Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
6f7369b9
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6f7369b9
编写于
3月 04, 2019
作者:
xiebaiyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
opencl opt
上级
4782257a
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
1123 addition
and
93 deletion
+1123
-93
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+851
-0
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+165
-55
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+101
-38
src/operators/kernel/conv_add_bn_relu_kernel.h
src/operators/kernel/conv_add_bn_relu_kernel.h
+3
-0
src/operators/kernel/conv_add_kernel.h
src/operators/kernel/conv_add_kernel.h
+3
-0
未找到文件。
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
6f7369b9
...
...
@@ -561,7 +561,858 @@ __kernel void conv_1x1(__private const int global_size_dim0,
write_imageh(output_image, output_pos, output);
}
__kernel void conv_1x1_spl(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
int out_w3 = out_w + global_size_dim1 * 3;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
| CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
int2 in_pos_in_one_block0 =
ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block1 = (int2)(out_w1, out_nh);
int2 in_pos_in_one_block1 =
ouput_pos_in_one_block1 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block2 = (int2)(out_w2, out_nh);
int2 in_pos_in_one_block2 =
ouput_pos_in_one_block2 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block3 = (int2)(out_w3, out_nh);
int2 in_pos_in_one_block3 =
ouput_pos_in_one_block3 * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output0= read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output1 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output2 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output3 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output0 = 0.0f;
// half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
#else
half4 output0 = 0.0f;
half4 output1 = 0.0f;
half4 output2 = 0.0f;
half4 output3 = 0.0f;
#endif
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
half4 input0 = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
// -------------2--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
half4 input2 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(input2.z, weight2, output2);
output2 = mad(input2.w, weight3, output2);
// -------------3--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
half4 input3 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(input3.z, weight2, output3);
output3 = mad(input3.w, weight3, output3);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
output2 = activation(output2);
output3 = activation(output3);
#endif
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
int2 output_pos2 = (int2)(outpos_main + out_w2, out_nh);
if (out_w2 < old_w){
write_imageh(output_image, output_pos2, output2);
}
int2 output_pos3 = (int2)(outpos_main + out_w3, out_nh);
if (out_w3 < old_w){
write_imageh(output_image, output_pos3, output3);
}
}
__kernel void conv_1x1_spl2(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
int out_w3 = out_w + global_size_dim1 * 3;
int out_w4 = out_w + global_size_dim1 * 4;
int out_w5 = out_w + global_size_dim1 * 5;
int out_w6 = out_w + global_size_dim1 * 6;
int out_w7 = out_w + global_size_dim1 * 7;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
| CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
int2 in_pos_in_one_block0 =
ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block1 = (int2)(out_w1, out_nh);
int2 in_pos_in_one_block1 =
ouput_pos_in_one_block1 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block2 = (int2)(out_w2, out_nh);
int2 in_pos_in_one_block2 =
ouput_pos_in_one_block2 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block3 = (int2)(out_w3, out_nh);
int2 in_pos_in_one_block3 =
ouput_pos_in_one_block3 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block4 = (int2)(out_w4, out_nh);
int2 in_pos_in_one_block4 =
ouput_pos_in_one_block4 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block5 = (int2)(out_w5, out_nh);
int2 in_pos_in_one_block5 =
ouput_pos_in_one_block5 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block6 = (int2)(out_w6, out_nh);
int2 in_pos_in_one_block6 =
ouput_pos_in_one_block6 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block7 = (int2)(out_w7, out_nh);
int2 in_pos_in_one_block7 =
ouput_pos_in_one_block7 * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output1 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output2 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output3 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output4 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output5 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output6 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output7 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output0 = 0.0f;
// half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
#else
half4 output0 = 0.0f;
