (c) 2019 PsublePsuble Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/opencl/elementwise_sub_image_compute.h"
#include <memory>
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/op_registry.h"
#include "lite/utils/replace_stl/stream.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
void
ElementwiseSubImageCompute
::
PrepareForRun
()
{
ele_param_
=
param_
.
get_mutable
<
param_t
>
();
auto
*
x
=
ele_param_
->
X
;
auto
*
y
=
ele_param_
->
Y
;
auto
axis
=
ele_param_
->
axis
;
if
(
y
->
dims
().
size
()
==
4
)
{
kernel_func_name_
=
"elementwise_sub"
;
// y: ImageDefault
}
else
if
(
y
->
dims
().
size
()
==
1
)
{
if
(
axis
==
x
->
dims
().
size
()
-
1
)
{
kernel_func_name_
=
"width_sub"
;
// y: ImageDefault
}
else
if
(
axis
==
x
->
dims
().
size
()
-
3
)
{
kernel_func_name_
=
"channel_sub"
;
// y: ImageFolder
}
else
{
LOG
(
FATAL
)
<<
"ElementwiseSubImage doesn't support axis:"
<<
axis
<<
", x->dims().size():"
<<
x
->
dims
().
size
()
<<
", y->dims.size():"
<<
y
->
dims
().
size
();
}
}
else
{
LOG
(
FATAL
)
<<
"ElementwiseSubImage doesn't support axis:"
<<
axis
<<
", x->dims().size():"
<<
x
->
dims
().
size
()
<<
", y->dims.size():"
<<
y
->
dims
().
size
();
}
VLOG
(
4
)
<<
"kernel_func_name_:"
<<
kernel_func_name_
;
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"image/elementwise_sub_kernel.cl"
,
build_options_
);
}
void
ElementwiseSubImageCompute
::
Run
()
{
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
auto
*
x
=
ele_param_
->
X
;
auto
*
y
=
ele_param_
->
Y
;
auto
*
out
=
ele_param_
->
Out
;
auto
axis
=
ele_param_
->
axis
;
VLOG
(
4
)
<<
"x->target():"
<<
TargetToStr
(
x
->
target
());
VLOG
(
4
)
<<
"y->target():"
<<
TargetToStr
(
y
->
target
());
VLOG
(
4
)
<<
"out->target():"
<<
TargetToStr
(
out
->
target
());
VLOG
(
4
)
<<
"x->dims():"
<<
x
->
dims
();
VLOG
(
4
)
<<
"y->dims():"
<<
y
->
dims
();
VLOG
(
4
)
<<
"out->dims():"
<<
out
->
dims
();
VLOG
(
4
)
<<
"axis:"
<<
axis
;
paddle
::
lite
::
CLImageConverterDefault
default_convertor
;
auto
x_img_shape
=
default_convertor
.
InitImageDimInfoWith
(
x
->
dims
());
// w, h
auto
x_img_width
=
x_img_shape
[
0
];
auto
x_img_height
=
x_img_shape
[
1
];
auto
out_img_shape
=
default_convertor
.
InitImageDimInfoWith
(
out
->
dims
());
// w, h
auto
y_img_shape
=
default_convertor
.
InitImageDimInfoWith
(
y
->
dims
());
auto
*
x_img
=
x
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
y_img
=
y
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
out_img
=
out
->
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_img_shape
[
0
],
out_img_shape
[
1
]);
VLOG
(
4
)
<<
"x_img_shape[w,h]:"
<<
x_img_width
<<
" "
<<
x_img_height
;
VLOG
(
4
)
<<
"y_img_shape[w,h]:"
<<
y_img_shape
[
0
]
<<
" "
<<
y_img_shape
[
1
];
VLOG
(
4
)
<<
"out_img_shape[w,h]:"
<<
out_img_shape
[
0
]
<<
" "
<<
out_img_shape
[
1
];
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
int
arg_idx
=
0
;
auto
y_dims
=
y
->
dims
();
if
(
y_dims
.
size
()
==
4
)
{
cl_int
status
=
kernel
.
setArg
(
arg_idx
,
*
x_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
y_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
out_img
);
CL_CHECK_FATAL
(
status
);
}
else
if
(
y_dims
.
