Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
686398d2
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
686398d2
编写于
10月 31, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix dwconv in w!=h
上级
2319a4ca
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
177 addition
and
185 deletion
+177
-185
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+1
-2
src/operators/kernel/central-arm-func/conv_add_bn_relu_arm_func.h
...ators/kernel/central-arm-func/conv_add_bn_relu_arm_func.h
+2
-4
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+1
-2
src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h
...ators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h
+2
-4
src/operators/kernel/central-arm-func/conv_bn_relu_arm_func.h
...operators/kernel/central-arm-func/conv_bn_relu_arm_func.h
+2
-4
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
...erators/kernel/central-arm-func/depthwise_conv_arm_func.h
+1
-2
src/operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h
...erators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h
+2
-4
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+166
-163
未找到文件。
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
686398d2
...
...
@@ -124,8 +124,7 @@ void ConvAddCompute(const FusionConvAddParam<CPU> ¶m) {
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), param.Bias(),
...
...
src/operators/kernel/central-arm-func/conv_add_bn_relu_arm_func.h
浏览文件 @
686398d2
...
...
@@ -118,16 +118,14 @@ void ConvAddBNReluCompute(const FusionConvAddBNReluParam<CPU> ¶m) {
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
...
...
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
686398d2
...
...
@@ -130,8 +130,7 @@ void ConvCompute(const ConvParam<CPU> ¶m) {
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
nullptr
,
param
.
Output
(),
false
);
}
else
{
...
...
src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h
浏览文件 @
686398d2
...
...
@@ -122,16 +122,14 @@ void ConvBNAddReluCompute(const FusionConvBNAddReluParam<CPU> ¶m) {
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
...
...
src/operators/kernel/central-arm-func/conv_bn_relu_arm_func.h
浏览文件 @
686398d2
...
...
@@ -117,16 +117,14 @@ void ConvBNReluCompute(const FusionConvBNReluParam<CPU> ¶m) {
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
...
...
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
浏览文件 @
686398d2
...
...
@@ -36,8 +36,7 @@ void DepthwiseConvCompute(const ConvParam<CPU> ¶m) {
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), &Bias, param.Output(), false);
...
...
src/operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h
浏览文件 @
686398d2
...
...
@@ -115,16 +115,14 @@ void DWConvBNReluCompute(const FusionDWConvBNReluParam<CPU> ¶m) {
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
&&
param
.
Input
()
->
dims
()[
2
]
==
param
.
Input
()
->
dims
()[
3
])
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
686398d2
...
...
@@ -302,7 +302,7 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
for
(
int
i
=
1
;
i
<
h
-
1
;
++
i
)
{
output_data
[
i
*
w
]
=
w01
*
input_data
[
i
*
w
-
w
]
+
w02
*
input_data
[
i
*
w
-
w
+
1
]
+
w11
*
input_data
[
i
*
w
]
+
w12
*
input_data
[
i
*
w
+
w
]
+
w11
*
input_data
[
i
*
w
]
+
w12
*
input_data
[
i
*
w
+
1
]
+
w21
*
input_data
[
i
*
w
+
w
]
+
w22
*
input_data
[
i
*
w
+
w
+
1
];
output_data
[
i
*
w
+
w
-
1
]
=
w00
*
input_data
[
i
*
w
+
w
-
1
-
w
-
1
]
+
...
...
@@ -537,8 +537,9 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
const
int
hxw
=
input_height
*
input_width
;
const
int
l
=
input_height
;
// const int l = input_height;
const
int
h
=
input_height
;
const
int
w
=
input_width
;
float32x4_t
vzero
=
vdupq_n_f32
(
0
);
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
...
...