half4 output1 = 0.0f;
half4 output2 = 0.0f;
half4 output3 = 0.0f;
half4 output4 = 0.0f;
half4 output5 = 0.0f;
half4 output6 = 0.0f;
half4 output7 = 0.0f;
#endif
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
half4 input0 = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
// -------------2--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
half4 input2 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(input2.z, weight2, output2);
output2 = mad(input2.w, weight3, output2);
// -------------3--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
half4 input3 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(input3.z, weight2, output3);
output3 = mad(input3.w, weight3, output3);
// -------------4--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block4.x, in_pos_in_one_block4.y);
half4 input4 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output4 = mad(input4.x, weight0, output4);
output4 = mad(input4.y, weight1, output4);
output4 = mad(input4.z, weight2, output4);
output4 = mad(input4.w, weight3, output4);
// -------------5--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block5.x, in_pos_in_one_block5.y);
half4 input5 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output5= mad(input5.x, weight0, output5);
output5 = mad(input5.y, weight1, output5);
output5 = mad(input5.z, weight2, output5);
output5 = mad(input5.w, weight3, output5);
// -------------6--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block6.x, in_pos_in_one_block6.y);
half4 input6 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output6 = mad(input6.x, weight0, output6);
output6 = mad(input6.y, weight1, output6);
output6 = mad(input6.z, weight2, output6);
output6 = mad(input6.w, weight3, output6);
// -------------7--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block7.x, in_pos_in_one_block7.y);
half4 input7 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output7 = mad(input7.x, weight0, output7);
output7 = mad(input7.y, weight1, output7);
output7 = mad(input7.z, weight2, output7);
output7 = mad(input7.w, weight3, output7);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output4 = output4 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output5 = output5 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output6 = output6 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output7 = output7 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
output2 = activation(output2);
output3 = activation(output3);
output4 = activation(output4);
output5 = activation(output5);
output6 = activation(output6);
output7 = activation(output7);
#endif
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
int2 output_pos2 = (int2)(outpos_main + out_w2, out_nh);
if (out_w2 < old_w){
write_imageh(output_image, output_pos2, output2);
}
int2 output_pos3 = (int2)(outpos_main + out_w3, out_nh);
if (out_w3 < old_w){
write_imageh(output_image, output_pos3, output3);
}
int2 output_pos4 = (int2)(outpos_main + out_w4, out_nh);
if (out_w4 < old_w){
write_imageh(output_image, output_pos4, output4);
}
int2 output_pos5 = (int2)(outpos_main + out_w5, out_nh);
if (out_w5 < old_w){
write_imageh(output_image, output_pos5, output5);
}
int2 output_pos6 = (int2)(outpos_main + out_w6, out_nh);
if (out_w6 < old_w){
write_imageh(output_image, output_pos6, output6);
}
int2 output_pos7 = (int2)(outpos_main + out_w7, out_nh);
if (out_w7 < old_w){
write_imageh(output_image, output_pos7, output7);
}
}
__kernel void conv_1x1_spl3(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
// int out_w4 = out_w + global_size_dim1 * 4;
// int out_w5 = out_w + global_size_dim1 * 5;
// int out_w6 = out_w + global_size_dim1 * 6;
// int out_w7 = out_w + global_size_dim1 * 7;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
| CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
int2 in_pos_in_one_block0 =
ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block1 = (int2)(out_w1, out_nh);
int2 in_pos_in_one_block1 =
ouput_pos_in_one_block1 * stride_xy + (int2)(offset, offset);
// int2 ouput_pos_in_one_block2 = (int2)(out_w2, out_nh);
// int2 in_pos_in_one_block2 =
// ouput_pos_in_one_block2 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block3 = (int2)(out_w3, out_nh);
// int2 in_pos_in_one_block3 =
// ouput_pos_in_one_block3 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block4 = (int2)(out_w4, out_nh);
// int2 in_pos_in_one_block4 =
// ouput_pos_in_one_block4 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block5 = (int2)(out_w5, out_nh);
// int2 in_pos_in_one_block5 =
// ouput_pos_in_one_block5 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block6 = (int2)(out_w6, out_nh);
// int2 in_pos_in_one_block6 =
// ouput_pos_in_one_block6 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block7 = (int2)(out_w7, out_nh);
// int2 in_pos_in_one_block7 =
