Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
68e8dc4a
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
68e8dc4a
编写于
11月 07, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support winograd algo to speed up 3x3 convlution operator
上级
4af571c4
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
1250 addition
and
8 deletion
+1250
-8
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+35
-0
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+1
-1
src/operators/math/pad.cpp
src/operators/math/pad.cpp
+7
-5
src/operators/math/pad.h
src/operators/math/pad.h
+3
-2
src/operators/math/winograd/winograd.cpp
src/operators/math/winograd/winograd.cpp
+51
-0
src/operators/math/winograd/winograd.h
src/operators/math/winograd/winograd.h
+40
-0
src/operators/math/winograd/winograd_transform.h
src/operators/math/winograd/winograd_transform.h
+42
-0
src/operators/math/winograd/winograd_transform_f6k3.cpp
src/operators/math/winograd/winograd_transform_f6k3.cpp
+1071
-0
未找到文件。
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
68e8dc4a
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#include "operators/math/math_function.h"
#include "operators/math/pad.h"
#include "operators/math/vol2col.h"
#include "operators/math/winograd/winograd.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
@@ -116,6 +117,34 @@ inline void ConvBasic(const ConvParam<CPU> ¶m) {
}
}
inline
void
BatchConv3x3Winograd
(
const
ConvParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
*
filter
=
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
int
batch_size
=
input
->
dims
()[
0
];
int
groups
=
param
.
Groups
();
const
std
::
vector
<
int
>
&
paddings
=
param
.
Paddings
();
math
::
PadFunctor
<
CPU
,
float
>
pad
;
Tensor
input_pad
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
);
if
(
paddings
[
0
]
==
0
&&
paddings
[
1
]
==
0
)
{
input_pad
=
in_batch
;
}
else
{
framework
::
DDim
pad_shape
=
in_batch
.
dims
();
pad_shape
[
2
]
+=
2
*
paddings
[
0
];
pad_shape
[
3
]
+=
2
*
paddings
[
1
];
input_pad
.
mutable_data
<
float
>
(
pad_shape
);
pad
(
in_batch
,
paddings
[
0
],
paddings
[
0
],
paddings
[
1
],
paddings
[
1
],
&
input_pad
);
}
math
::
winograd_f6k3
(
input_pad
,
*
filter
,
&
out_batch
);
}
}
template
<
typename
P
>
void
ConvCompute
(
const
ConvParam
<
CPU
>
&
param
)
{
if
(
param
.
Input
()
->
type
()
==
typeid
(
int8_t
))
{
...
...
@@ -133,6 +162,12 @@ void ConvCompute(const ConvParam<CPU> ¶m) {
param
.
Filter
()
->
dims
()[
2
]
==
3
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
nullptr
,
param
.
Output
(),
false
);
}
else
if
(
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Strides
()[
0
]
==
param
.
Strides
()[
1
]
&&
param
.
Dilations
()[
0
]
==
param
.
Dilations
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Dilations
()[
0
]
==
1
&&
param
.
Input
()
->
dims
()[
1
]
>
16
)
{
BatchConv3x3Winograd
(
param
);
}
else
{
ConvBasic
<
float
,
float
>
(
param
);
}
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
68e8dc4a
...
...
@@ -249,7 +249,7 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
#if __ARM_NEON
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
float
*
output_data
=
output
->
mutable_
data
<
float
>
();
const
float
*
bias_data
;
if
(
if_bias
)
{
bias_data
=
bias
->
data
<
float
>
();
...
...
src/operators/math/pad.cpp
浏览文件 @
68e8dc4a
...
...
@@ -21,10 +21,12 @@ namespace math {
template
<
typename
T
>
class
PadFunctor
<
CPU
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
const
int
pad_h
,
const
int
pad_w
,
framework
::
Tensor
*
output
)
{
void
operator
()(
const
framework
::
Tensor
&
input
,
const
int
pad_top
,
const
int
pad_bottom
,
const
int
pad_left
,
const
int
pad_right
,
framework
::
Tensor
*
output
)
{
const
T
*
in_data
=
input
.
data
<
T
>
();
T
*
out_data
=
output
->
mutable_data
<
T
>
();
// should check output shape is valid for such pad parameters
const
framework
::
DDim
&
input_shape
=
input
.
dims
();
const
framework
::
DDim
&
output_shape
=
output
->
dims
();
// fill output with 0
...
...
@@ -32,13 +34,13 @@ class PadFunctor<CPU, T> {
// should make sure the shape of output is match with input
for
(
int
i
=
0
;
i
<
input_shape
[
0
];
++
i
)
{
for
(
int
c
=
0
;
c
<
input_shape
[
1
];
++
c
)
{
out_data
+=
pad_
h
*
output_shape
[
3
];
out_data
+=
pad_
top
*
output_shape
[
3
];
for
(
int
h
=
0
;
h
<
input_shape
[
2
];
++
h
)
{
memcpy
(
out_data
+
pad_
w
,
in_data
,
sizeof
(
T
)
*
input_shape
[
3
]);
memcpy
(
out_data
+
pad_
left
,
in_data
,
sizeof
(
T
)
*
input_shape
[
3
]);
out_data
+=
output_shape
[
3
];
in_data
+=
input_shape
[
3
];
}
out_data
+=
pad_
h
*
output_shape
[
3
];
out_data
+=
pad_
bottom
*
output_shape
[
3
];
}
}
}
...
...
src/operators/math/pad.h
浏览文件 @
68e8dc4a
...
...
@@ -22,8 +22,9 @@ namespace math {
template
<
typename
DeviceType
,
typename
T
>
class
PadFunctor
{
public:
void
operator
()(
const
framework
::
Tensor
&
input
,
const
int
pad_h
,
const
int
pad_w
,
framework
::
Tensor
*
output
);
void
operator
()(
const
framework
::
Tensor
&
input
,
const
int
pad_top
,
const
int
pad_bottom
,
const
int
pad_left
,
const
int
pad_right
,
framework
::
Tensor
*
output
);
};
}
// namespace math
...
...
src/operators/math/winograd/winograd.cpp
0 → 100644
浏览文件 @
68e8dc4a
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#include "operators/math/winograd/winograd.h"
#include "operators/math/winograd/winograd_transform.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
// F(2X2, 3X3)
void
winograd_f2k3
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
}
// F(6X6, 3X3)
void
winograd_f6k3
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
framework
::
Tensor
transformed_input
;
framework
::
Tensor
transformed_weight
;
// transform weight
winograd_transform_weight
<
8
,
3
>
(
weight
,
&
transformed_weight
);
// tile input and transform
winograd_transform_input
<
8
,
3
>
(
input
,
&
transformed_input
);
// caculate output
winograd_transform_output
<
8
,
3
>
(
transformed_input
,
transformed_weight
,
output
);
}
// F(4X4, 5X5)
void
winograd_f4k5
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/math/winograd/winograd.h
0 → 100644
浏览文件 @
68e8dc4a
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/tensor.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
// F(2X2, 3X3)
void
winograd_f2k3
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
// F(6X6, 3X3)
void
winograd_f6k3
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
// F(4X4, 5X5)
void
winograd_f4k5
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/math/winograd/winograd_transform.h
0 → 100644
浏览文件 @
68e8dc4a
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/tensor.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
template
<
int
tile
,
int
kernel
>
void
winograd_transform_weight
(
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
template
<
int
tile
,
int
kernel
>
void
winograd_transform_input
(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
output
);
template
<
int
tile
,
int
kernel
>
void
winograd_transform_output
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/math/winograd/winograd_transform_f6k3.cpp
0 → 100644
浏览文件 @
68e8dc4a
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// refered from https://arxiv.org/abs/1509.09308 and
// https://github.com/andravin/wincnn
#pragma once
#include <arm_neon.h>
#include "operators/math/pad.h"
#include "operators/math/winograd/winograd_transform.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
template
<
>
void
winograd_transform_weight
<
8
,
3
>
(
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
// weight shape is [out_channel, in_channel, kernel_h, kernel_w]
int
out_channel
=
weight
.