@@ -624,54 +625,53 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
output_data
[
0
]
=
w11
*
input_data
[
0
]
+
w12
*
input_data
[
1
]
+
w21
*
input_data
[
l
]
+
w22
*
input_data
[
l
+
1
];
output_data
[
l
-
1
]
=
w10
*
input_data
[
l
-
2
]
+
w11
*
input_data
[
l
-
1
]
+
w20
*
input_data
[
2
*
l
-
2
]
+
w21
*
input_data
[
2
*
l
-
1
];
output_data
[(
l
-
1
)
*
l
]
=
w01
*
input_data
[(
l
-
2
)
*
l
]
+
w02
*
input_data
[(
l
-
2
)
*
l
+
1
]
+
w11
*
input_data
[(
l
-
1
)
*
l
]
+
w12
*
input_data
[(
l
-
1
)
*
l
+
1
];
output_data
[
l
*
l
-
1
]
=
w00
*
input_data
[(
l
-
2
)
*
(
l
+
1
)]
+
w01
*
input_data
[(
l
-
2
)
*
(
l
+
1
)
+
1
]
+
w10
*
input_data
[
l
*
l
-
2
]
+
w11
*
input_data
[
l
*
l
-
1
];
w21
*
input_data
[
w
]
+
w22
*
input_data
[
w
+
1
];
output_data
[
w
-
1
]
=
w10
*
input_data
[
w
-
2
]
+
w11
*
input_data
[
w
-
1
]
+
w20
*
input_data
[
2
*
w
-
2
]
+
w21
*
input_data
[
2
*
w
-
1
];
output_data
[(
h
-
1
)
*
w
]
=
w01
*
input_data
[(
h
-
2
)
*
w
]
+
w02
*
input_data
[(
h
-
2
)
*
w
+
1
]
+
w11
*
input_data
[(
h
-
1
)
*
w
]
+
w12
*
input_data
[(
h
-
1
)
*
w
+
1
];
output_data
[
h
*
w
-
1
]
=
w00
*
input_data
[
h
*
w
-
w
-
2
]
+
w01
*
input_data
[
h
*
w
-
w
-
1
]
+
w10
*
input_data
[
h
*
w
-
2
]
+
w11
*
input_data
[
h
*
w
-
1
];
output_data
[
0
]
=
output_data
[
0
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[
l
-
1
]
=
output_data
[
l
-
1
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[(
l
-
1
)
*
l
]
=
output_data
[(
l
-
1
)
*
l
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[
l
*
l
-
1
]
=
output_data
[
l
*
l
-
1
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[
w
-
1
]
=
output_data
[
w
-
1
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[(
h
-
1
)
*
w
]
=
output_data
[(
h
-
1
)
*
w
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[
h
*
w
-
1
]
=
output_data
[
h
*
w
-
1
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
0
]
=
output_data
[
0
]
<
0
?
0
:
output_data
[
0
];
output_data
[
l
-
1
]
=
output_data
[
l
-
1
]
<
0
?
0
:
output_data
[
l
-
1
];
output_data
[(
l
-
1
)
*
l
]
=
output_data
[(
l
-
1
)
*
l
]
<
0
?
0
:
output_data
[(
l
-
1
)
*
l
];
output_data
[
l
*
l
-
1
]
=
output_data
[
l
*
l
-
1
]
<
0
?
0
:
output_data
[
l
*
l
-
1
];
output_data
[
w
-
1
]
=
output_data
[
w
-
1
]
<
0
?
0
:
output_data
[
w
-
1
];
output_data
[(
h
-
1
)
*
w
]
=
output_data
[(
h
-
1
)
*
w
]
<
0
?
0
:
output_data
[(
h
-
1
)
*
w
];
output_data
[
h
*
w
-
1
]
=
output_data
[
h
*
w
-
1
]
<
0
?