size
()
==
1
)
{
if
(
axis
==
x
->
dims
().
size
()
-
1
||
axis
==
x
->
dims
().
size
()
-
3
)
{
int
tensor_w
=
x
->
dims
()[
x
->
dims
().
size
()
-
1
];
VLOG
(
4
)
<<
"tensor_w:"
<<
tensor_w
;
cl_int
status
=
kernel
.
setArg
(
arg_idx
,
*
x_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
y_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
out_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
static_cast
<
const
int
>
(
tensor_w
));
CL_CHECK_FATAL
(
status
);
}
else
{
LOG
(
FATAL
)
<<
"ElementwiseSubImage doesn't support axis:"
<<
axis
<<
", x->dims().size():"
<<
x
->
dims
().
size
()
<<
", y->dims.size():"
<<
y
->
dims
().
size
();
}
}
else
{
LOG
(
FATAL
)
<<
"ElementwiseSubImage doesn't support axis:"
<<
axis
<<
", x->dims().size():"
<<
x
->
dims
().
size
()
<<
", y->dims.size():"
<<
y
->
dims
().
size
();
}
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
x_img_width
),
static_cast
<
cl
::
size_type
>
(
x_img_height
)};
VLOG
(
4
)
<<
"global_work_size:[2D]:"
<<
x_img_width
<<
" "
<<
x_img_height
;
auto
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_img
,
event_
);
}
}
// namespace opencl
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
namespace
ocl
=
paddle
::
lite
::
kernels
::
opencl
;
// TODO(ysh329): May need fix.
// "Y" may from constant value like conv bias (kARM, need do cl_image_converter
// on CPU);
// may from anther branch like "X" (kOpenCL, nothing to do).
// Consider 2 situations have different actions when pass running(pick kernel),
// set target of "Y" as kOpenCL temporarily.
REGISTER_LITE_KERNEL
(
elementwise_sub
,
kOpenCL
,
kFP16
,
kImageDefault
,
ocl
::
ElementwiseSubImageCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
Finalize
();
lite/kernels/opencl/elementwise_sub_image_compute.h
0 → 100644
浏览文件 @
706a44d8
// Copyright (c) 2019 PsublePsuble Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/core/kernel.h"
#include "lite/operators/op_params.h"
#include "lite/utils/cp_logging.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
class
ElementwiseSubImageCompute
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
)
>
{
public:
using
param_t
=
operators
::
ElementwiseParam
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
std
::
string
doc
()
const
override
{
return
"ElementwiseSub using cl::Image2D, kFP16"
;
}
protected:
param_t
*
ele_param_
{
nullptr
};
std
::
string
kernel_func_name_
{
"elementwise_sub"
};
std
::
string
build_options_
{
"-DCL_DTYPE_half"
};
std
::
shared_ptr
<
cl
::
Event
>
event_
{
new
cl
::
Event
};
};
}
// namespace opencl
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/opencl/elementwise_sub_image_compute_test.cc
0 → 100644
浏览文件 @
706a44d8
// Copyright (c) 2019 PsublePsuble Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <algorithm>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
namespace
paddle
{
namespace
lite
{
template
<
typename
dtype
>
void
fill_data
(
dtype
*
x
,
const
int
length
,
int
set_value
=
-
1
)
{
if
(
set_value
==
-
1
)
{
for
(
size_t
idx
=
0
;
idx
<
length
;
++
idx
)
{
x
[
idx
]
=
idx
;
}
}
else
if
(
set_value
!=
-
1
)
{
for
(
size_t
idx
=
0
;
idx
<
length
;
++
idx
)
{
x
[
idx
]
=
set_value
;
}
}
}
template
<
typename
dtype
>
void
elementwise_compute_ref
(
const
dtype
*
x_data
,
const
dtype
*
y_data
,
dtype
*
out_data
,
const
DDim
&
x_dims
,
const
DDim
&
y_dims
,
int
axis
,
const
std
::
string
elt_type
,
bool
use_relu
=
false
)
{
if
(
axis
<
0
)
{
axis
=
x_dims
.
size
()
-
y_dims
.
size
();
}
int
batch
=
1
;
int
channels
=
1
;
int
num
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
batch
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
channels
*=
y_dims
[
i
];
}
for
(
int
i
=
y_dims
.
