未验证 提交 6f90730a 编写于 作者: Q Qi Li 提交者: GitHub

[X86] add interpolate op, test=develop (#4453) (#4459)

上级 23d2f921
...@@ -63,3 +63,4 @@ math_library(search_fc DEPS blas dynload_mklml) ...@@ -63,3 +63,4 @@ math_library(search_fc DEPS blas dynload_mklml)
# cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info) # cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
math_library(box_coder DEPS math_function) math_library(box_coder DEPS math_function)
math_library(prior_box DEPS math_function) math_library(prior_box DEPS math_function)
math_library(interpolate DEPS math_function)
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "lite/backends/x86/math/interpolate.h"
#include <string>
#include <vector>
#include "lite/backends/x86/math/math_function.h"
namespace paddle {
namespace lite {
namespace x86 {
namespace math {
void bilinear_interp(const float* input_data,
float* output_data,
const float ratio_h,
const float ratio_w,
const int in_h,
const int in_w,
const int n,
const int c,
const int out_h,
const int out_w,
const bool align_corners,
const bool align_mode) {
bool align_flag = (align_mode == 0 && !align_corners);
std::vector<int> vy_n, vy_s;
std::vector<float> vd_n, vd_s;
vy_n.reserve(out_h);
vy_s.reserve(out_h);
vd_n.reserve(out_h);
vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (int k = 0; k < out_h; k++) {
int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
: static_cast<int>(ratio_h * k);
y_n = (y_n > 0) ? y_n : 0;
int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
float idx_src_y = ratio_h * (k + 0.5) - 0.5;
idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
float d_s = 1.f - d_n;
{
vy_n[k] = y_n;
vy_s[k] = y_s;
vd_n[k] = d_n;
vd_s[k] = d_s;
}
}
std::vector<int> vx_w, vx_e;
std::vector<float> vd_w, vd_e;
vx_w.reserve(out_w);
vx_e.reserve(out_w);
vd_w.reserve(out_w);
vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (int l = 0; l < out_w; l++) {
int x_w = (align_mode == 0 && !align_corners)
? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
: static_cast<int>(ratio_w * l);
x_w = (x_w > 0) ? x_w : 0;
int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
float idx_src_x = ratio_w * (l + 0.5) - 0.5;
idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
float d_e = 1.f - d_w;
{
vx_w[l] = x_w;
vx_e[l] = x_e;
vd_w[l] = d_w;
vd_e[l] = d_e;
}
}
int total_count = n * c;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for (int i = 0; i < total_count; i++) {
for (int h = 0; h < out_h; h++) {
for (int w = 0; w < out_w; w++) {
// bilinear interpolation
const float* input_data_ptr = input_data + i * in_h * in_w;
float* output_data_ptr =
output_data + i * out_h * out_w + h * out_w + w;
*output_data_ptr =
input_data_ptr[vy_n[h] * in_w + vx_w[w]] * vd_s[h] * vd_e[w] +
input_data_ptr[vy_s[h] * in_w + vx_w[w]] * vd_n[h] * vd_e[w] +
input_data_ptr[vy_n[h] * in_w + vx_e[w]] * vd_s[h] * vd_w[w] +
input_data_ptr[vy_s[h] * in_w + vx_e[w]] * vd_n[h] * vd_w[w];
}
}
}
}
void nearest_interp(const float* input_data,
float* output_data,
const float ratio_h,
const float ratio_w,
const int n,
const int c,
const int in_h,
const int in_w,
const int out_h,
const int out_w,
const bool align_corners) {
int total_count = n * c;
if (align_corners) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for (int i = 0; i < total_count; ++i) {
for (int h = 0; h < out_h; ++h) {
for (int w = 0; w < out_w; ++w) {
const float* input_data_ptr = input_data + i * in_h * in_w;
float* output_data_ptr =
output_data + i * out_h * out_w + h * out_w + w;
int near_y = static_cast<int>(ratio_h * h + 0.5);
int near_x = static_cast<int>(ratio_w * w + 0.5);
*output_data_ptr = input_data_ptr[near_y * in_w + near_x];
}
}
}
} else {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for (int i = 0; i < total_count; ++i) {
for (int h = 0; h < out_h; ++h) {
for (int w = 0; w < out_w; ++w) {
const float* input_data_ptr = input_data + i * in_h * in_w;
float* output_data_ptr =
