提交 6f7369b9 编写于 作者: xiebaiyuan's avatar xiebaiyuan

opencl opt

上级 4782257a
......@@ -561,7 +561,858 @@ __kernel void conv_1x1(__private const int global_size_dim0,
write_imageh(output_image, output_pos, output);
}
__kernel void conv_1x1_spl(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
int out_w3 = out_w + global_size_dim1 * 3;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
int2 in_pos_in_one_block0 =
ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block1 = (int2)(out_w1, out_nh);
int2 in_pos_in_one_block1 =
ouput_pos_in_one_block1 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block2 = (int2)(out_w2, out_nh);
int2 in_pos_in_one_block2 =
ouput_pos_in_one_block2 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block3 = (int2)(out_w3, out_nh);
int2 in_pos_in_one_block3 =
ouput_pos_in_one_block3 * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output0= read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output1 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output2 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output3 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output0 = 0.0f;
// half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
#else
half4 output0 = 0.0f;
half4 output1 = 0.0f;
half4 output2 = 0.0f;
half4 output3 = 0.0f;
#endif
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
half4 input0 = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
// -------------2--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
half4 input2 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(input2.z, weight2, output2);
output2 = mad(input2.w, weight3, output2);
// -------------3--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
half4 input3 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(input3.z, weight2, output3);
output3 = mad(input3.w, weight3, output3);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
output2 = activation(output2);
output3 = activation(output3);
#endif
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
int2 output_pos2 = (int2)(outpos_main + out_w2, out_nh);
if (out_w2 < old_w){
write_imageh(output_image, output_pos2, output2);
}
int2 output_pos3 = (int2)(outpos_main + out_w3, out_nh);
if (out_w3 < old_w){
write_imageh(output_image, output_pos3, output3);
}
}
__kernel void conv_1x1_spl2(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
int out_w3 = out_w + global_size_dim1 * 3;
int out_w4 = out_w + global_size_dim1 * 4;
int out_w5 = out_w + global_size_dim1 * 5;
int out_w6 = out_w + global_size_dim1 * 6;
int out_w7 = out_w + global_size_dim1 * 7;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
int2 in_pos_in_one_block0 =
ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block1 = (int2)(out_w1, out_nh);
int2 in_pos_in_one_block1 =
ouput_pos_in_one_block1 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block2 = (int2)(out_w2, out_nh);
int2 in_pos_in_one_block2 =
ouput_pos_in_one_block2 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block3 = (int2)(out_w3, out_nh);
int2 in_pos_in_one_block3 =
ouput_pos_in_one_block3 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block4 = (int2)(out_w4, out_nh);
int2 in_pos_in_one_block4 =
ouput_pos_in_one_block4 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block5 = (int2)(out_w5, out_nh);
int2 in_pos_in_one_block5 =
ouput_pos_in_one_block5 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block6 = (int2)(out_w6, out_nh);
int2 in_pos_in_one_block6 =
ouput_pos_in_one_block6 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block7 = (int2)(out_w7, out_nh);
int2 in_pos_in_one_block7 =
ouput_pos_in_one_block7 * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output1 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output2 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output3 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output4 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output5 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output6 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output7 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output0 = 0.0f;
// half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
#else
half4 output0 = 0.0f;
half4 output1 = 0.0f;
half4 output2 = 0.0f;
half4 output3 = 0.0f;
half4 output4 = 0.0f;
half4 output5 = 0.0f;
half4 output6 = 0.0f;
half4 output7 = 0.0f;
#endif
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
half4 input0 = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
// -------------2--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
half4 input2 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(input2.z, weight2, output2);
output2 = mad(input2.w, weight3, output2);
// -------------3--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
half4 input3 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(input3.z, weight2, output3);
output3 = mad(input3.w, weight3, output3);
// -------------4--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block4.x, in_pos_in_one_block4.y);
half4 input4 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output4 = mad(input4.x, weight0, output4);
output4 = mad(input4.y, weight1, output4);
output4 = mad(input4.z, weight2, output4);
output4 = mad(input4.w, weight3, output4);