0
:
output_data
[
h
*
w
-
1
];
}
for
(
int
i
=
1
;
i
<
l
-
1
;
++
i
)
{
output_data
[
i
*
l
]
=
w01
*
input_data
[
i
*
l
-
l
]
+
w02
*
input_data
[
i
*
l
-
l
+
1
]
+
w11
*
input_data
[
i
*
l
]
+
w12
*
input_data
[
i
*
l
+
1
]
+
w21
*
input_data
[
i
*
l
+
l
]
+
w22
*
input_data
[
i
*
l
+
l
+
1
];
output_data
[
i
*
l
+
l
-
1
]
=
w00
*
input_data
[
i
*
l
+
l
-
1
-
l
-
1
]
+
w01
*
input_data
[
i
*
l
+
l
-
1
-
l
]
+
w10
*
input_data
[
i
*
l
+
l
-
1
-
1
]
+
w11
*
input_data
[
i
*
l
+
l
-
1
]
+
w20
*
input_data
[
i
*
l
+
l
-
1
+
l
-
1
]
+
w21
*
input_data
[
i
*
l
+
l
-
1
+
l
];
output_data
[
i
*
l
]
=
output_data
[
i
*
l
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[
i
*
l
+
l
-
1
]
=
output_data
[
i
*
l
+
l
-
1
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
for
(
int
i
=
1
;
i
<
h
-
1
;
++
i
)
{
output_data
[
i
*
w
]
=
w01
*
input_data
[
i
*
w
-
w
]
+
w02
*
input_data
[
i
*
w
-
w
+
1
]
+
w11
*
input_data
[
i
*
w
]
+
w12
*
input_data
[
i
*
w
+
1
]
+
w21
*
input_data
[
i
*
w
+
w
]
+
w22
*
input_data
[
i
*
w
+
w
+
1
];
output_data
[
i
*
w
+
w
-
1
]
=
w00
*
input_data
[
i
*
w
+
w
-
1
-
w
-
1
]
+
w01
*
input_data
[
i
*
w
+
w
-
1
-
w
]
+
w10
*
input_data
[
i
*
w
+
w
-
1
-
1
]
+
w11
*
input_data
[
i
*
w
+
w
-
1
]
+
w20
*
input_data
[
i
*
w
+
w
-
1
+
w
-
1
]
+
w21
*
input_data
[
i
*
w
+
w
-
1
+
w
];
output_data
[
i
*
w
]
=
output_data
[
i
*
w
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[
i
*
w
+
w
-
1
]
=
output_data
[
i
*
w
+
w
-
1
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
i
*
l
]
=
output_data
[
i
*
l
]
<
0
?
0
:
output_data
[
i
*
l
];
output_data
[
i
*
l
+
l
-
1
]
=
output_data
[
i
*
l
+
l
-
1
]
<
0
?
0
:
output_data
[
i
*
l
+
l
-
1
];
output_data
[
i
*
w
]
=
output_data
[
i
*
w
]
<
0
?
0
:
output_data
[
i
*
w
];
output_data
[
i
*
w
+
w
-
1
]
=
output_data
[
i
*
w
+
w
-
1
]
<
0
?
0
:
output_data
[
i
*
w
+
w
-
1
];
}
}
...
...
@@ -774,7 +774,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
const int h = static_cast<int>(input->dims()[2]);
const int w = static_cast<int>(input->dims()[3]);
const int l = h;
//
const int l = h;
const int batch_size = static_cast<int>(input->dims()[0]);
const int c = static_cast<int>(input->dims()[1]);
...
...
@@ -790,7 +790,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
vnewbias = vdupq_n_f32(newbias_data[j]);
vnewscale = vdupq_n_f32(newscale_data[j]);
int
l_mid = l
- 2; // l=1->l_mid=-1,l=2->l_mid=0
int
w_mid = w
- 2; // l=1->l_mid=-1,l=2->l_mid=0
float w00 = filter_data_tmp[0];
float w01 = filter_data_tmp[1];
float w02 = filter_data_tmp[2];
...
...