size
()
+
axis
;
i
<
x_dims
.
size
();
++
i
)
{
num
*=
x_dims
[
i
];
}
VLOG
(
4
)
<<
"axis:"
<<
axis
;
VLOG
(
4
)
<<
"batch:"
<<
batch
;
VLOG
(
4
)
<<
"cahnnels:"
<<
channels
;
VLOG
(
4
)
<<
"num:"
<<
num
;
// do elementwise sub/sub/max/...
if
(
elt_type
==
"sub"
&&
axis
==
1
&&
y_dims
.
size
()
==
1
)
{
for
(
int
i
=
0
;
i
<
x_dims
.
production
();
++
i
)
{
auto
w
=
i
%
y_dims
.
production
();
out_data
[
i
]
=
x_data
[
i
]
-
y_data
[
w
];
}
}
else
if
(
elt_type
==
"sub"
)
{
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
din_ptr
-
diny_data
;
if
(
use_relu
)
{
*
dout_ptr
=
std
::
max
(
*
dout_ptr
,
static_cast
<
dtype
>
(
0
));
}
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
else
{
LOG
(
FATAL
)
<<
"unsupported Elementwise type: "
<<
elt_type
<<
std
::
endl
;
}
}
// #define PRINT_RESULT
// image
TEST
(
elementwise_sub_image
,
compute
)
{
LOG
(
INFO
)
<<
"main steps of test: host -> layout(buf2img on cpu) -> "
"elementwise_sub(img) -> "
"layout(img2buf on cpu) "
"-> host"
;
// elementwise_sub's 3 kernels selection routing strategy:
// --------------------------------------------------------
// 1. elementwise_sub: Need y_dim.size() == 4
// 2. elementwise_sub (used by fuse_elementwise_activation op):
// Need y_dim.size() == 4 && act_type == "relu"
// 3. width_sub: Need y_dim.size() == 1 && x_dim.size() == 4 && axis ==
// 3
// 4. channel_sub: Need y_dim.size() == 1 && x_dim.size() == 4 && axis ==
// 1
// dims
const
int
n
=
1
;
const
int
c
=
3
;
const
int
h
=
2
;
const
int
w
=
2
;
const
DDim
x_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
n
,
c
,
h
,
w
});
auto
out_dim
=
x_dim
;
// y_dim / axis / relu_flag
std
::
vector
<
DDim
>
y_dim_v
{
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
n
,
c
,
h
,
w
}),
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
n
,
c
,
h
,
w
}),
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
w
}),
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
w
})};
std
::
vector
<
int
>
axis_v
{
-
1
,
-
1
,
3
,
1
};
std
::
vector
<
bool
>
relu_flag_v
{
false
,
true
,
false
,
false
};
CHECK
(
y_dim_v
.
size
()
==
axis_v
.
size
()
&&
axis_v
.
size
()
==
relu_flag_v
.
size
())
<<
"y_dim_v.size() == axis_v.size() == relu_flag_v.size() should be "
"same, and be corresponding "
"one by one"
;
// start loop
for
(
size_t
case_idx
=
0
;
case_idx
<
y_dim_v
.
size
();
++
case_idx
)
{
auto
y_dim
=
y_dim_v
[
case_idx
];
auto
axis
=
axis_v
[
case_idx
];
auto
relu_flag
=
relu_flag_v
[
case_idx
];
LOG
(
INFO
)
<<
"================== elementwise_sub, case_idx:"
<<
case_idx
+
1
<<
"/"
<<
y_dim_v
.
size
()
<<
" ==================="
;
LOG
(
INFO
)
<<
"x_dim:"
<<
x_dim
;
LOG
(
INFO
)
<<
"y_dim:"
<<
y_dim
;
LOG
(
INFO
)
<<
"out_dim:"
<<
out_dim
;
LOG
(
INFO
)
<<
"axis:"
<<
axis
;
LOG
(
INFO
)
<<
"relu_flag:"
<<
relu_flag
;
// tensor
VLOG
(
4
)
<<
"set tensors about op param"
;
lite
::
Tensor
elesub_x
,
elesub_y
,
elesub_out
;
elesub_x
.
Resize
(
x_dim
);
elesub_y
.