dims
()[
0
];
int
in_channel
=
weight
.
dims
()[
1
];
// reshape and alloc transformed weight
// framework::DDim transformed_shape = framework::make_ddim(
// std::vector<int>{out_channel, (in_channel + 3) / 4, 8, 32});
framework
::
DDim
transformed_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{(
out_channel
+
3
)
/
4
,
64
,
in_channel
,
4
});
float
*
outptr
=
output
->
mutable_data
<
float
>
(
transformed_shape
);
memset
(
outptr
,
0
,
output
->
numel
()
*
sizeof
(
float
));
/*
* w0 = g0
* w1 = ((g0 + g2) + g1) * (-2.0 / 9)
* w2 = ((g0 + g2) - g1) * (-2.0 / 9)
* w3 = ((g0 + 4 * g2) + 2 * g1) * (1.0 / 90)
* w4 = ((g0 + 4 * g2) - 2 * g1) * (1.0 / 90)
* w5 = ((g2 + 4 * g0) + 2 * g1) * (1.0 / 180)
* w6 = ((g2 + 4 * g0) - 2 * g1) * (1.0 / 180)
* w7 = g2
*/
/*
const float *inptr = weight.data<float>();
for (int oc = 0; oc < out_channel; ++oc) {
for (int ic = 0; ic < in_channel; ++ic) {
size_t offset = oc * in_channel + ic;
float *kout = outptr + offset * 64;
const float *k = inptr + offset * 9;
float gw[8][3];
for (int i = 0; i < 3; ++i) {
float k0 = k[i];
float k1 = k[3 + i];
float k2 = k[6 + i];
float d0 = k0 + k2;
float d1 = k0 + 4 * k2;
float d2 = 4 * k0 + k2;
float d3 = 2 * k1;
gw[0][i] = k0;
gw[1][i] = -2.f/9 * (d0 + k1); // -2.f/9 * (k0 + k1 + k2)
gw[2][i] = -2.f/9 * (d0 - k1); // -2.f/9 * (k0 - k1 + k2)
gw[3][i] = 1.f/90 * (d1 + d3); // 1.f/90 * (k0 + 2 * k1 + 4 * k2)
gw[4][i] = 1.f/90 * (d1 - d3); // 1.f/90 * (k0 - 2 * k1 + 4 * k2)
gw[5][i] = 8.f/45 * (d2 + d3); // 8.f/45 * (4 * k0 + 2 * k1 + k2)
gw[6][i] = 8.f/45 * (d2 - d3); // 8.f/45 * (4 * k0 - 2 * k1 + k2)
gw[7][i] = k2;
}
for (int i = 0; i < 8; ++i, kout += 8) {
float k0 = gw[i][0];
float k1 = gw[i][1];
float k2 = gw[i][2];
float d0 = k0 + k2;
float d1 = k0 + 4 * k2;
float d2 = 4 * k0 + k2;
float d3 = 2 * k1;
kout[0] = gw[i][0];
kout[1] = -2.f/9 * (d0 + k1); // -2.f/9 * (k0 + k1 + k2)
kout[2] = -2.f/9 * (d0 - k1); // -2.f/9 * (k0 - k1 + k2)
kout[3] = 1.f/90 * (d1 + d3); // 1.f/90 * (k0 + 2 * k1 + 4 * k2)
kout[4] = 1.f/90 * (d1 - d3); // 1.f/90 * (k0 - 2 * k1 + 4 * k2)
kout[5] = 8.f/45 * (d2 + d3); // 8.f/45 * (4 * k0 + 2 * k1 + k2)
kout[6] = 8.f/45 * (d2 - d3); // 8.f/45 * (4 * k0 - 2 * k1 + k2)
kout[7] = gw[i][2];
}
}
}
*/
}
template
<
>
void
winograd_transform_input
<
8
,
3
>
(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
output
)
{
// pack input to [8 * roundup(h/6), 8 * roundup(w/6), channel] tiles
int
channel
=
input
.
dims
()[
1
];
int
height
=
input
.
dims
()[
2
];
int
width
=
input
.
dims
()[
3
];
int
h_tiles
=
(
height
+
3
)
/
6
;
// (height + 5 - 2) / 6
int
w_tiles
=
(
width
+
3
)
/
6
;
// (width + 5 - 2) / 6
int
tiles
=
(
h_tiles
*
w_tiles
+
7
)
/
8
;
framework
::
DDim
transformed_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
tiles
,
64
,
channel
,
8
});
float
*
outptr
=
output
->
mutable_data
<
float
>
(
transformed_shape
);
memset
(
outptr
,
0
,
output
->
numel
()
*
sizeof
(
float
));
const
float
*
inptr
=
input
.
data
<
float
>
();
int
inter_h
=
(
height
-
2
)
/
6
;
int
inter_w
=
(
width
-
2
)
/
6
;
int
remain_h
=
height
-
(
inter_h
*
6
);
int
remain_w
=
width
-
(
inter_w
*
6
);
framework
::
Tensor
input_pad
;
if
(
remain_h
>
2
||
remain_w
>
2
)
{
inter_h
+=
(
remain_h
>
2
);
inter_w
+=
(
remain_w
>
2
);
height
=
(
inter_h
-
1
)
*
6
+
8
;
width
=
(
inter_w
-
1
)
*
6
+
8
;
framework
::
DDim
input_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
1
,
channel
,
height
,
width
});
PadFunctor
<
CPU
,
float
>
pad
;
inptr
=
input_pad
.
mutable_data
<
float
>
(
input_shape
);
pad
(
input
,
0
,
height
-
input
.
dims
()[
2
],
0
,
width
-
input
.
dims
()[
3
],
&
input_pad
);
}
size_t
image_size
=
height
*
width
;
const
float
transform_matrix
[
8
]
=
{
5.25
f
,
-
5.
f
,
-
4.25
f
,
-
2.5
f
,
2.
f
,
-
1.25
f
,
0.5
f
,
0.25
f
};
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
channel
;
c
+=
4
)
{
const
float
*
in
=
inptr
+
c
*
image_size
;
float
d_bt
[
64
*
4
];
// d * B_t
for
(
int
h
=
0
;
h
<
h_tiles
;
++
h
)
{
for
(
int
w
=
0
;
w
<
w_tiles
;
++
w
)
{
const
float
*
in0
=
in
+
(
h
*
width
+
w
)
*
6
;
const
float
*
in1
=
in0
+
image_size
;
const
float
*
in2
=
in1
+
image_size
;
const
float
*
in3
=
in2
+
image_size
;
float
*
d_bt_ptr
=
d_bt
;
asm
volatile
(
"mov r0, #8
\n
"
"vld1.32 {d0-d3}, [%[tm_ptr]]
\n
"
// row loop
"loop_r_%=:
\n
"
"vld1.32 {d4-d7}, [%[in0]], %[width]
\n
"
"vld1.32 {d8-d11}, [%[in1]], %[width]
\n
"
"vld1.32 {d12-d15}, [%[in2]], %[width]
\n
"
"vld1.32 {d16-d19}, [%[in3]], %[width]
\n
"
"vtrn.32 q2, q4
\n
"
"vtrn.32 q3, q5
\n
"
"vtrn.32 q6, q8
\n
"
"vtrn.32 q7, q9
\n
"
"vswp.32 d5, d12
\n
"
"vswp.32 d9, d16
\n
"
"vswp.32 d7, d14
\n
"
"vswp.32 d11, d18
\n
"
// q2: d0, q3: d1,
// ..., q9: d7
"vsub.f32 q10, q2, q8
\n
"
"vsub.f32 q11, q6, q4
\n
"
"vmla.f32 q10, q11, d0[0]
\n
"
// d0 - d6 + (d4 -
// d2) * 5.25
"vst1.32 {d20-d21}, [%[d_bt]]!