@@ -802,49 +802,49 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
float w22 = filter_data_tmp[8];
output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
w21 * input_data[
l] + w22 * input_data[l
+ 1];
output_data[
l - 1] = w10 * input_data[l - 2] + w11 * input_data[l
-
1] + w20 * input_data[2 *
l - 2] + w21 * input_data[2 * l
- 1];
output_data[(
l - 1) * l
] =
w01 * input_data[(
l - 2) * l] + w02 * input_data[(l - 2) * l
+
1] + w11 * input_data[(
l - 1) * l] + w12 * input_data[(l - 1) * l
+ 1];
output_data[
l * l - 1] = w00 * input_data[(l - 2) * (l + 1)
] +
w01 * input_data[
(l - 2) * (l + 1) +
1] +
w10 * input_data[
l * l
- 2] +
w11 * input_data[
l * l
- 1];
w21 * input_data[
w] + w22 * input_data[w
+ 1];
output_data[
w - 1] = w10 * input_data[w - 2] + w11 * input_data[w
-
1] + w20 * input_data[2 *
w - 2] + w21 * input_data[2 * w
- 1];
output_data[(
h - 1) * w
] =
w01 * input_data[(
h - 2) * w] + w02 * input_data[(h - 2) * w
+
1] + w11 * input_data[(
h - 1) * w] + w12 * input_data[(h - 1) * w
+ 1];
output_data[
h * w - 1] = w00 * input_data[h*w-w-2
] +
w01 * input_data[
h*w-w-
1] +
w10 * input_data[
h * w
- 2] +
w11 * input_data[
h * w
- 1];
output_data[0] = output_data[0] * newscale_data[j] +
newbias_data[j]; output_data[
l - 1] = output_data[l
- 1] *
newscale_data[j] + newbias_data[j]; output_data[(
l - 1) * l
] =
output_data[(
l - 1) * l
] * newscale_data[j] + newbias_data[j];
output_data[
l * l
- 1] =
output_data[
l * l
- 1] * newscale_data[j] + newbias_data[j];
newbias_data[j]; output_data[
w - 1] = output_data[w
- 1] *
newscale_data[j] + newbias_data[j]; output_data[(
h - 1) * w
] =
output_data[(
h - 1) * w
] * newscale_data[j] + newbias_data[j];
output_data[
h * w
- 1] =
output_data[
h * w
- 1] * newscale_data[j] + newbias_data[j];
if (if_relu) {
output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
output_data[
l - 1] = output_data[l - 1] < 0 ? 0 : output_data[l
-
1]; output_data[(
l - 1) * l] = output_data[(l - 1) * l
] < 0 ? 0 :
output_data[(
l - 1) * l]; output_data[l * l - 1] = output_data[l * l
- 1]
< 0 ? 0 : output_data[
l * l
- 1];
output_data[
w - 1] = output_data[w - 1] < 0 ? 0 : output_data[w
-
1]; output_data[(
h - 1) * w] = output_data[(h - 1) * w
] < 0 ? 0 :
output_data[(
h - 1) * w]; output_data[h * w - 1] = output_data[h * w
- 1]
< 0 ? 0 : output_data[
h * w
- 1];
}
for (int i = 1; i <
l
- 1; ++i) {
output_data[i *
l
] =
w01 * input_data[i *
l - l] + w02 * input_data[i * l - l
+ 1]
+ w11 * input_data[i *
l] + w12 * input_data[i * l
+ 1] + w21 *
input_data[i *
l + l] + w22 * input_data[i * l + l
+ 1]; output_data[i *
l + l - 1] = w00 * input_data[i * l + l - 1 - l
- 1] + w01 * input_data[i
*
l + l - 1 - l] + w10 * input_data[i * l + l
- 1 - 1] + w11 *
input_data[i *
l + l - 1] + w20 * input_data[i * l + l - 1 + l
- 1] + w21
* input_data[i *
l + l - 1 + l]; output_data[i * l] = output_data[i * l
]
* newscale_data[j] + newbias_data[j]; output_data[i *
l + l
- 1] =
output_data[i *
l + l
- 1] * newscale_data[j] +
for (int i = 1; i <
h
- 1; ++i) {
output_data[i *
w
] =
w01 * input_data[i *
w - w] + w02 * input_data[i * w - w
+ 1]
+ w11 * input_data[i *
w] + w12 * input_data[i * w
+ 1] + w21 *
input_data[i *
w + w] + w22 * input_data[i * w + w
+ 1]; output_data[i *
w + w - 1] = w00 * input_data[i * w + w - 1 - w
- 1] + w01 * input_data[i
*
w + w - 1 - w] + w10 * input_data[i * w + w
- 1 - 1] + w11 *
input_data[i *
w + w - 1] + w20 * input_data[i * w + w - 1 + w
- 1] + w21
* input_data[i *
w + w - 1 + w]; output_data[i * w] = output_data[i * w
]
* newscale_data[j] + newbias_data[j]; output_data[i *
w + w
- 1] =
output_data[i *
w + w
- 1] * newscale_data[j] +
newbias_data[j];
if (if_relu) {
output_data[i *
l] = output_data[i * l
] < 0 ? 0 : output_data[i
*
l]; output_data[i * l + l - 1] = output_data[i * l + l
- 1] < 0 ? 0 :
output_data[i *
l + l
- 1];
output_data[i *
w] = output_data[i * w
] < 0 ? 0 : output_data[i
*
w]; output_data[i * w + w - 1] = output_data[i * w + w
- 1] < 0 ? 0 :
output_data[i *
w + w
- 1];
}
}
...