output_data + i * out_h * out_w + h * out_w + w;
int near_y = static_cast<int>(ratio_h * h);
int near_x = static_cast<int>(ratio_w * w);
*output_data_ptr = input_data_ptr[near_y * in_w + near_x];
}
}
}
}
}
inline std::vector<int> get_new_shape(
std::vector<const lite::Tensor*> list_new_shape_tensor) {
// get tensor from
std::vector<int> vec_new_shape;
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
}
return vec_new_shape;
}
template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
std::vector<T> vec_new_data;
auto* new_data = new_data_tensor->data<T>();
lite::Tensor cpu_starts_tensor;
vec_new_data =
std::vector<T>(new_data, new_data + new_data_tensor->dims().production());
return vec_new_data;
}
void interpolate(lite::Tensor* input,
lite::Tensor* out_size,
std::vector<const lite::Tensor*> list_new_size_tensor,
lite::Tensor* scale_tensor,
lite::Tensor* output,
float scale,
int out_h,
int out_w,
const int align_mode,
const bool align_corners,
const std::string interpolate_type) {
// format NCHW
int n = input->dims()[0];
int c = input->dims()[1];
int in_h = input->dims()[2];
int in_w = input->dims()[3];
if (list_new_size_tensor.size() > 0) {
// have size tensor
auto new_size = get_new_shape(list_new_size_tensor);
out_h = new_size[0];
out_w = new_size[1];
} else {
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
}
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
if (out_size != nullptr) {
auto out_size_data = get_new_data_from_tensor<int>(out_size);
out_h = out_size_data[0];
out_w = out_size_data[1];
}
}
output->Resize({n, c, out_h, out_w});
float ratio_h = 0.f;
float ratio_w = 0.f;
if (out_h > 1) {
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
: static_cast<float>(in_h) / out_h;
}
if (out_w > 1) {
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
: static_cast<float>(in_w) / out_w;
}
const float* input_data = input->data<float>();
float* output_data = output->mutable_data<float>();
if ("Bilinear" == interpolate_type) {
bilinear_interp(input_data,
output_data,
ratio_h,
ratio_w,
in_h,
in_w,
n,
c,
out_h,
out_w,
align_corners,
align_mode);
} else if ("Nearest" == interpolate_type) {
nearest_interp(input_data,
output_data,
ratio_h,
ratio_w,
n,
c,
in_h,
in_w,
out_h,
out_w,
align_corners);
} else {
LOG(FATAL) << "Not supported interpolate_type: " << interpolate_type;
}
}
} // namespace math
} // namespace x86
} // namespace lite
} // namespace paddle
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "lite/core/tensor.h"
namespace paddle {
namespace lite {
namespace x86 {
namespace math {
void bilinear_interp(const float* input_data,
float* output_data,
const float ratio_h,
const float ratio_w,
const int in_h,
const int in_w,
const int n,
const int c,
const int out_h,
const int out_w,
const bool align_corners,
const bool align_mode);
void nearest_interp(const float* input_data,
float* output_data,
const float ratio_h,
const float ratio_w,
const int n,
const int c,
const int in_h,
const int in_w,
const int out_h,
const int out_w,
const bool align_corners);
void interpolate(lite::Tensor* input,
lite::Tensor* out_size,
std::vector<const lite::Tensor*> list_new_size_tensor,
lite::Tensor* scale_tensor,
lite::Tensor* output,
float scale,
int out_h,
int out_w,
const int align_mode,
const bool align_corners,
const std::string interpolate_type);
} // namespace math
} // namespace x86
} // namespace lite
} // namespace paddle
...@@ -70,6 +70,7 @@ add_kernel(search_fc_compute_x86 X86 basic SRCS search_fc_compute.cc DEPS ${lite ...@@ -70,6 +70,7 @@ add_kernel(search_fc_compute_x86 X86 basic SRCS search_fc_compute.cc DEPS ${lite
add_kernel(matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS ${lite_kernel_deps} blas) add_kernel(matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS ${lite_kernel_deps} blas)
add_kernel(box_coder_compute_x86 X86 basic SRCS box_coder_compute.cc DEPS ${lite_kernel_deps} box_coder) add_kernel(box_coder_compute_x86 X86 basic SRCS box_coder_compute.cc DEPS ${lite_kernel_deps} box_coder)