\n
"
"vadd.f32 q10, q4, q8
\n
"
"vadd.f32 q11, q3, q7
\n
"
"vmla.f32 q10, q6, d1[0]
\n
"
// d2 - 4.25 * d4 +
// d6
"vmla.f32 q11, q5, d1[0]
\n
"
// d1 - 4.25 * d3 +
// d5
"vadd.f32 q12, q10, q11
\n
"
"vsub.f32 q13, q10, q11
\n
"
"vst1.32 {d24-d27}, [%[d_bt]]!
\n
"
"vmul.f32 q10, q4, d3[1]
\n
"
// 0.25 * d2
"vmul.f32 q11, q3, d3[0]
\n
"
// 0.5 * d1
"vadd.f32 q10, q10, q8
\n
"
// 0.25 * d2 + d6
"vmla.f32 q11, q7, d2[0]
\n
"
// 0.5 * d1 + 2 *
// d5
"vmla.f32 q10, q6, d2[1]
\n
"
// 0.25 * d2 + d6
// - 1.25 * d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 0.5 * d1 + 2 *
// d5 - 2.5 * d3
"vadd.f32 q12, q10, q11
\n
"
"vsub.f32 q13, q10, q11
\n
"
"vst1.32 {d24-d27}, [%[d_bt]]!
\n
"
"vmul.f32 q10, q4, d2[0]
\n
"
// 2 * d2
"vmul.f32 q11, q3, d2[0]
\n
"
// 2 * d1
"vmla.f32 q10, q6, d1[1]
\n
"
// 2 * d2 - 2.5 *
// d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 2 * d1 - 2.5 *
// d3
"vmla.f32 q10, q8, d3[0]
\n
"
// 2 * d1 - 2.5 *
// d3 + 0.5 * d6
"vmla.f32 q11, q7, d3[0]
\n
"
// 2 * d2 - 2.5 *
// d4 + 0.5 * d5
"vmul.f32 q10, q10, d2[0]
\n
"
// 4 * d1 - 5 * d3
// + d6
"vadd.f32 q12, q10, q11
\n
"
"vsub.f32 q13, q10, q11
\n
"
"vst1.32 {d24-d27}, [%[d_bt]]!
\n
"
"vsub.f32 q10, q9, q3
\n
"
"vsub.f32 q11, q5, q7
\n
"
"vmla.f32 q10, q11, d0[0]
\n
"
"vst1.32 {d20-d21}, [%[d_bt]]!
\n
"
"subs r0, #1
\n
"
"bne loop_r_%=
\n
"
:
[
d_bt
]
"+r"
(
d_bt_ptr
),
[
in0
]
"+r"
(
in0
),
[
in1
]
"+r"
(
in1
),
[
in2
]
"+r"
(
in2
),
[
in3
]
"+r"
(
in3
)
:
[
tm_ptr
]
"r"
((
float
*
)
transform_matrix
),
[
width
]
"r"
(
width
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"r0"
);
float
*
ptr0
=
d_bt
;
float
*
ptr1
=
ptr0
+
32
;
float
*
ptr2
=
ptr1
+
32
;
float
*
ptr3
=
ptr2
+
32
;
float
*
ptr4
=
ptr3
+
32
;
float
*
ptr5
=
ptr4
+
32
;
float
*
ptr6
=
ptr5
+
32
;
float
*
ptr7
=
ptr6
+
32
;
int
tile_id
=
h
*
w_tiles
+
w
;
int
block_id
=
tile_id
>>
3
;
int
pack_id
=
tile_id
&
0x7
;
// (tiles / 8, 64, channel, 8)
float
*
out0
=
outptr
+
(
block_id
*
64
*
channel
+
c
)
*
8
+
pack_id
;
int
steps
=
channel
*
8
;
asm
volatile
(
"vld1.32 {d0-d3}, [%[tm_ptr]]
\n
"
"mov r0, 4
\n
"
"loop_col_%=:
\n
"
// col 0:
"vld1.32 {d4-d5}, [%[ptr0]]!
\n
"
// q2: d0
"vld1.32 {d6-d7}, [%[ptr1]]!
\n
"
// q3: d1
"vld1.32 {d8-d9}, [%[ptr2]]!
\n
"
// q4: d2
"vld1.32 {d10-d11}, [%[ptr3]]!
\n
"
// q5: d3
"vld1.32 {d12-d13}, [%[ptr4]]!
\n
"
// q6: d4
"vld1.32 {d14-d15}, [%[ptr5]]!
\n
"
// q7: d5
"vld1.32 {d16-d17}, [%[ptr6]]!
\n
"
// q8: d6
"vld1.32 {d18-d19}, [%[ptr7]]!
\n
"
// q9: d7
"vsub.f32 q10, q2, q8
\n
"
// d0 - d6
"vsub.f32 q11, q6, q4
\n
"
// d4 - d2
"vmla.f32 q10, q11, d0[0]
\n
"
// d0 - d6 + (d4 -
// d2) * 5.25
"vst1.32 {d20-d21}, [%[out0]], %[steps]
\n
"
"vadd.f32 q10, q4, q8
\n
"
"vadd.f32 q11, q3, q7
\n
"
"vmla.f32 q10, q6, d1[0]
\n
"
// d2 - 4.25 * d4 +
// d6
"vmla.f32 q11, q5, d1[0]
\n
"
// d1 - 4.25 * d3 +
// d5
"vadd.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vsub.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vmul.f32 q10, q4, d3[1]
\n
"
// 0.25 * d2
"vmul.f32 q11, q3, d3[0]
\n
"
// 0.5 * d1
"vadd.f32 q10, q10, q8
\n
"
// 0.25 * d2 + d6
"vmla.f32 q11, q7, d2[0]
\n
"
// 0.5 * d1 + 2 *
// d5
"vmla.f32 q10, q6, d2[1]
\n
"
// 0.25 * d2 + d6
// - 1.25 * d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 0.5 * d1 + 2 *
// d5 - 2.5 * d3
"vadd.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vsub.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vmul.f32 q10, q4, d2[0]
\n
"
// 2 * d2
"vmul.f32 q11, q3, d2[0]
\n
"
// 2 * d1
"vmla.f32 q10, q6, d1[1]
\n
"
// 2 * d2 - 2.5 *
// d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 2 * d1 - 2.5 *
// d3
"vmla.f32 q10, q8, d3[0]
\n
"
// 2 * d1 - 2.5 *
// d3 + 0.5 * d6
"vmla.f32 q11, q7, d3[0]
\n
"
// 2 * d2 - 2.5 *
// d4 + 0.5 * d5
"vmul.f32 q10, q10, d2[0]
\n
"
// 4 * d1 - 5 * d3
// + d6
"vadd.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vsub.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vsub.f32 q10, q9, q3
\n
"
"vsub.f32 q11, q5, q7
\n
"
"vmla.f32 q10, q11, d0[0]
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
// col 1:
"vld1.32 {d4-d5}, [%[ptr0]]!
\n
"
// q2: d0
"vld1.32 {d6-d7}, [%[ptr1]]!
\n
"
// q3: d1
"vld1.32 {d8-d9}, [%[ptr2]]!
\n
"
// q4: d2
"vld1.32 {d10-d11}, [%[ptr3]]!
\n
"
// q5: d3
"vld1.32 {d12-d13}, [%[ptr4]]!
\n
"
// q6: d4
"vld1.32 {d14-d15}, [%[ptr5]]!
\n
"
// q7: d5
"vld1.32 {d16-d17}, [%[ptr6]]!
\n
"
// q8: d6
"vld1.32 {d18-d19}, [%[ptr7]]!