...
@@ -853,11 +853,11 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1,
tmp2, tmp3, tmp4, tmp5, out0; in0 = vld1q_f32(input_tmp); in2 =
vld1q_f32(input_tmp +
l); const float *input_tmp_end = input_tmp + (l
-
2) *
l
; in4 = vld1q_f32(input_tmp_end); in6 = vld1q_f32(input_tmp_end +
l); int c_mid = l
_mid; auto output_ptr = output_data + 1; for (; c_mid >
vld1q_f32(input_tmp +
w); const float *input_tmp_end = input_tmp + (h
-
2) *
w
; in4 = vld1q_f32(input_tmp_end); in6 = vld1q_f32(input_tmp_end +
w); int c_mid = w
_mid; auto output_ptr = output_data + 1; for (; c_mid >
3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 =
vld1q_f32(input_tmp +
l
+ 4);
vld1q_f32(input_tmp +
w
+ 4);
tmp0 = vextq_f32(in0, in1, 1);
tmp1 = vextq_f32(in0, in1, 2);
...
...
@@ -878,7 +878,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
vst1q_f32(output_ptr, out0);
in5 = vld1q_f32(input_tmp_end + 4);
in7 = vld1q_f32(input_tmp_end +
l
+ 4);
in7 = vld1q_f32(input_tmp_end +
w
+ 4);
tmp0 = vextq_f32(in4, in5, 1);
tmp1 = vextq_f32(in4, in5, 2);
...
...
@@ -895,7 +895,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
if (if_relu) {
out0 = vmaxq_f32(out0, vzero);
}
vst1q_f32(output_ptr + (
l - 1) * l
, out0);
vst1q_f32(output_ptr + (
h - 1) * w
, out0);
// can optimize to each 8 stride.
input_tmp += 4;
...
...
@@ -908,8 +908,8 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
// top right pad
float32x4_t pad0 = vdupq_n_f32(input_data[
l
- 1]);
float32x4_t pad1 = vdupq_n_f32(input_data[2 *
l
- 1]);
float32x4_t pad0 = vdupq_n_f32(input_data[
w
- 1]);
float32x4_t pad1 = vdupq_n_f32(input_data[2 *
w
- 1]);
tmp0 = vextq_f32(in0, pad0, 1);
tmp1 = vextq_f32(in0, pad0, 2);
...
...
@@ -939,8 +939,8 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
// bottom right pad
float32x4_t pad2 = vdupq_n_f32(input_data[
l * l - 1 - l
]);
float32x4_t pad3 = vdupq_n_f32(input_data[
l * l
- 1]);
float32x4_t pad2 = vdupq_n_f32(input_data[
h * w - 1 - w
]);
float32x4_t pad3 = vdupq_n_f32(input_data[
h * w
- 1]);
tmp0 = vextq_f32(in4, pad2, 1);
tmp1 = vextq_f32(in4, pad2, 2);
...
...