Resize
(
y_dim
);
elesub_out
.
Resize
(
out_dim
);
// initialize tensors
VLOG
(
4
)
<<
"initialize tensors"
;
paddle
::
lite
::
CLImageConverterDefault
default_convertor
;
// x
std
::
vector
<
float
>
x_v
(
x_dim
.
production
());
fill_data
<
float
>
(
x_v
.
data
(),
x_v
.
size
());
// fill with index value
auto
x_img_shape
=
default_convertor
.
InitImageDimInfoWith
(
x_dim
);
// w, h
auto
x_img_w
=
x_img_shape
[
0
];
auto
x_img_h
=
x_img_shape
[
1
];
std
::
vector
<
half_t
>
x_img_v
(
x_img_w
*
x_img_h
*
4
);
// 4: RGBA
default_convertor
.
NCHWToImage
(
x_v
.
data
(),
x_img_v
.
data
(),
x_dim
);
elesub_x
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
x_img_w
,
x_img_h
,
x_img_v
.
data
());
// y
std
::
vector
<
float
>
y_v
(
y_dim
.
production
());
fill_data
<
float
>
(
y_v
.
data
(),
y_v
.
size
());
// fill with index value
auto
y_img_shape
=
default_convertor
.
InitImageDimInfoWith
(
y_dim
);
// w, h
auto
y_img_w
=
y_img_shape
[
0
];
auto
y_img_h
=
y_img_shape
[
1
];
std
::
vector
<
half_t
>
y_img_v
(
y_img_shape
[
0
]
*
y_img_shape
[
1
]
*
4
);
// 4: RGBA
default_convertor
.
NCHWToImage
(
y_v
.
data
(),
y_img_v
.
data
(),
y_dim
);
elesub_y
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
y_img_w
,
y_img_h
,
y_img_v
.
data
());
// out
auto
out_img_shape
=
default_convertor
.
InitImageDimInfoWith
(
out_dim
);
// w, h
auto
out_img_w
=
out_img_shape
[
0
];
auto
out_img_h
=
out_img_shape
[
1
];
elesub_out
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_img_w
,
out_img_h
);
std
::
vector
<
half_t
>
out_img_v
(
out_img_w
*
out_img_h
*
4
);
fill_data
<
half_t
>
(
out_img_v
.
data
(),
out_img_v
.
size
(),
0
);
// fill with zero value
std
::
vector
<
float
>
out_v
(
out_dim
.
production
());
// operator param
operators
::
FusionElementwiseActivationParam
fuseElesubParam
;
// enabled if relu_flag is true
fuseElesubParam
.
X
=
&
elesub_x
;
fuseElesubParam
.
Y
=
&
elesub_y
;
fuseElesubParam
.
Out
=
&
elesub_out
;
fuseElesubParam
.
axis
=
axis
;
fuseElesubParam
.
act_type
=
relu_flag
?
"relu"
:
""
;
operators
::
ElementwiseParam
elesubParam
;
elesubParam
.
X
=
&
elesub_x
;
elesubParam
.
Y
=
&
elesub_y
;
elesubParam
.
Out
=
&
elesub_out
;
elesubParam
.
axis
=
axis
;
auto
op_param
=
relu_flag
?
fuseElesubParam
:
elesubParam
;
// set kernel
auto
elesub_img_kernels
=
KernelRegistry
::
Global
().
Create
(
"elementwise_sub"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
elesub_img_kernels
.
empty
());
auto
elesub_img_kernel
=
std
::
move
(
elesub_img_kernels
.
front
());
VLOG
(
4
)
<<
"get elesub kernel: "
<<
elesub_img_kernel
->
doc
();
// set context and kernel args
VLOG
(
4
)
<<
"set context and kernel args"
;
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
elesub_img_kernel
->
SetParam
(
op_param
);
std
::
unique_ptr
<
KernelContext
>
elesub_img_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
elesub_img_context
->
As
<
OpenCLContext
>
()));
elesub_img_kernel
->
SetContext
(
std
::
move
(
elesub_img_context
));
// run kernel
VLOG
(
4
)
<<
"run kernel"
;
elesub_img_kernel
->
Launch
();
// download gpu result to cpu
const
size_t
cl_image2d_row_pitch
{
0
};
const
size_t
cl_image2d_slice_pitch
{
0
};
TargetWrapperCL
::
ImgcpySync
(
out_img_v
.
data
(),
elesub_out
.
data
<
half_t
,
cl
::
Image2D
>
(),
out_img_w
,
out_img_h
,
cl_image2d_row_pitch
,
cl_image2d_slice_pitch
,
IoDirection
::
DtoH
);
default_convertor
.