// ouput_pos_in_one_block7 * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output1 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output2 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output3 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output4 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output5 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output6 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output7 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output0 = 0.0f;
// half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
#else
half4 output0 = 0.0f;
half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
// half4 output4 = 0.0f;
// half4 output5 = 0.0f;
// half4 output6 = 0.0f;
// half4 output7 = 0.0f;
#endif
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
half4 input0 = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
//
// // -------------2--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
// half4 input2 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output2 = mad(input2.x, weight0, output2);
// output2 = mad(input2.y, weight1, output2);
// output2 = mad(input2.z, weight2, output2);
// output2 = mad(input2.w, weight3, output2);
//
// // -------------3--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
// half4 input3 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output3 = mad(input3.x, weight0, output3);
// output3 = mad(input3.y, weight1, output3);
// output3 = mad(input3.z, weight2, output3);
// output3 = mad(input3.w, weight3, output3);
//
//
// // -------------4--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block4.x, in_pos_in_one_block4.y);
// half4 input4 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output4 = mad(input4.x, weight0, output4);
// output4 = mad(input4.y, weight1, output4);
// output4 = mad(input4.z, weight2, output4);
// output4 = mad(input4.w, weight3, output4);
//
//
//
// // -------------5--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block5.x, in_pos_in_one_block5.y);
// half4 input5 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output5= mad(input5.x, weight0, output5);
// output5 = mad(input5.y, weight1, output5);
// output5 = mad(input5.z, weight2, output5);
// output5 = mad(input5.w, weight3, output5);
//
//
// // -------------6--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block6.x, in_pos_in_one_block6.y);
// half4 input6 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output6 = mad(input6.x, weight0, output6);
// output6 = mad(input6.y, weight1, output6);
// output6 = mad(input6.z, weight2, output6);
// output6 = mad(input6.w, weight3, output6);
//
//
// // -------------7--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block7.x, in_pos_in_one_block7.y);
// half4 input7 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output7 = mad(input7.x, weight0, output7);
// output7 = mad(input7.y, weight1, output7);
// output7 = mad(input7.z, weight2, output7);
// output7 = mad(input7.w, weight3, output7);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output4 = output4 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output5 = output5 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output6 = output6 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output7 = output7 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
// output2 = activation(output2);
// output3 = activation(output3);
// output4 = activation(output4);
// output5 = activation(output5);
// output6 = activation(output6);
// output7 = activation(output7);
#endif
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
//
// int2 output_pos2 = (int2)(outpos_main + out_w2, out_nh);
// if (out_w2 < old_w){
// write_imageh(output_image, output_pos2, output2);
// }
//
// int2 output_pos3 = (int2)(outpos_main + out_w3, out_nh);
// if (out_w3 < old_w){
// write_imageh(output_image, output_pos3, output3);
// }
//
// int2 output_pos4 = (int2)(outpos_main + out_w4, out_nh);
// if (out_w4 < old_w){
// write_imageh(output_image, output_pos4, output4);
// }
//
// int2 output_pos5 = (int2)(outpos_main + out_w5, out_nh);
// if (out_w5 < old_w){
// write_imageh(output_image, output_pos5, output5);
//
// }
// int2 output_pos6 = (int2)(outpos_main + out_w6, out_nh);
// if (out_w6 < old_w){
// write_imageh(output_image, output_pos6, output6);
// }
//
// int2 output_pos7 = (int2)(outpos_main + out_w7, out_nh);
// if (out_w7 < old_w){
// write_imageh(output_image, output_pos7, output7);
// }
}
//__kernel void conv_1x1_c(
// __private const int global_size_dim0,
// __private const int global_size_dim1,
// __private const int global_size_dim2,
// __read_only image2d_t input_image,
// __read_only image2d_t filter,
//#ifdef BIASE
// __read_only image2d_t bias,
//#endif
//#ifdef BATCH_NORM
// __read_only image2d_t new_scale,
// __read_only image2d_t new_biase,
//#endif
// __write_only image2d_t output_image,
// __private const int stride,
// __private const int offset,
// __private const int input_c,
// __private const int dilation,
// __private const int input_width, /* of one block */
// __private const int input_height, /* of one block */
// __private const int output_width,
