Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
6f7369b9
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6f7369b9
编写于
3月 04, 2019
作者:
xiebaiyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
opencl opt
上级
4782257a
变更
5
展开全部
显示空白变更内容
内联
并排
Showing
5 changed file
with
1123 addition
and
93 deletion
+1123
-93
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+851
-0
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+165
-55
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+101
-38
src/operators/kernel/conv_add_bn_relu_kernel.h
src/operators/kernel/conv_add_bn_relu_kernel.h
+3
-0
src/operators/kernel/conv_add_kernel.h
src/operators/kernel/conv_add_kernel.h
+3
-0
未找到文件。
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
6f7369b9
此差异已折叠。
点击以展开。
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
6f7369b9
...
@@ -21,7 +21,7 @@ limitations under the License. */
...
@@ -21,7 +21,7 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
bool
optimise
=
true
;
template
<
>
template
<
>
bool
ConvAddBNReluKernel
<
GPU_CL
,
float
>::
Init
(
bool
ConvAddBNReluKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddBNReluParam
<
GPU_CL
>
*
param
)
{
FusionConvAddBNReluParam
<
GPU_CL
>
*
param
)
{
...
@@ -139,7 +139,12 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
...
@@ -139,7 +139,12 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
cl_helper_
.
CLCommandQueue
());
if
(
optimise
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_bn_relu_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_bn_relu_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_bn_relu_kernel.cl"
);
}
DLOG
<<
" conv add bn relu conv 1x1"
;
DLOG
<<
" conv add bn relu conv 1x1"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
...
@@ -205,10 +210,13 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
...
@@ -205,10 +210,13 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
cl_int
status
;
cl_int
status
;
if
(
optimise
)
{
if
(
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
...
@@ -256,30 +264,132 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
...
@@ -256,30 +264,132 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
// cl_event out_event = param.Output()->GetClEvent(
);
status
=
clSetKernelArg
(
kernel
,
17
,
sizeof
(
int
),
&
w
);
// cl_event wait_event = param.Input()->GetClEvent(
);
CL_CHECK_ERRORS
(
status
);
/*
const
size_t
work_size
[
3
]
=
{
if (param.Filter()->dims()[2] == 1 &&
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
param.Filter()->dims()[3] == 1 &&
static_cast
<
const
uint32_t
>
(
maped_w
),
param.Filter()->dims()[0] % 16 == 0) {
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
DLOG << " before modifi work size: " << default_work_size;
default_work_size[0] = default_work_size[0] / 4;
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
DLOG << " modification work size: " << default_work_size;
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
DLOG << " input dims " << param.Input()->dims();
CL_CHECK_ERRORS
(
status
);
DLOG << " output dims " << param.Output()->dims();
DLOG << " filter dims: " << param.Filter()->dims();
DLOG << " biase dims : " << param.Bias()->dims();
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
*/
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
()
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
}
}
}
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
6f7369b9
...
@@ -18,6 +18,7 @@ limitations under the License. */
...
@@ -18,6 +18,7 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
bool
optimise_convadd
=
true
;
template
<
>
template
<
>
bool
ConvAddKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddParam
<
GPU_CL
>
*
param
)
{
bool
ConvAddKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddParam
<
GPU_CL
>
*
param
)
{
...
@@ -35,8 +36,11 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
...
@@ -35,8 +36,11 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
cl_helper_
.
CLCommandQueue
());
if
(
optimise_convadd
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_kernel.cl"
);
}
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
...
@@ -95,10 +99,13 @@ void ConvAddKernel<GPU_CL, float>::Compute(
...
@@ -95,10 +99,13 @@ void ConvAddKernel<GPU_CL, float>::Compute(
cl_int
status
;
cl_int
status
;
if
(
optimise_convadd
&&
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
...
@@ -140,13 +147,69 @@ void ConvAddKernel<GPU_CL, float>::Compute(
...
@@ -140,13 +147,69 @@ void ConvAddKernel<GPU_CL, float>::Compute(
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
// cl_event out_event = param.Output()->GetClEvent();
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
w
);
// cl_event wait_event = param.Input()->GetClEvent();
CL_CHECK_ERRORS
(
status
);
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
()
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
}
}
}
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/conv_add_bn_relu_kernel.h
浏览文件 @
6f7369b9
...
@@ -36,6 +36,9 @@ class ConvAddBNReluKernel
...
@@ -36,6 +36,9 @@ class ConvAddBNReluKernel
public:
public:
void
Compute
(
const
FusionConvAddBNReluParam
<
DeviceType
>
&
param
);
void
Compute
(
const
FusionConvAddBNReluParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddBNReluParam
<
DeviceType
>
*
param
);
bool
Init
(
FusionConvAddBNReluParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
};
}
// namespace operators
}
// namespace operators
...
...
src/operators/kernel/conv_add_kernel.h
浏览文件 @
6f7369b9
...
@@ -41,6 +41,9 @@ class ConvAddKernel
...
@@ -41,6 +41,9 @@ class ConvAddKernel
public:
public:
void
Compute
(
const
FusionConvAddParam
<
DeviceType
>
&
param
);
void
Compute
(
const
FusionConvAddParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddParam
<
DeviceType
>
*
param
);
bool
Init
(
FusionConvAddParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
};
}
// namespace operators
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录