// -------------5--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block5.x, in_pos_in_one_block5.y);
half4 input5 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output5= mad(input5.x, weight0, output5);
output5 = mad(input5.y, weight1, output5);
output5 = mad(input5.z, weight2, output5);
output5 = mad(input5.w, weight3, output5);
// -------------6--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block6.x, in_pos_in_one_block6.y);
half4 input6 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output6 = mad(input6.x, weight0, output6);
output6 = mad(input6.y, weight1, output6);
output6 = mad(input6.z, weight2, output6);
output6 = mad(input6.w, weight3, output6);
// -------------7--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block7.x, in_pos_in_one_block7.y);
half4 input7 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output7 = mad(input7.x, weight0, output7);
output7 = mad(input7.y, weight1, output7);
output7 = mad(input7.z, weight2, output7);
output7 = mad(input7.w, weight3, output7);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output4 = output4 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output5 = output5 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output6 = output6 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output7 = output7 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
output2 = activation(output2);
output3 = activation(output3);
output4 = activation(output4);
output5 = activation(output5);
output6 = activation(output6);
output7 = activation(output7);
#endif
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
int2 output_pos2 = (int2)(outpos_main + out_w2, out_nh);
if (out_w2 < old_w){
write_imageh(output_image, output_pos2, output2);
}
int2 output_pos3 = (int2)(outpos_main + out_w3, out_nh);
if (out_w3 < old_w){
write_imageh(output_image, output_pos3, output3);
}
int2 output_pos4 = (int2)(outpos_main + out_w4, out_nh);
if (out_w4 < old_w){
write_imageh(output_image, output_pos4, output4);
}
int2 output_pos5 = (int2)(outpos_main + out_w5, out_nh);
if (out_w5 < old_w){
write_imageh(output_image, output_pos5, output5);
}
int2 output_pos6 = (int2)(outpos_main + out_w6, out_nh);
if (out_w6 < old_w){
write_imageh(output_image, output_pos6, output6);
}
int2 output_pos7 = (int2)(outpos_main + out_w7, out_nh);
if (out_w7 < old_w){
write_imageh(output_image, output_pos7, output7);
}
}
__kernel void conv_1x1_spl3(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
// int out_w4 = out_w + global_size_dim1 * 4;
// int out_w5 = out_w + global_size_dim1 * 5;
// int out_w6 = out_w + global_size_dim1 * 6;
// int out_w7 = out_w + global_size_dim1 * 7;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
int2 in_pos_in_one_block0 =
ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block1 = (int2)(out_w1, out_nh);
int2 in_pos_in_one_block1 =
ouput_pos_in_one_block1 * stride_xy + (int2)(offset, offset);
// int2 ouput_pos_in_one_block2 = (int2)(out_w2, out_nh);
// int2 in_pos_in_one_block2 =
// ouput_pos_in_one_block2 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block3 = (int2)(out_w3, out_nh);
// int2 in_pos_in_one_block3 =
// ouput_pos_in_one_block3 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block4 = (int2)(out_w4, out_nh);
// int2 in_pos_in_one_block4 =
// ouput_pos_in_one_block4 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block5 = (int2)(out_w5, out_nh);
// int2 in_pos_in_one_block5 =
// ouput_pos_in_one_block5 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block6 = (int2)(out_w6, out_nh);
// int2 in_pos_in_one_block6 =
// ouput_pos_in_one_block6 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block7 = (int2)(out_w7, out_nh);
// int2 in_pos_in_one_block7 =
// ouput_pos_in_one_block7 * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output1 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output2 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output3 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output4 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output5 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output6 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output7 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output0 = 0.0f;
// half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
#else
half4 output0 = 0.0f;
half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
// half4 output4 = 0.0f;
// half4 output5 = 0.0f;
// half4 output6 = 0.0f;
// half4 output7 = 0.0f;
#endif
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
half4 input0 = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
//
// // -------------2--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
// half4 input2 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output2 = mad(input2.x, weight0, output2);
// output2 = mad(input2.y, weight1, output2);
// output2 = mad(input2.z, weight2, output2);
// output2 = mad(input2.w, weight3, output2);
//
// // -------------3--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
// half4 input3 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output3 = mad(input3.x, weight0, output3);
// output3 = mad(input3.y, weight1, output3);
// output3 = mad(input3.z, weight2, output3);
// output3 = mad(input3.w, weight3, output3);