ImageToNCHW
(
out_img_v
.
data
(),
out_v
.
data
(),
out_img_shape
,
out_dim
);
// compute cpu reference
std
::
unique_ptr
<
float
[]
>
out_ref
(
new
float
[
out_dim
.
production
()]);
elementwise_compute_ref
<
float
>
(
x_v
.
data
(),
y_v
.
data
(),
out_ref
.
get
(),
x_dim
,
y_dim
,
op_param
.
axis
,
"sub"
,
relu_flag
);
#ifdef PRINT_RESULT // enable to check value of x and y
for
(
int
eidx
=
0
;
eidx
<
out_dim
.
production
();
eidx
++
)
{
auto
value
=
out_v
[
eidx
];
auto
ref_value
=
out_ref
.
get
()[
eidx
];
LOG
(
INFO
)
<<
"1st diff in this case at eidx[from 0]:"
<<
eidx
<<
" / "
<<
out_dim
.
production
()
<<
", x_v["
<<
eidx
<<
"]:"
<<
x_v
[
eidx
]
<<
", value["
<<
eidx
<<
"]:"
<<
value
<<
", ref_value["
<<
eidx
<<
"]:"
<<
ref_value
;
}
for
(
int
i
=
0
;
i
<
y_v
.
size
();
i
++
)
{
LOG
(
INFO
)
<<
"y_v["
<<
i
<<
"]:"
<<
y_v
[
i
];
}
#endif
for
(
int
eidx
=
0
;
eidx
<
out_dim
.
production
();
eidx
++
)
{
auto
value
=
out_v
[
eidx
];
auto
ref_value
=
out_ref
.
get
()[
eidx
];
EXPECT_NEAR
(
value
,
ref_value
,
1e-6
);
if
(
abs
(
value
-
ref_value
)
>
1e-6
)
{
LOG
(
INFO
)
<<
"1st diff in this case at eidx[from 0]:"
<<
eidx
<<
" / "
<<
out_dim
.
production
()
<<
", value["
<<
eidx
<<
"]:"
<<
value
<<
", ref_value["
<<
eidx
<<
"]:"
<<
ref_value
;
break
;
}
}
}
}
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
elementwise_sub
,
kOpenCL
,
kFP16
,
kImageDefault
,
def
);
USE_LITE_KERNEL
(
fusion_elementwise_sub_activation
,
kOpenCL
,
kFP16
,
kImageDefault
,
def
);
lite/kernels/opencl/fusion_elementwise_sub_activation_image_compute.cc
0 → 100644
浏览文件 @
706a44d8
// Copyright (c) 2019 PsublePsuble Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/elementwise_sub_image_compute.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
class
FusionElementwiseSubActivationImageCompute
:
public
ElementwiseSubImageCompute
{
public:
using
param_t
=
operators
::
FusionElementwiseActivationParam
;
void
PrepareForRun
()
override
{
build_options_
+=
" -DRELU"
;
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"image/elementwise_sub_kernel.cl"
,
build_options_
);
ele_param_
=
param_
.
get_mutable
<
param_t
>
();
auto
act_t
=
static_cast
<
param_t
*>
(
ele_param_
)
->
act_type
;
VLOG
(
4
)
<<
"act: "
<<
act_t
;
if
(
act_t
!=
"relu"
)
{
LOG
(
FATAL
)
<<
"Unsupported Activation type: "
<<
act_t
;
}
}
};
}
// namespace opencl
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
namespace
ocl
=
paddle
::
lite
::
kernels
::
opencl
;
REGISTER_LITE_KERNEL
(
fusion_elementwise_sub_activation
,
kOpenCL
,
kFP16
,
kImageDefault
,
ocl
::
FusionElementwiseSubActivationImageCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
Finalize
();
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录