\n
"
// q9: d7
"vsub.f32 q10, q2, q8
\n
"
// d0 - d6
"vsub.f32 q11, q6, q4
\n
"
// d4 - d2
"vmla.f32 q10, q11, d0[0]
\n
"
// d0 - d6 + (d4 -
// d2) * 5.25
"vst1.32 {d20-d21}, [%[out0]], %[steps]
\n
"
"vadd.f32 q10, q4, q8
\n
"
"vadd.f32 q11, q3, q7
\n
"
"vmla.f32 q10, q6, d1[0]
\n
"
// d2 - 4.25 * d4 +
// d6
"vmla.f32 q11, q5, d1[0]
\n
"
// d1 - 4.25 * d3 +
// d5
"vadd.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vsub.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vmul.f32 q10, q4, d3[1]
\n
"
// 0.25 * d2
"vmul.f32 q11, q3, d3[0]
\n
"
// 0.5 * d1
"vadd.f32 q10, q10, q8
\n
"
// 0.25 * d2 + d6
"vmla.f32 q11, q7, d2[0]
\n
"
// 0.5 * d1 + 2 *
// d5
"vmla.f32 q10, q6, d2[1]
\n
"
// 0.25 * d2 + d6
// - 1.25 * d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 0.5 * d1 + 2 *
// d5 - 2.5 * d3
"vadd.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vsub.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vmul.f32 q10, q4, d2[0]
\n
"
// 2 * d2
"vmul.f32 q11, q3, d2[0]
\n
"
// 2 * d1
"vmla.f32 q10, q6, d1[1]
\n
"
// 2 * d2 - 2.5 *
// d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 2 * d1 - 2.5 *
// d3
"vmla.f32 q10, q8, d3[0]
\n
"
// 2 * d1 - 2.5 *
// d3 + 0.5 * d6
"vmla.f32 q11, q7, d3[0]
\n
"
// 2 * d2 - 2.5 *
// d4 + 0.5 * d5
"vmul.f32 q10, q10, d2[0]
\n
"
// 4 * d1 - 5 * d3
// + d6
"vadd.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vsub.f32 q12, q10, q11
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"vsub.f32 q10, q9, q3
\n
"
"vsub.f32 q11, q5, q7
\n
"
"vmla.f32 q10, q11, d0[0]
\n
"
"vst1.32 {d24-d25}, [%[out0]], %[steps]
\n
"
"subs r0, #1
\n
"
"bne loop_col_%=
\n
"
:
[
out0
]
"+r"
(
out0
),
[
ptr0
]
"+r"
(
ptr0
),
[
ptr1
]
"+r"
(
ptr1
),
[
ptr2
]
"+r"
(
ptr2
),
[
ptr3
]
"+r"
(
ptr3
),
[
ptr4
]
"+r"
(
ptr4
),
[
ptr5
]
"+r"
(
ptr5
),
[
ptr6
]
"+r"
(
ptr6
),
[
ptr7
]
"+r"
(
ptr7
)
:
[
tm_ptr
]
"r"
((
float
*
)
transform_matrix
),
[
steps
]
"r"
(
steps
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"r0"
);
}
}
}
// remainer channels
int
remain_c_start
=
((
channel
>>
2
)
<<
2
);
for
(
int
c
=
remain_c_start
;
c
<
channel
;
++
c
)
{
const
float
*
in
=
inptr
+
c
*
image_size
;
float
d_bt
[
64
];
// d * B_t
for
(
int
h
=
0
;
h
<
h_tiles
;
++
h
)
{
for
(
int
w
=
0
;
w
<
w_tiles
;
++
w
)
{
const
float
*
in0
=
in
+
(
h
*
width
+
w
)
*
6
;
const
float
*
in1
=
in0
+
width
;
const
float
*
in2
=
in1
+
width
;
const
float
*
in3
=
in2
+
width
;
float
*
d_bt_ptr
=
d_bt
;
int
steps
=
4
*
width
;
asm
volatile
(
"vld1.32 {d0-d3}, [%[tm_ptr]]
\n
"
"mov r0, #2
\n
"
// row loop
"loop_r_%=:
\n
"
"vld1.32 {d4-d7}, [%[in0]], %[steps]
\n
"
"vld1.32 {d8-d11}, [%[in1]], %[steps]
\n
"
"vld1.32 {d12-d15}, [%[in2]], %[steps]
\n
"
"vld1.32 {d16-d19}, [%[in3]], %[steps]
\n
"
"vtrn.32 q2, q4
\n
"
"vtrn.32 q3, q5
\n
"
"vtrn.32 q6, q8
\n
"
"vtrn.32 q7, q9
\n
"
"vswp.32 d5, d12
\n
"
"vswp.32 d9, d16
\n
"
"vswp.32 d7, d14
\n
"
"vswp.32 d11, d18
\n
"
// q2: d0, q3: d1,
// ..., q9: d7
"vsub.f32 q10, q2, q8
\n
"
"vsub.f32 q11, q6, q4
\n
"
"vmla.f32 q10, q11, d0[0]
\n
"
// d0 - d6 + (d4 -
// d2) * 5.25"
"vst1.32 {d20-d21}, [%[d_bt]]!
\n
"
"vadd.f32 q10, q4, q8
\n
"
"vadd.f32 q11, q3, q7
\n
"
"vmla.f32 q10, q6, d1[0]
\n
"
// d2 - 4.25 * d4 +
// d6
"vmla.f32 q11, q5, d1[0]
\n
"
// d1 - 4.25 * d3 +
// d5
"vadd.f32 q12, q10, q11
\n
"
"vsub.f32 q13, q10, q11
\n
"
"vst1.32 {d24-d27}, [%[d_bt]]!
\n
"
"vmul.f32 q10, q4, d3[1]
\n
"
// 0.25 * d2
"vmul.f32 q11, q3, d3[0]
\n
"
// 0.5 * d1
"vadd.f32 q10, q10, q8
\n
"
// 0.25 * d2 + d6
"vmla.f32 q11, q7, d2[0]
\n
"
// 0.5 * d1 + 2 *
// d5
"vmla.f32 q10, q6, d2[1]
\n
"
// 0.25 * d2 + d6
// - 1.25 * d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 0.5 * d1 + 2 *
// d5 - 2.5 * d3
"vadd.f32 q12, q10, q11
\n
"
"vsub.f32 q13, q10, q11
\n
"
"vst1.32 {d24-d27}, [%[d_bt]]!
\n
"
"vmul.f32 q10, q4, d2[0]
\n
"
// 2 * d2
"vmul.f32 q11, q3, d2[0]
\n
"
// 2 * d1
"vmla.f32 q10, q6, d1[1]
\n
"
// 2 * d2 - 2.5 *
// d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 2 * d1 - 2.5 *
// d3
"vmla.f32 q10, q8, d3[0]
\n
"
// 2 * d1 - 2.5 *
// d3 + 0.5 * d6
"vmla.f32 q11, q7, d3[0]
\n
"
// 2 * d2 - 2.5 *
// d4 + 0.5 * d5
"vmul.f32 q10, q10, d2[0]
\n
"
// 4 * d1 - 5 * d3
// + d6
"vadd.f32 q12, q10, q11
\n
"
"vsub.f32 q13, q10, q11
\n
"
"vst1.32 {d24-d27}, [%[d_bt]]!
\n
"
"vsub.f32 q10, q9, q3
\n
"
"vsub.f32 q11, q5, q7
\n
"
"vmla.f32 q10, q11, d0[0]
\n
"
"vst1.32 {d20-d21}, [%[d_bt]]!
\n
"
"subs r0, #1
\n
"
"bne loop_r_%=
\n
"
:
[
d_bt
]
"+r"
(
d_bt_ptr
),
[
in0
]
"+r"
(
in0
),
[
in1
]
"+r"
(
in1
),
[
in2
]
"+r"
(
in2
),
[
in3
]
"+r"
(
in3
)
:
[
tm_ptr
]
"r"
((
float
*
)
transform_matrix
),
[
steps
]
"r"
(
steps
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"r0"
);
float
*
ptr0
=
d_bt
;
float
*
ptr1
=
ptr0
+
32
;
int
tile_id
=
h
*
w_tiles
+
w
;
int
block_id
=
tile_id
>>
3
;
int
pack_id
=
tile_id
&
0x7
;
// (tiles / 8, 64, channel, 8)
float
*
out0
=
outptr
+
(
block_id
*
64
*
channel
+
c
)
*
8
+
pack_id
;
steps
=
channel
*
8
;
asm
volatile
(
"mov r0, #2
\n
"
"vld1.32 {d0-d3}, [%[tm_ptr]]
\n
"
// row loop
"loop_r_%=:
\n
"
"vld1.32 {d4-d5}, [%[ptr0]]!