@@ -959,29 +959,29 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
for (int i = 0; i < c_mid; ++i) {
if (i == 0) {
vst1q_lane_f32(output_ptr + (
l - 1) * l
+ i, out0, 0);
vst1q_lane_f32(output_ptr + (
h - 1) * w
+ i, out0, 0);
}
if (i == 1) {
vst1q_lane_f32(output_ptr + (
l - 1) * l
+ i, out0, 1);
vst1q_lane_f32(output_ptr + (
h - 1) * w
+ i, out0, 1);
}
if (i == 2) {
vst1q_lane_f32(output_ptr + (
l - 1) * l
+ i, out0, 2);
vst1q_lane_f32(output_ptr + (
h - 1) * w
+ i, out0, 2);
}
}
// mid
for (int i = 0; i <
l
- 2; ++i) {
auto output_ptr = output_data + (i + 1) *
l
+ 1;
input_tmp = input_data + i *
l
;
for (int i = 0; i <
h
- 2; ++i) {
auto output_ptr = output_data + (i + 1) *
w
+ 1;
input_tmp = input_data + i *
w
;
auto in0_tmp = vld1q_f32(input_tmp);
auto in2_tmp = vld1q_f32(input_tmp +
l
);
auto in4_tmp = vld1q_f32(input_tmp +
l + l
);
c_mid =
l
_mid;
auto in2_tmp = vld1q_f32(input_tmp +
w
);
auto in4_tmp = vld1q_f32(input_tmp +
w + w
);
c_mid =
w
_mid;
for (; c_mid > 3; c_mid -= 4) {
auto in1_tmp = vld1q_f32(input_tmp + 4);
auto in3_tmp = vld1q_f32(input_tmp +
l
+ 4);
auto in5_tmp = vld1q_f32(input_tmp +
l + l
+ 4);
auto in3_tmp = vld1q_f32(input_tmp +
w
+ 4);
auto in5_tmp = vld1q_f32(input_tmp +
w + w
+ 4);
tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
...
...
@@ -1012,9 +1012,9 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
in4_tmp = in5_tmp;
}
float32x4_t pad0 = vdupq_n_f32(input_data[i *
l + l
- 1]);
float32x4_t pad1 = vdupq_n_f32(input_data[i *
l + l - 1 + l
]);
float32x4_t pad2 = vdupq_n_f32(input_data[i *
l + l - 1 + l + l
]);
float32x4_t pad0 = vdupq_n_f32(input_data[i *
w + w
- 1]);
float32x4_t pad1 = vdupq_n_f32(input_data[i *
w + w - 1 + w
]);
float32x4_t pad2 = vdupq_n_f32(input_data[i *
w + w - 1 + w + w
]);
tmp0 = vextq_f32(in0_tmp, pad0, 1);
tmp1 = vextq_f32(in0_tmp, pad0, 2);
...
...
@@ -1058,6 +1058,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
#endif
}
/// w!=h not fix
void
DepthwiseConvAddBNRelu3x3s2p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
...
...
@@ -1273,7 +1274,8 @@ void DepthwiseConv3x3s2p1v2(const Tensor *input, const Tensor *filter,
const
int
in_l
=
in_h
;
const
int
inhxw
=
in_h
*
in_w
;
const
int
outhxw
=
out_h
*
out_w
;
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
/// todo : fix if_pad when w != h
const
int
if_pad
=
in_w
-
1
==
(
out_w
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
float
*
input_row_ptr
;
...
...
@@ -1379,9 +1381,9 @@ void DepthwiseConv3x3s2p1v2(const Tensor *input, const Tensor *filter,
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
}
else
{
if
(
out_
l
-
2
-
w_times
*
3
==
1
)
{
if
(
out_
w
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
}
else
if
(
out_
l
-
2
-
w_times
*
3
==
2
)
{
}
else
if
(
out_
w
-
2
-
w_times
*
3
==
2
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
}
...
...
@@ -1391,28 +1393,28 @@ void DepthwiseConv3x3s2p1v2(const Tensor *input, const Tensor *filter,
}
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
input_const
[
in_
l
]
*
w21
+
input_const
[
in_
l
+
1
]
*
w22
;
input_const
[
in_
w
]
*
w21
+
input_const
[
in_
w
+
1
]
*
w22
;
out2in_mid
=
(
out_
l
-
1
)
*
2
;
output_data_tmp
[
out_
l
-
1
]
=
out2in_mid
=
(
out_
h
-
1
)
*
2
;
output_data_tmp
[
out_
w
-
1
]
=
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_
l
-
1
)
*
2
*
in_w
;
out2in_mid
=
(
out_
h
-
1
)
*
2
*
in_w
;
output_data_tmp
[
out_
l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_
w
*
(
out_h
-
1
)]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
(
1
-
if_pad
)
*
(
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_
l
-
1
)
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
out2in_mid
=
(
out_
h
-
1
)
*
2
*
in_w
+
(
out_h
-
1
)
*
2
;
output_data_tmp
[
out_
l
*
out_l
-
1
]
=
output_data_tmp
[
out_
h
*
out_w
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
...