//
//
// // -------------4--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block4.x, in_pos_in_one_block4.y);
// half4 input4 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output4 = mad(input4.x, weight0, output4);
// output4 = mad(input4.y, weight1, output4);
// output4 = mad(input4.z, weight2, output4);
// output4 = mad(input4.w, weight3, output4);
//
//
//
// // -------------5--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block5.x, in_pos_in_one_block5.y);
// half4 input5 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output5= mad(input5.x, weight0, output5);
// output5 = mad(input5.y, weight1, output5);
// output5 = mad(input5.z, weight2, output5);
// output5 = mad(input5.w, weight3, output5);
//
//
// // -------------6--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block6.x, in_pos_in_one_block6.y);
// half4 input6 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output6 = mad(input6.x, weight0, output6);
// output6 = mad(input6.y, weight1, output6);
// output6 = mad(input6.z, weight2, output6);
// output6 = mad(input6.w, weight3, output6);
//
//
// // -------------7--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block7.x, in_pos_in_one_block7.y);
// half4 input7 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output7 = mad(input7.x, weight0, output7);
// output7 = mad(input7.y, weight1, output7);
// output7 = mad(input7.z, weight2, output7);
// output7 = mad(input7.w, weight3, output7);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output4 = output4 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output5 = output5 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output6 = output6 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output7 = output7 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
// output2 = activation(output2);
// output3 = activation(output3);
// output4 = activation(output4);
// output5 = activation(output5);
// output6 = activation(output6);
// output7 = activation(output7);
#endif
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
//
// int2 output_pos2 = (int2)(outpos_main + out_w2, out_nh);
// if (out_w2 < old_w){
// write_imageh(output_image, output_pos2, output2);
// }
//
// int2 output_pos3 = (int2)(outpos_main + out_w3, out_nh);
// if (out_w3 < old_w){
// write_imageh(output_image, output_pos3, output3);
// }
//
// int2 output_pos4 = (int2)(outpos_main + out_w4, out_nh);
// if (out_w4 < old_w){
// write_imageh(output_image, output_pos4, output4);
// }
//
// int2 output_pos5 = (int2)(outpos_main + out_w5, out_nh);
// if (out_w5 < old_w){
// write_imageh(output_image, output_pos5, output5);
//
// }
// int2 output_pos6 = (int2)(outpos_main + out_w6, out_nh);
// if (out_w6 < old_w){
// write_imageh(output_image, output_pos6, output6);
// }
//
// int2 output_pos7 = (int2)(outpos_main + out_w7, out_nh);
// if (out_w7 < old_w){
// write_imageh(output_image, output_pos7, output7);
// }
}
//__kernel void conv_1x1_c(
// __private const int global_size_dim0,
// __private const int global_size_dim1,
// __private const int global_size_dim2,
// __read_only image2d_t input_image,
// __read_only image2d_t filter,
//#ifdef BIASE
// __read_only image2d_t bias,
//#endif
//#ifdef BATCH_NORM
// __read_only image2d_t new_scale,
// __read_only image2d_t new_biase,
//#endif
// __write_only image2d_t output_image,
// __private const int stride,
// __private const int offset,
// __private const int input_c,
// __private const int dilation,
// __private const int input_width, /* of one block */
// __private const int input_height, /* of one block */
// __private const int output_width,
// __private const int output_height,
// __private const int old_w) {
//
// const int out_c = get_global_id(0);
// const int out_w = get_global_id(1);
// const int out_nh = get_global_id(2);
//
// const sampler_t sampler =
// CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
// const int2 stride_xy = (int2)(stride, stride);
//
// for (int i = 0; i < input_c; ++i) {
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
// half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
// half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
// half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
//
//#pragma unroll
// for (int j = 0; j < 4; ++j) {
// int out_w0 = out_w + global_size_dim1 * j;
// int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
// int2 in_pos_in_one_block0 = ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
//
//#ifdef BIASE
// half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
//#else
// half4 output0 = 0.0f;
//#endif
// int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
// half4 input0 = read_imageh(input_image, sampler, pos_in);
//
// output0 = mad(input0.x, weight0, output0);
// output0 = mad(input0.y, weight1, output0);
// output0 = mad(input0.z, weight2, output0);
// output0 = mad(input0.w, weight3, output0);
//
//#ifdef BATCH_NORM
// output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
//#endif
//
//#ifdef RELU
// output0 = activation(output0);
//#endif
// int outpos_main = mul24(out_c, old_w);
// int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
//
// if (out_w0 < old_w) {
// write_imageh(output_image, output_pos0, output0);
// }
// }
// }
//}
/*
......