\n
"
// q2: d0
"vld1.32 {d6-d7}, [%[ptr0]]!
\n
"
// q3: d1
"vld1.32 {d8-d9}, [%[ptr0]]!
\n
"
// q4: d2
"vld1.32 {d10-d11}, [%[ptr0]]!
\n
"
// q5: d3
"vld1.32 {d12-d13}, [%[ptr1]]!
\n
"
// q6: d4
"vld1.32 {d14-d15}, [%[ptr1]]!
\n
"
// q7: d5
"vld1.32 {d16-d17}, [%[ptr1]]!
\n
"
// q8: d6
"vld1.32 {d18-d19}, [%[ptr1]]!
\n
"
// q9: d7
"vtrn.32 q2, q3
\n
"
"vtrn.32 q4, q5
\n
"
"vtrn.32 q6, q7
\n
"
"vtrn.32 q8, q9
\n
"
"vswp.32 d5, d8
\n
"
"vswp.32 d7, d10
\n
"
"vswp.32 d13, d16
\n
"
"vswp.32 d15, d18
\n
"
"vsub.f32 q10, q2, q8
\n
"
// d0 - d6
"vsub.f32 q11, q6, q4
\n
"
// d4 - d2
"vmla.f32 q10, q11, d0[0]
\n
"
// d0 - d6 + (d4 -
// d2) * 5.25
"vst1.32 {d20[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d20[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d21[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d21[1]}, [%[out0]], %[steps]
\n
"
"vadd.f32 q10, q4, q8
\n
"
"vadd.f32 q11, q3, q7
\n
"
"vmla.f32 q10, q6, d1[0]
\n
"
// d2 - 4.25 * d4 +
// d6
"vmla.f32 q11, q5, d1[0]
\n
"
// d1 - 4.25 * d3 +
// d5
"vadd.f32 q12, q10, q11
\n
"
"vst1.32 {d24[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d24[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[1]}, [%[out0]], %[steps]
\n
"
"vsub.f32 q12, q10, q11
\n
"
"vst1.32 {d24[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d24[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[1]}, [%[out0]], %[steps]
\n
"
"vmul.f32 q10, q4, d3[1]
\n
"
// 0.25 * d2
"vmul.f32 q11, q3, d3[0]
\n
"
// 0.5 * d1
"vadd.f32 q10, q10, q8
\n
"
// 0.25 * d2 + d6
"vmla.f32 q11, q7, d2[0]
\n
"
// 0.5 * d1 + 2 *
// d5
"vmla.f32 q10, q6, d2[1]
\n
"
// 0.25 * d2 + d6
// - 1.25 * d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 0.5 * d1 + 2 *
// d5 - 2.5 * d3
"vadd.f32 q12, q10, q11
\n
"
"vst1.32 {d24[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d24[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[1]}, [%[out0]], %[steps]
\n
"
"vsub.f32 q12, q10, q11
\n
"
"vst1.32 {d24[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d24[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[1]}, [%[out0]], %[steps]
\n
"
"vmul.f32 q10, q4, d2[0]
\n
"
// 2 * d2
"vmul.f32 q11, q3, d2[0]
\n
"
// 2 * d1
"vmla.f32 q10, q6, d1[1]
\n
"
// 2 * d2 - 2.5 *
// d4
"vmla.f32 q11, q5, d1[1]
\n
"
// 2 * d1 - 2.5 *
// d3
"vmla.f32 q10, q8, d3[0]
\n
"
// 2 * d1 - 2.5 *
// d3 + 0.5 * d6
"vmla.f32 q11, q7, d3[0]
\n
"
// 2 * d2 - 2.5 *
// d4 + 0.5 * d5
"vmul.f32 q10, q10, d2[0]
\n
"
// 4 * d1 - 5 * d3
// + d6
"vadd.f32 q12, q10, q11
\n
"
"vst1.32 {d24[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d24[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[1]}, [%[out0]], %[steps]
\n
"
"vsub.f32 q12, q10, q11
\n
"
"vst1.32 {d24[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d24[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d25[1]}, [%[out0]], %[steps]
\n
"
"vsub.f32 q10, q9, q3
\n
"
"vsub.f32 q11, q5, q7
\n
"
"vmla.f32 q10, q11, d0[0]
\n
"
"vst1.32 {d20[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d20[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d21[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d21[1]}, [%[out0]], %[steps]
\n
"
"subs r0, #1
\n
"
"bne loop_r_%=
\n
"
:
[
out0
]
"+r"
(
out0
),
[
ptr0
]
"+r"
(
ptr0
),
[
ptr1
]
"+r"
(
ptr1
)
:
[
tm_ptr
]
"r"
((
float
*
)
transform_matrix
),
[
steps
]
"r"
(
steps
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"r0"
);
}
}
}
}
template
<
>
void
winograd_transform_output
<
8
,
3
>
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
// weight shape is [out_channel/4, 64, in_channel, 4],
// input shape is [hw/8, 64, in_channel, 8]
int
in_channel
=
input
.
dims
()[
2
];
int
tiles
=
input
.
dims
()[
0
];
int
out_channel
=
weight
.
dims
()[
0
];
// compute U*V first
framework
::
Tensor
uv_trans
;
framework
::
DDim
shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
4
*
out_channel
,
8
*
tiles
,
64
});
float
*
uv_trans_ptr
=
uv_trans
.
mutable_data
<
float
>
(
shape
);
memset
(
uv_trans_ptr
,
0
,
uv_trans
.
numel
()
*
sizeof
(
float
));
const
float
*
input_ptr
=
input
.
data
<
float
>
();
const
float
*
weight_ptr
=
weight
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
out_channel
;
++
i
)
{
float
*
uv_ptr
=
uv_trans_ptr
+
(
i
*
tiles
*
64
*
32
);
for
(
int
k
=
0
;
k
<
64
;
++
k
)
{
const
float
*
w_ptr
=
weight_ptr
+
(
i
*
64
+
k
)
*
in_channel
*
4
;
for
(
int
j
=
0
;
j
<
tiles
;
++
j
)
{
const
float
*
in_ptr
=
input_ptr
+
(
k
*
tiles
+
j
)
*
in_channel
*
8
;
float
*
out0
=
uv_ptr
+
(
8
*
j
)
*
64
+
k
;
// out channel 0
float
*
out1
=
out0
+
8
*
tiles
*
64
;
// out channel 1
float
*
out2
=
out1
+
8
*
tiles
*
64
;
// out channel 2
float
*
out3
=
out2
+
8
*
tiles
*
64
;
// out channel 3
int
inter_channel
=
in_channel
>>
1
;
int
remain_channel
=
in_channel
&
0x1
;
int
steps
=
64
;
asm
volatile
(
"veor q8, q8, q8
\n
"
"veor q9, q9, q9
\n
"
"veor q10, q10, q10
\n
"
"veor q11, q11, q11
\n
"
"veor q12, q12, q12
\n
"
"veor q13, q13, q13
\n
"
"veor q14, q14, q14
\n
"
"veor q15, q15, q15
\n
"
// loop 2 channels
"cmp %[inter_channel], #0
\n
"
"ble cmp_remain_%=
\n
"
"loop_4c_%=:
\n
"
"vld1.32 {d0-d3}, [%[w_ptr]]!
\n
"
"vld1.32 {d4-d7}, [%[in_ptr]]!
\n
"
"vmla.f32 q8, q2, d0[0]
\n
"
"vmla.f32 q9, q3, d0[0]
\n
"
"vmla.f32 q10, q2, d0[1]
\n
"
"vmla.f32 q11, q3, d0[1]
\n
"
"vmla.f32 q12, q2, d1[0]
\n
"
"vmla.f32 q13, q3, d1[0]
\n
"
"vmla.f32 q14, q2, d1[1]
\n
"
"vmla.f32 q15, q3, d1[1]
\n
"
"vld1.32 {d8-d11}, [%[in_ptr]]!