...
@@ -1423,21 +1425,21 @@ void DepthwiseConv3x3s2p1v2(const Tensor *input, const Tensor *filter,
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
if
(
if_bias
)
{
output_data_tmp
[
0
]
+=
bias_data
[
j
];
output_data_tmp
[
out_
l
-
1
]
+=
bias_data
[
j
];
output_data_tmp
[
out_
l
*
(
out_l
-
1
)]
+=
bias_data
[
j
];
output_data_tmp
[
out_
l
*
out_l
-
1
]
+=
bias_data
[
j
];
output_data_tmp
[
out_
w
-
1
]
+=
bias_data
[
j
];
output_data_tmp
[
out_
w
*
(
out_h
-
1
)]
+=
bias_data
[
j
];
output_data_tmp
[
out_
h
*
out_w
-
1
]
+=
bias_data
[
j
];
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
out2in_mid
=
i
*
2
*
in_w
;
output_data_tmp
[
i
*
out_
l
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
output_data_tmp
[
i
*
out_
w
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_
l
-
1
)
*
2
;
output_data_tmp
[
i
*
out_
l
+
out_l
-
1
]
=
out2in_mid
=
i
*
2
*
in_w
+
(
out_
h
-
1
)
*
2
;
output_data_tmp
[
i
*
out_
w
+
out_w
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
...
...
@@ -1447,8 +1449,8 @@ void DepthwiseConv3x3s2p1v2(const Tensor *input, const Tensor *filter,
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
if
(
if_bias
)
{
output_data_tmp
[
i
*
out_
l
]
+=
bias_data
[
j
];
output_data_tmp
[
i
*
out_
l
+
out_l
-
1
]
+=
bias_data
[
j
];
output_data_tmp
[
i
*
out_
w
]
+=
bias_data
[
j
];
output_data_tmp
[
i
*
out_
w
+
out_w
-
1
]
+=
bias_data
[
j
];
}
}
filter_data_tmp
+=
9
;
...
...
@@ -1655,11 +1657,12 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
out_w
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
out_l
=
out_h
;
const
int
in_l
=
in_h
;
//
const int out_l = out_h;
//
const int in_l = in_h;
const
int
inhxw
=
in_h
*
in_w
;
const
int
outhxw
=
out_h
*
out_w
;
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
/// todo : fix if_pad when w != h
const
int
if_pad
=
in_w
-
1
==
(
out_w
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
w_times
=
(
out_w
-
2
)
/
3
;
...
...
@@ -1773,9 +1776,9 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
vst1q_lane_f32
(
output_row_ptr
+
2
,
res3
,
2
);
}
else
{
if
(
out_
l
-
2
-
w_times
*
3
==
1
)
{
if
(
out_
w
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
}
else
if
(
out_
l
-
2
-
w_times
*
3
==
2
)
{
}
else
if
(
out_
w
-
2
-
w_times
*
3
==
2
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
}
...
...
@@ -1785,28 +1788,28 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
}
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
input_const
[
in_
l
]
*
w21
+
input_const
[
in_
l
+
1
]
*
w22
;
input_const
[
in_
w
]
*
w21
+
input_const
[
in_
w
+
1
]
*
w22
;
out2in_mid
=
(
out_
l
-
1
)
*
2
;
output_data_tmp
[
out_
l
-
1
]
=
out2in_mid
=
(
out_
h
-
1
)
*
2
;
output_data_tmp
[
out_
w
-
1
]
=
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_
l
-
1
)
*
2
*
in_w
;
out2in_mid
=
(
out_
h
-
1
)
*
2
*
in_w
;
output_data_tmp
[
out_
l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_
w
*
(
out_h
-
1
)]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
(
1
-
if_pad
)
*
(
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_
l
-
1
)
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
out2in_mid
=
(
out_
h
-
1
)
*
2
*
in_w
+
(
out_h
-
1
)
*
2
;
output_data_tmp
[
out_
l
*
out_l
-
1
]
=
output_data_tmp
[
out_
h
*
out_w
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
...