......@@ -21,7 +21,7 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
bool optimise = true;
template <>
bool ConvAddBNReluKernel<GPU_CL, float>::Init(
FusionConvAddBNReluParam<GPU_CL> *param) {
......@@ -139,7 +139,12 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
if (optimise) {
this->cl_helper_.AddKernel("conv_1x1_spl", "conv_add_bn_relu_kernel.cl");
} else {
this->cl_helper_.AddKernel("conv_1x1", "conv_add_bn_relu_kernel.cl");
}
DLOG << " conv add bn relu conv 1x1";
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
......@@ -205,10 +210,13 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
cl_int status;
if (optimise) {
if (param.Filter()->dims()[2] == 1 && param.Filter()->dims()[3] == 1) {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
int maped_w = maptofactor(w, 4);
status = clSetKernelArg(kernel, 1, sizeof(int), &maped_w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
......@@ -256,30 +264,132 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
status = clSetKernelArg(kernel, 16, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status = clSetKernelArg(kernel, 17, sizeof(int), &w);
CL_CHECK_ERRORS(status);
/*
if (param.Filter()->dims()[2] == 1 &&
param.Filter()->dims()[3] == 1 &&
param.Filter()->dims()[0] % 16 == 0) {
DLOG << " before modifi work size: " << default_work_size;
const size_t work_size[3] = {
static_cast<const uint32_t>(default_work_size.data()[0]),
static_cast<const uint32_t>(maped_w),
static_cast<const uint32_t>(default_work_size.data()[2])};
default_work_size[0] = default_work_size[0] / 4;
status = clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel,
default_work_size.size(), NULL, work_size,
NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
} else {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
DLOG << " modification work size: " << default_work_size;
DLOG << " input dims " << param.Input()->dims();
DLOG << " output dims " << param.Output()->dims();
DLOG << " filter dims: " << param.Filter()->dims();
DLOG << " biase dims : " << param.Bias()->dims();
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 16, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
NULL, default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
*/
} else {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 16, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
NULL, default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
}
template class ConvAddBNReluKernel<GPU_CL, float>;
......
......@@ -18,6 +18,7 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
bool optimise_convadd = true;
template <>
bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
......@@ -35,8 +36,11 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
if (optimise_convadd) {
this->cl_helper_.AddKernel("conv_1x1_spl", "conv_add_kernel.cl");
} else {
this->cl_helper_.AddKernel("conv_1x1", "conv_add_kernel.cl");
}
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
param->Filter()->dims()[2] == 3) {
......@@ -95,10 +99,13 @@ void ConvAddKernel<GPU_CL, float>::Compute(
cl_int status;
if (optimise_convadd && param.Filter()->dims()[2] == 1 &&
param.Filter()->dims()[3] == 1) {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
int maped_w = maptofactor(w, 4);
status = clSetKernelArg(kernel, 1, sizeof(int), &maped_w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
......@@ -140,13 +147,69 @@ void ConvAddKernel<GPU_CL, float>::Compute(
status = clSetKernelArg(kernel, 14, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status = clSetKernelArg(kernel, 15, sizeof(int), &w);
CL_CHECK_ERRORS(status);
const size_t work_size[3] = {
static_cast<const uint32_t>(default_work_size.data()[0]),
static_cast<const uint32_t>(maped_w),
static_cast<const uint32_t>(default_work_size.data()[2])};
status = clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel,
default_work_size.size(), NULL, work_size,
NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
} else {
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
NULL, default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
}
template class ConvAddKernel<GPU_CL, float>;
......
......@@ -36,6 +36,9 @@ class ConvAddBNReluKernel
public:
void Compute(const FusionConvAddBNReluParam<DeviceType> &param);
bool Init(FusionConvAddBNReluParam<DeviceType> *param);
inline int maptofactor(int i, int factor) {
return (i + factor - 1) / factor;
}
};
} // namespace operators
......
......@@ -41,6 +41,9 @@ class ConvAddKernel
public:
void Compute(const FusionConvAddParam<DeviceType> &param);
bool Init(FusionConvAddParam<DeviceType> *param);
inline int maptofactor(int i, int factor) {
return (i + factor - 1) / factor;
}
};
} // namespace operators
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册