\n
"
"vmla.f32 q8, q4, d2[0]
\n
"
"vmla.f32 q9, q5, d2[0]
\n
"
"vmla.f32 q10, q4, d2[1]
\n
"
"vmla.f32 q11, q5, d2[1]
\n
"
"vmla.f32 q12, q4, d3[0]
\n
"
"vmla.f32 q13, q5, d3[0]
\n
"
"vmla.f32 q14, q4, d3[1]
\n
"
"vmla.f32 q15, q5, d3[1]
\n
"
"subs %[inter_channel], #1
\n
"
"bne loop_4c_%=
\n
"
// cmp remain channel > 0
"cmp_remain_%=:
\n
"
"cmp %[remain_channel], #0
\n
"
"ble store_res_%=
\n
"
// loop 1 channel
"loop_c_%=:
\n
"
"vld1.32 {d0-d1}, [%[w_ptr]]!
\n
"
"vld1.32 {d4-d7}, [%[in_ptr]]!
\n
"
"vmla.f32 q8, q2, d0[0]
\n
"
"vmla.f32 q9, q3, d0[0]
\n
"
"vmla.f32 q10, q2, d0[1]
\n
"
"vmla.f32 q11, q3, d0[1]
\n
"
"vmla.f32 q12, q2, d1[0]
\n
"
"vmla.f32 q13, q3, d1[0]
\n
"
"vmla.f32 q14, q2, d1[1]
\n
"
"vmla.f32 q15, q3, d1[1]
\n
"
"subs %[remain_channel], #1
\n
"
"bne loop_c_%=
\n
"
"store_res_%=:
\n
"
"vst1.32 {d16[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d16[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d17[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d17[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d18[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d18[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d19[0]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d19[1]}, [%[out0]], %[steps]
\n
"
"vst1.32 {d20[0]}, [%[out1]], %[steps]
\n
"
"vst1.32 {d20[1]}, [%[out1]], %[steps]
\n
"
"vst1.32 {d21[0]}, [%[out1]], %[steps]
\n
"
"vst1.32 {d21[1]}, [%[out1]], %[steps]
\n
"
"vst1.32 {d22[0]}, [%[out1]], %[steps]
\n
"
"vst1.32 {d22[1]}, [%[out1]], %[steps]
\n
"
"vst1.32 {d23[0]}, [%[out1]], %[steps]
\n
"
"vst1.32 {d23[1]}, [%[out1]], %[steps]
\n
"
"vst1.32 {d24[0]}, [%[out2]], %[steps]
\n
"
"vst1.32 {d24[1]}, [%[out2]], %[steps]
\n
"
"vst1.32 {d25[0]}, [%[out2]], %[steps]
\n
"
"vst1.32 {d25[1]}, [%[out2]], %[steps]
\n
"
"vst1.32 {d26[0]}, [%[out2]], %[steps]
\n
"
"vst1.32 {d26[1]}, [%[out2]], %[steps]
\n
"
"vst1.32 {d27[0]}, [%[out2]], %[steps]
\n
"
"vst1.32 {d27[1]}, [%[out2]], %[steps]
\n
"
"vst1.32 {d28[0]}, [%[out3]], %[steps]
\n
"
"vst1.32 {d28[1]}, [%[out3]], %[steps]
\n
"
"vst1.32 {d29[0]}, [%[out3]], %[steps]
\n
"
"vst1.32 {d29[1]}, [%[out3]], %[steps]
\n
"
"vst1.32 {d30[0]}, [%[out3]], %[steps]
\n
"
"vst1.32 {d30[1]}, [%[out3]], %[steps]
\n
"
"vst1.32 {d31[0]}, [%[out3]], %[steps]
\n
"
"vst1.32 {d31[1]}, [%[out3]], %[steps]
\n
"
:
[
w_ptr
]
"+r"
(
w_ptr
),
[
in_ptr
]
"+r"
(
in_ptr
),
[
out0
]
"+r"
(
out0
),
[
out1
]
"+r"
(
out1
),
[
out2
]
"+r"
(
out2
),
[
out3
]
"+r"
(
out3
),
[
remain_channel
]
"+r"
(
remain_channel
),
[
inter_channel
]
"+r"
(
inter_channel
)
:
[
steps
]
"r"
(
steps
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
}
}
}
/*
* s0 = m0 + (m1 + m2) + (m3 + m4) + 32 * (m5 + m6)
* s1 = (m1 - m2) + 2 * (m3 - m4) + 16 * (m5 - m6)
* s2 = (m1 + m2) + 4 * (m3 + m4) + 8 * (m5 + m6)
* s3 = (m1 - m2) + 8 * (m3 - m4) + 4 * (m5 - m6)
* s4 = (m1 + m2) + 16 * (m3 + m4) + 2 * (m5 + m6)
* s5 = (m1 - m2) + 32 * (m3 - m4) + (m5 - m6) + m7
*/
int
out_h
=
output
->
dims
()[
2
];
int
out_w
=
output
->
dims
()[
3
];
int
h_tiles
=
(
out_h
+
5
)
/
6
;
int
w_tiles
=
(
out_w
+
5
)
/
6
;
int
remain_h
=
out_h
-
out_h
/
6
*
6
;
int
remain_w
=
out_w
-
out_w
/
6
*
6
;
float
*
output_ptr
=
output
->
mutable_data
<
float
>
();
out_channel
=
output
->
dims
()[
1
];
float
transform_matrix
[
8
]
=
{
2.
f
,
4.
f
,
8.
f
,
16.
f
};
for
(
int
oc
=
0
;
oc
<
out_channel
;
++
oc
)
{
float
at_m
[
48
];
float
output_tmp
[
36
];
const
float
*
uv_ptr
=
uv_trans_ptr
+
oc
*
h_tiles
*
w_tiles
*
64
;
for
(
int
tile_h
=
0
;
tile_h
<
h_tiles
;
++
tile_h
)
{
for
(
int
tile_w
=
0
;
tile_w
<
w_tiles
;
++
tile_w
)
{
float
*
at_m_ptr
=
at_m
;
asm
volatile
(
"vld1.32 {d0-d1}, [%[tm_ptr]]
\n
"
"mov r0, #2
\n
"
"loop_%=:
\n
"
"vld1.32 {d2-d5}, [%[uv_ptr]]!
\n
"
"vld1.32 {d6-d9}, [%[uv_ptr]]!
\n
"
"vld1.32 {d10-d13}, [%[uv_ptr]]!
\n
"
"vld1.32 {d14-d17}, [%[uv_ptr]]!
\n
"
"vtrn.32 q1, q3
\n
"
"vtrn.32 q2, q4
\n
"
"vtrn.32 q5, q7
\n
"
"vtrn.32 q6, q8
\n
"
"vswp.32 d3, d10
\n
"
// q1: m0, q5: m2
"vswp.32 d7, d14
\n
"
// q3: m1, q7: m3
"vswp.32 d5, d12
\n
"
// q2: m4, q6: m6
"vswp.32 d9, d16
\n
"
// q4: m5, q8: m7
"vadd.f32 q9, q3, q5
\n
"
// m1 + m2
"vadd.f32 q10, q7, q2
\n
"
// m3 + m4
"vadd.f32 q11, q4, q6
\n
"
// m5 + m6
"vsub.f32 q12, q3, q5
\n
"
// m1 - m2
"vsub.f32 q13, q7, q2
\n
"
// m3 - m4
"vsub.f32 q14, q4, q6
\n
"
// m5 - m6
"vmul.f32 q2, q13, d0[0]
\n
"
// 2 * (m3 - m4)
"vmul.f32 q3, q11, d0[0]
\n
"
// 2 * (m5 + m6)
"vadd.f32 q15, q1, q9
\n
"
"vadd.f32 q15, q15, q10
\n
"
"vmla.f32 q15, q3, d1[1]
\n
"
"vst1.32 {d30-d31}, [%[at_m_ptr]]!