add_kernel(density_prior_box_compute_x86 X86 basic SRCS density_prior_box_compute.cc DEPS ${lite_kernel_deps} prior_box) add_kernel(density_prior_box_compute_x86 X86 basic SRCS density_prior_box_compute.cc DEPS ${lite_kernel_deps} prior_box)
add_kernel(interpolate_compute_x86 X86 basic SRCS interpolate_compute.cc DEPS ${lite_kernel_deps} interpolate)
lite_cc_test(test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86) lite_cc_test(test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86)
lite_cc_test(test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86) lite_cc_test(test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86)
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/interpolate_compute.h"
#include <string>
#include <vector>
#include "lite/backends/x86/math/interpolate.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {
void BilinearInterpCompute::Run() {
auto& param = Param<operators::InterpolateParam>();
// required input
lite::Tensor* X = param.X;
// optionla inputs
lite::Tensor* OutSize = param.OutSize;
auto SizeTensor = param.SizeTensor;
auto Scale = param.Scale;
// output
lite::Tensor* Out = param.Out;
// optional attributes
float scale = param.scale;
int out_w = param.out_w;
int out_h = param.out_h;
int align_mode = param.align_mode;
// required attributes
bool align_corners = param.align_corners;
std::string interp_method = "Bilinear";
lite::x86::math::interpolate(X,
OutSize,
SizeTensor,
Scale,
Out,
scale,
out_h,
out_w,
align_mode,
align_corners,
interp_method);
}
void NearestInterpCompute::Run() {
auto& param = Param<operators::InterpolateParam>();
// required input
lite::Tensor* X = param.X;
// optionla inputs
lite::Tensor* OutSize = param.OutSize;
auto SizeTensor = param.SizeTensor;
auto Scale = param.Scale;
// output
lite::Tensor* Out = param.Out;
// optional attributes
float scale = param.scale;
int out_w = param.out_w;
int out_h = param.out_h;
int align_mode = param.align_mode;
// required attributes
bool align_corners = param.align_corners;
std::string interp_method = "Nearest";
lite::x86::math::interpolate(X,
OutSize,
SizeTensor,
Scale,
Out,
scale,
out_h,
out_w,
align_mode,
align_corners,
interp_method);
}
} // namespace x86
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(bilinear_interp,
kX86,
kFloat,
kNCHW,
paddle::lite::kernels::x86::BilinearInterpCompute,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("OutSize",
{LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt32))})
.BindInput("SizeTensor",
{LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt32))})
.BindInput("Scale", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
REGISTER_LITE_KERNEL(nearest_interp,
kX86,
kFloat,
kNCHW,
paddle::lite::kernels::x86::NearestInterpCompute,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("OutSize",
{LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt32))})
.BindInput("SizeTensor",
{LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt32))})
.BindInput("Scale", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {
class BilinearInterpCompute
: public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
public:
void Run() override;
virtual ~BilinearInterpCompute() = default;
};
class NearestInterpCompute
: public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
public:
void Run() override;
virtual ~NearestInterpCompute() = default;
};
} // namespace x86
} // namespace kernels
} // namespace lite
} // namespace paddle
...@@ -453,6 +453,8 @@ TEST(Interp, precision) { ...@@ -453,6 +453,8 @@ TEST(Interp, precision) {
abs_error = 1e-2; // precision_mode default is force_fp16 abs_error = 1e-2; // precision_mode default is force_fp16
#elif defined(LITE_WITH_ARM) #elif defined(LITE_WITH_ARM)
place = TARGET(kARM); place = TARGET(kARM);
#elif defined(LITE_WITH_X86)
place = TARGET(kX86);
#else #else
return; return;
#endif #endif
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册