...
@@ -1817,38 +1820,38 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_
l
-
1
]
=
output_data_tmp
[
out_
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_
l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_
l
*
(
out_l
-
1
)]
*
newscale_data
[
j
]
+
output_data_tmp
[
out_
w
-
1
]
=
output_data_tmp
[
out_
w
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_
w
*
(
out_h
-
1
)]
=
output_data_tmp
[
out_
w
*
(
out_h
-
1
)]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_
l
*
out_l
-
1
]
=
output_data_tmp
[
out_
l
*
out_l
-
1
]
*
newscale_data
[
j
]
+
output_data_tmp
[
out_
h
*
out_w
-
1
]
=
output_data_tmp
[
out_
h
*
out_w
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
<
0
?
0
:
output_data_tmp
[
0
];
output_data_tmp
[
out_
l
-
1
]
=
output_data_tmp
[
out_
l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
-
1
];
output_data_tmp
[
out_
l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_
l
*
(
out_l
-
1
)]
<
0
output_data_tmp
[
out_
w
-
1
]
=
output_data_tmp
[
out_
w
-
1
]
<
0
?
0
:
output_data_tmp
[
out_w
-
1
];
output_data_tmp
[
out_
w
*
(
out_h
-
1
)]
=
output_data_tmp
[
out_
w
*
(
out_h
-
1
)]
<
0
?
0
:
output_data_tmp
[
out_
l
*
(
out_l
-
1
)];
output_data_tmp
[
out_
l
*
out_l
-
1
]
=
output_data_tmp
[
out_
l
*
out_l
-
1
]
<
0
:
output_data_tmp
[
out_
w
*
(
out_h
-
1
)];
output_data_tmp
[
out_
h
*
out_w
-
1
]
=
output_data_tmp
[
out_
h
*
out_w
-
1
]
<
0
?
0
:
output_data_tmp
[
out_
l
*
out_l
-
1
];
:
output_data_tmp
[
out_
h
*
out_w
-
1
];
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
out2in_mid
=
i
*
2
*
in_w
;
output_data_tmp
[
i
*
out_
l
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
output_data_tmp
[
i
*
out_
w
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_
l
-
1
)
*
2
;
output_data_tmp
[
i
*
out_
l
+
out_l
-
1
]
=
out2in_mid
=
i
*
2
*
in_w
+
(
out_
h
-
1
)
*
2
;
output_data_tmp
[
i
*
out_
w
+
out_w
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
...
...
@@ -1857,18 +1860,18 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
(
1
-
if_pad
)
*
(
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
i
*
out_
l
]
=
output_data_tmp
[
i
*
out_
l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
i
*
out_
l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_
l
+
out_l
-
1
]
*
newscale_data
[
j
]
+
output_data_tmp
[
i
*
out_
w
]
=
output_data_tmp
[
i
*
out_
w
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
i
*
out_
w
+
out_w
-
1
]
=
output_data_tmp
[
i
*
out_
w
+
out_w
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
i
*
out_
l
]
=
output_data_tmp
[
i
*
out_
l
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
];
output_data_tmp
[
i
*
out_
l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_
l
+
out_l
-
1
]
<
0
output_data_tmp
[
i
*
out_
w
]
=
output_data_tmp
[
i
*
out_
w
]
<
0
?
0
:
output_data_tmp
[
i
*
out_w
];
output_data_tmp
[
i
*
out_
w
+
out_w
-
1
]
=
output_data_tmp
[
i
*
out_
w
+
out_w
-
1
]
<
0
?
0
:
output_data_tmp
[
i
*
out_
l
+
out_l
-
1
];
:
output_data_tmp
[
i
*
out_
w
+
out_w
-
1
];
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录