\n
"
"vadd.f32 q15, q12, q2
\n
"
"vmla.f32 q15, q14, d1[1]
\n
"
"vst1.32 {d30-d31}, [%[at_m_ptr]]!
\n
"
"vmov.32 q15, q9
\n
"
"vmla.f32 q15, q10, d0[1]
\n
"
"vmla.f32 q15, q11, d1[0]
\n
"
"vst1.32 {d30-d31}, [%[at_m_ptr]]!
\n
"
"vmov.32 q15, q12
\n
"
"vmla.f32 q15, q13, d1[0]
\n
"
"vmla.f32 q15, q14, d0[1]
\n
"
"vst1.32 {d30-d31}, [%[at_m_ptr]]!
\n
"
"vadd.f32 q15, q9, q3
\n
"
"vmla.f32 q15, q10, d1[1]
\n
"
"vst1.32 {d30-d31}, [%[at_m_ptr]]!
\n
"
"vadd.f32 q15, q12, q8
\n
"
"vmla.f32 q15, q2, d1[1]
\n
"
"vst1.32 {d30-d31}, [%[at_m_ptr]]!
\n
"
"subs r0, #1
\n
"
"bne loop_%=
\n
"
:
[
uv_ptr
]
"+r"
(
uv_ptr
),
[
at_m_ptr
]
"+r"
(
at_m_ptr
)
:
[
tm_ptr
]
"r"
((
float
*
)
transform_matrix
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
float
*
at_m_ptr0
=
at_m
;
float
*
at_m_ptr1
=
at_m
+
24
;
if
((
remain_w
>
0
&&
tile_w
==
w_tiles
-
1
)
||
(
remain_h
>
0
&&
tile_h
==
h_tiles
-
1
))
{
float
*
out_ptr0
=
output_tmp
;
float
*
out_ptr1
=
output_tmp
+
6
;
float
*
out_ptr2
=
output_tmp
+
12
;
float
*
out_ptr3
=
output_tmp
+
18
;
float
*
out_ptr4
=
output_tmp
+
24
;
float
*
out_ptr5
=
output_tmp
+
30
;
asm
volatile
(
"vld1.32 {d0-d1}, [%[tm_ptr]]
\n
"
// process 4 rows
"vld1.32 {d2-d5}, [%[at_m_ptr0]]!
\n
"
// q1: m0, q2: m1
"vld1.32 {d6-d9}, [%[at_m_ptr0]]!
\n
"
// q3: m2, q4: m3
"vld1.32 {d10-d13}, [%[at_m_ptr1]]!
\n
"
// q5: m4, q6: m5
"vld1.32 {d14-d17}, [%[at_m_ptr1]]!
\n
"
// q7: m6, q8: m7
"vtrn.32 q1, q2
\n
"
"vtrn.32 q3, q4
\n
"
"vtrn.32 q5, q6
\n
"
"vtrn.32 q7, q8
\n
"
"vswp.32 d3, d6
\n
"
"vswp.32 d5, d8
\n
"
"vswp.32 d11, d14
\n
"
"vswp.32 d13, d16
\n
"
"vadd.f32 q9, q2, q3
\n
"
// m1 + m2
"vadd.f32 q10, q4, q5
\n
"
// m3 + m4
"vadd.f32 q11, q6, q7
\n
"
// m5 + m6
"vsub.f32 q12, q2, q3
\n
"
// m1 - m2
"vsub.f32 q13, q4, q5
\n
"
// m3 - m4
"vsub.f32 q14, q6, q7
\n
"
// m5 - m6
"vmul.f32 q6, q13, d0[0]
\n
"
// 2 * (m3 - m4)
"vmul.f32 q7, q11, d0[0]
\n
"
// 2 * (m5 + m6)
"vadd.f32 q1, q1, q9
\n
"
"vadd.f32 q1, q1, q10
\n
"
"vmla.f32 q1, q3, d1[1]
\n
"
"vadd.f32 q2, q12, q6
\n
"
"vmla.f32 q2, q14, d1[1]
\n
"
"vmov.32 q3, q9
\n
"
"vmla.f32 q3, q10, d0[1]
\n
"
"vmla.f32 q3, q11, d1[0]
\n
"
"vmov.32 q4, q12
\n
"
"vmla.f32 q4, q13, d1[0]
\n
"
"vmla.f32 q4, q14, d0[1]
\n
"
"vtrn.32 q1, q2
\n
"
"vtrn.32 q3, q4
\n
"
"vswp.32 d3, d6
\n
"
"vswp.32 d5, d8
\n
"
"vst1.32 {d2-d3}, [%[out_ptr0]]!
\n
"
"vst1.32 {d4-d5}, [%[out_ptr1]]!
\n
"
"vst1.32 {d6-d7}, [%[out_ptr2]]!
\n
"
"vst1.32 {d8-d9}, [%[out_ptr3]]!
\n
"
"vadd.f32 q1, q9, q7
\n
"
"vmla.f32 q1, q10, d1[1]
\n
"
"vadd.f32 q2, q12, q8
\n
"
"vmla.f32 q2, q6, d1[1]
\n
"
"vtrn.32 q1, q2
\n
"
"vst1.32 {d2}, [%[out_ptr0]]!
\n
"
"vst1.32 {d4}, [%[out_ptr1]]!
\n
"
"vst1.32 {d3}, [%[out_ptr2]]!
\n
"
"vst1.32 {d5}, [%[out_ptr3]]!
\n
"
// remain 2 rows
"vld1.32 {d2-d5}, [%[at_m_ptr0]]!
\n
"
// d2: m0, d3: m2,
// d4: m1, d5: m3
"vld1.32 {d6-d9}, [%[at_m_ptr1]]!
\n
"
// d6: m4, d7: m6,
// d8: m5, d9: m7
"vtrn.32 q1, q2
\n
"
"vtrn.32 q3, q4
\n
"
"vadd.f32 d10, d4, d3
\n
"
// m1 + m2
"vadd.f32 d11, d5, d6
\n
"
// m3 + m4
"vadd.f32 d12, d8, d7
\n
"
// m5 + m6
"vsub.f32 d13, d4, d3
\n
"
// m1 - m2
"vsub.f32 d14, d5, d6
\n
"
// m3 - m4
"vsub.f32 d15, d8, d7
\n
"
// m5 - m6
"vmul.f32 d16, d14, d0[0]
\n
"
// 2 * (m3 - m4)
"vmul.f32 d17, d12, d0[0]
\n
"
// 2 * (m5 + m6)
"vadd.f32 d18, d2, d10
\n
"
"vadd.f32 d18, d18, d11
\n
"
"vmla.f32 d18, d17, d1[1]
\n
"
"vadd.f32 d20, d13, d16
\n
"
"vmla.f32 d20, d15, d1[1]
\n
"
"vmov.32 d19, d10
\n
"
"vmla.f32 d19, d11, d0[1]
\n
"
"vmla.f32 d19, d20, d1[0]
\n
"
"vmov.32 d21, d13
\n
"
"vmla.f32 d21, d14, d1[0]
\n
"
"vmla.f32 d21, d15, d0[1]
\n
"
"vtrn.32 d18, d19
\n
"
"vtrn.32 d20, d21
\n
"
"vst1.32 {d18-d19}, [%[out_ptr4]]!
\n
"
"vst1.32 {d20-d21}, [%[out_ptr5]]!
\n
"
"vadd.f32 d18, d10, d17
\n
"
"vmla.f32 d18, d11, d1[1]
\n
"
"vadd.f32 d19, d13, d9
\n
"
"vmla.f32 d19, d16, d1[1]
\n
"
"vtrn.32 d18, d19
\n
"
"vst1.32 {d18}, [%[out_ptr4]]!
\n
"
"vst1.32 {d19}, [%[out_ptr5]]!