// __private const int output_height,
// __private const int old_w) {
//
// const int out_c = get_global_id(0);
// const int out_w = get_global_id(1);
// const int out_nh = get_global_id(2);
//
// const sampler_t sampler =
// CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
| CLK_FILTER_NEAREST;
// const int2 stride_xy = (int2)(stride, stride);
//
// for (int i = 0; i < input_c; ++i) {
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
// half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
// half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
// half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
//
//#pragma unroll
// for (int j = 0; j < 4; ++j) {
// int out_w0 = out_w + global_size_dim1 * j;
// int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
// int2 in_pos_in_one_block0 = ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
//
//#ifdef BIASE
// half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
//#else
// half4 output0 = 0.0f;
//#endif
// int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
// half4 input0 = read_imageh(input_image, sampler, pos_in);
//
// output0 = mad(input0.x, weight0, output0);
// output0 = mad(input0.y, weight1, output0);
// output0 = mad(input0.z, weight2, output0);
// output0 = mad(input0.w, weight3, output0);
//
//#ifdef BATCH_NORM
// output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
//#endif
//
//#ifdef RELU
// output0 = activation(output0);
//#endif
// int outpos_main = mul24(out_c, old_w);
// int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
//
// if (out_w0 < old_w) {
// write_imageh(output_image, output_pos0, output0);
// }
// }
// }
//}
/*
...
...
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
6f7369b9
...
...
@@ -21,7 +21,7 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
bool
optimise
=
true
;
template
<
>
bool
ConvAddBNReluKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddBNReluParam
<
GPU_CL
>
*
param
)
{
...
...
@@ -139,7 +139,12 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_bn_relu_kernel.cl"
);
if
(
optimise
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_bn_relu_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_bn_relu_kernel.cl"
);
}
DLOG
<<
" conv add bn relu conv 1x1"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
...
...
@@ -205,81 +210,186 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
if
(
optimise
)
{
if
(
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
// cl_event out_event = param.Output()->GetClEvent(
);
// cl_event wait_event = param.Input()->GetClEvent(
);
status
=
clSetKernelArg
(
kernel
,
17
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
/*
if (param.Filter()->dims()[2] == 1 &&
param.Filter()->dims()[3] == 1 &&
param.Filter()->dims()[0] % 16 == 0) {
DLOG << " before modifi work size: " << default_work_size;
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
default_work_size[0] = default_work_size[0] / 4;
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
DLOG << " modification work size: " << default_work_size;
DLOG << " input dims " << param.Input()->dims();
DLOG << " output dims " << param.Output()->dims();
DLOG << " filter dims: " << param.Filter()->dims();
DLOG << " biase dims : " << param.Bias()->dims();
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
}
*/
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
6f7369b9
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
bool
optimise_convadd
=
true
;
template
<
>
bool
ConvAddKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddParam
<
GPU_CL
>
*
param
)
{
...
...
@@ -35,8 +36,11 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_kernel.cl"
);
if
(
optimise_convadd
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_kernel.cl"
);
}
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
...
...
@@ -95,58 +99,117 @@ void ConvAddKernel<GPU_CL, float>::Compute(
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
if
(
optimise_convadd
&&
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
outpu
t
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_heigh
t
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_widt
h
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
n
h
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_heigh
t
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
inpu
t
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
// cl_event out_event = param.Output()->GetClEvent(
);
// cl_event wait_event = param.Input()->GetClEvent(
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/conv_add_bn_relu_kernel.h
浏览文件 @
6f7369b9
...
...
@@ -36,6 +36,9 @@ class ConvAddBNReluKernel
public:
void
Compute
(
const
FusionConvAddBNReluParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddBNReluParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
}
// namespace operators
...
...
src/operators/kernel/conv_add_kernel.h
浏览文件 @
6f7369b9
...
...
@@ -41,6 +41,9 @@ class ConvAddKernel
public:
void
Compute
(
const
FusionConvAddParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录