\n
"
:
[
out_ptr0
]
"+r"
(
out_ptr0
),
[
out_ptr1
]
"+r"
(
out_ptr1
),
[
out_ptr2
]
"+r"
(
out_ptr2
),
[
out_ptr3
]
"+r"
(
out_ptr3
),
[
out_ptr4
]
"+r"
(
out_ptr4
),
[
out_ptr5
]
"+r"
(
out_ptr5
),
[
at_m_ptr0
]
"+r"
(
at_m_ptr0
),
[
at_m_ptr1
]
"+r"
(
at_m_ptr1
)
:
[
tm_ptr
]
"r"
((
float
*
)
transform_matrix
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
size_t
offset
=
(
oc
*
out_h
+
6
*
tile_h
)
*
out_w
+
6
*
tile_w
;
float
*
out_ptr
=
output_ptr
+
offset
;
int
remain_row
=
(
tile_h
<
h_tiles
-
1
)
?
6
:
remain_h
;
int
remain_col
=
(
tile_w
<
w_tiles
-
1
)
?
6
:
remain_w
;
for
(
int
i
=
0
;
i
<
remain_row
;
++
i
,
out_ptr
+=
out_w
)
{
memcpy
(
out_ptr
,
output_tmp
+
i
*
6
,
remain_col
*
sizeof
(
float
));
}
}
else
{
size_t
offset
=
(
oc
*
out_h
+
6
*
tile_h
)
*
out_w
+
6
*
tile_w
;
float
*
out_ptr0
=
output_ptr
+
offset
;
float
*
out_ptr1
=
out_ptr0
+
out_w
;
float
*
out_ptr2
=
out_ptr1
+
out_w
;
float
*
out_ptr3
=
out_ptr2
+
out_w
;
float
*
out_ptr4
=
out_ptr3
+
out_w
;
float
*
out_ptr5
=
out_ptr4
+
out_w
;
asm
volatile
(
"vld1.32 {d0-d1}, [%[tm_ptr]]
\n
"
// process 4 rows
"vld1.32 {d2-d5}, [%[at_m_ptr0]]!
\n
"
// q1: m0, q2: m1
"vld1.32 {d6-d9}, [%[at_m_ptr0]]!
\n
"
// q3: m2, q4: m3
"vld1.32 {d10-d13}, [%[at_m_ptr1]]!
\n
"
// q5: m4, q6: m5
"vld1.32 {d14-d17}, [%[at_m_ptr1]]!
\n
"
// q7: m6, q8: m7
"vtrn.32 q1, q2
\n
"
"vtrn.32 q3, q4
\n
"
"vtrn.32 q5, q6
\n
"
"vtrn.32 q7, q8
\n
"
"vswp.32 d3, d6
\n
"
"vswp.32 d5, d8
\n
"
"vswp.32 d11, d14
\n
"
"vswp.32 d13, d16
\n
"
"vadd.f32 q9, q2, q3
\n
"
// m1 + m2
"vadd.f32 q10, q4, q5
\n
"
// m3 + m4
"vadd.f32 q11, q6, q7
\n
"
// m5 + m6
"vsub.f32 q12, q2, q3
\n
"
// m1 - m2
"vsub.f32 q13, q4, q5
\n
"
// m3 - m4
"vsub.f32 q14, q6, q7
\n
"
// m5 - m6
"vmul.f32 q6, q13, d0[0]
\n
"
// 2 * (m3 - m4)
"vmul.f32 q7, q11, d0[0]
\n
"
// 2 * (m5 + m6)
"vadd.f32 q1, q1, q9
\n
"
"vadd.f32 q1, q1, q10
\n
"
"vmla.f32 q1, q3, d1[1]
\n
"
"vadd.f32 q2, q12, q6
\n
"
"vmla.f32 q2, q14, d1[1]
\n
"
"vmov.32 q3, q9
\n
"
"vmla.f32 q3, q10, d0[1]
\n
"
"vmla.f32 q3, q11, d1[0]
\n
"
"vmov.32 q4, q12
\n
"
"vmla.f32 q4, q13, d1[0]
\n
"
"vmla.f32 q4, q14, d0[1]
\n
"
"vtrn.32 q1, q2
\n
"
"vtrn.32 q3, q4
\n
"
"vswp.32 d3, d6
\n
"
"vswp.32 d5, d8
\n
"
"vst1.32 {d2-d3}, [%[out_ptr0]]!
\n
"
"vst1.32 {d4-d5}, [%[out_ptr1]]!
\n
"
"vst1.32 {d6-d7}, [%[out_ptr2]]!
\n
"
"vst1.32 {d8-d9}, [%[out_ptr3]]!
\n
"
"vadd.f32 q1, q9, q7
\n
"
"vmla.f32 q1, q10, d1[1]
\n
"
"vadd.f32 q2, q12, q8
\n
"
"vmla.f32 q2, q6, d1[1]
\n
"
"vtrn.32 q1, q2
\n
"
"vst1.32 {d2}, [%[out_ptr0]]!
\n
"
"vst1.32 {d4}, [%[out_ptr1]]!
\n
"
"vst1.32 {d3}, [%[out_ptr2]]!
\n
"
"vst1.32 {d5}, [%[out_ptr3]]!
\n
"
// remain 2 rows
"vld1.32 {d2-d5}, [%[at_m_ptr0]]!
\n
"
// d2: m0, d3: m2,
// d4: m1, d5: m3
"vld1.32 {d6-d9}, [%[at_m_ptr1]]!
\n
"
// d6: m4, d7: m6,
// d8: m5, d9: m7
"vtrn.32 q1, q2
\n
"
"vtrn.32 q3, q4
\n
"
"vadd.f32 d10, d4, d3
\n
"
// m1 + m2
"vadd.f32 d11, d5, d6
\n
"
// m3 + m4
"vadd.f32 d12, d8, d7
\n
"
// m5 + m6
"vsub.f32 d13, d4, d3
\n
"
// m1 - m2
"vsub.f32 d14, d5, d6
\n
"
// m3 - m4
"vsub.f32 d15, d8, d7
\n
"
// m5 - m6
"vmul.f32 d16, d14, d0[0]
\n
"
// 2 * (m3 - m4)
"vmul.f32 d17, d12, d0[0]
\n
"
// 2 * (m5 + m6)
"vadd.f32 d18, d2, d10
\n
"
"vadd.f32 d18, d18, d11
\n
"
"vmla.f32 d18, d17, d1[1]
\n
"
"vadd.f32 d20, d13, d16
\n
"
"vmla.f32 d20, d15, d1[1]
\n
"
"vmov.32 d19, d10
\n
"
"vmla.f32 d19, d11, d0[1]
\n
"
"vmla.f32 d19, d20, d1[0]
\n
"
"vmov.32 d21, d13
\n
"
"vmla.f32 d21, d14, d1[0]
\n
"
"vmla.f32 d21, d15, d0[1]
\n
"
"vtrn.32 d18, d19
\n
"
"vtrn.32 d20, d21
\n
"
"vst1.32 {d18-d19}, [%[out_ptr4]]!
\n
"
"vst1.32 {d20-d21}, [%[out_ptr5]]!
\n
"
"vadd.f32 d18, d10, d17
\n
"
"vmla.f32 d18, d11, d1[1]
\n
"
"vadd.f32 d19, d13, d9
\n
"
"vmla.f32 d19, d16, d1[1]
\n
"
"vtrn.32 d18, d19
\n
"
"vst1.32 {d18}, [%[out_ptr4]]!
\n
"
"vst1.32 {d19}, [%[out_ptr5]]!
\n
"
:
[
out_ptr0
]
"+r"
(
out_ptr0
),
[
out_ptr1
]
"+r"
(
out_ptr1
),
[
out_ptr2
]
"+r"
(
out_ptr2
),
[
out_ptr3
]
"+r"
(
out_ptr3
),
[
out_ptr4
]
"+r"
(
out_ptr4
),
[
out_ptr5
]
"+r"
(
out_ptr5
),
[
at_m_ptr0
]
"+r"
(
at_m_ptr0
),
[
at_m_ptr1
]
"+r"
(
at_m_ptr1
)
:
[
tm_ptr
]
"r"
((
float
*
)
transform_matrix
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
}
}
}
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录