Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
66c9efdd
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
66c9efdd
编写于
5月 30, 2018
作者:
E
eclipsycn
提交者:
GitHub
5月 30, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #315 from cocodark/develop
commit io files
上级
4683a68f
6141d15b
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
492 addition
and
0 deletion
+492
-0
src/common/io.cpp
src/common/io.cpp
+421
-0
src/common/io.h
src/common/io.h
+71
-0
未找到文件。
src/common/io.cpp
0 → 100644
浏览文件 @
66c9efdd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "io.h"
#include <fstream>
#include <vector>
#include "common/enforce.h"
#include "common/log.h"
#include "framework/framework.pb-c.h"
#include "framework/lod_tensor.h"
#include "framework/operator.h"
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
namespace
paddle_mobile
{
using
framework
::
Variable
;
void
ReadBinaryFile
(
const
std
::
string
&
filename
,
std
::
string
*
contents
)
{
std
::
ifstream
fin
(
filename
,
std
::
ios
::
in
|
std
::
ios
::
binary
);
PADDLE_MOBILE_ENFORCE
(
fin
.
is_open
(),
"open file: %s failed"
,
filename
.
c_str
());
fin
.
seekg
(
0
,
std
::
ios
::
end
);
contents
->
clear
();
contents
->
resize
(
fin
.
tellg
());
fin
.
seekg
(
0
,
std
::
ios
::
beg
);
fin
.
read
(
&
(
contents
->
at
(
0
)),
contents
->
size
());
fin
.
close
();
}
static
size_t
ReadBuffer
(
const
char
*
file_name
,
uint8_t
**
out
)
{
printf
(
"%s
\n
"
,
file_name
);
FILE
*
fp
;
fp
=
fopen
(
file_name
,
"rb"
);
PADDLE_MOBILE_ENFORCE
(
fp
!=
NULL
,
" %s open failed !"
,
file_name
);
fseek
(
fp
,
0
,
SEEK_END
);
size_t
size
=
ftell
(
fp
);
rewind
(
fp
);
DLOG
<<
"model size: "
<<
size
;
*
out
=
reinterpret_cast
<
uint8_t
*>
(
malloc
(
size
));
size_t
cur_len
=
0
;
size_t
nread
;
while
((
nread
=
fread
(
*
out
+
cur_len
,
1
,
size
-
cur_len
,
fp
))
!=
0
)
{
cur_len
+=
nread
;
}
fclose
(
fp
);
return
cur_len
;
}
template
<
typename
Dtype
,
Precision
P
>
void
Loader
<
Dtype
,
P
>::
LoadVar
(
framework
::
Variable
*
variable
,
const
framework
::
VarDesc
&
var_desc
,
const
std
::
string
&
file_path
)
{
auto
tensor
=
variable
->
GetMutable
<
framework
::
LoDTensor
>
();
std
::
ifstream
is
(
file_path
);
PADDLE_MOBILE_ENFORCE
(
is
.
is_open
(),
"open file: %s failed"
,
file_path
.
c_str
());
std
::
fpos
<
mbstate_t
>
pos
;
pos
=
is
.
tellg
();
// save current position
is
.
seekg
(
0
,
std
::
ios
::
end
);
is
.
seekg
(
pos
);
// restore saved position
// 1. version
uint32_t
version
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
version
),
sizeof
(
version
));
// 2 Lod information
uint64_t
lod_level
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
lod_level
),
sizeof
(
lod_level
));
auto
&
lod
=
*
tensor
->
mutable_lod
();
lod
.
resize
(
lod_level
);
for
(
uint64_t
i
=
0
;
i
<
lod_level
;
++
i
)
{
uint64_t
size
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
size
),
sizeof
(
size
));
std
::
vector
<
size_t
>
tmp
(
size
/
sizeof
(
size_t
));
is
.
read
(
reinterpret_cast
<
char
*>
(
tmp
.
data
()),
static_cast
<
std
::
streamsize
>
(
size
));
for
(
auto
j
:
tmp
)
{
LOG
(
kLOG_DEBUG1
)
<<
" lod - "
<<
j
;
}
lod
[
i
]
=
tmp
;
}
// 3. tensor version
uint32_t
tensor_version
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
tensor_version
),
sizeof
(
tensor_version
));
// 4. tensor desc
int32_t
size
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
size
),
sizeof
(
size
));
std
::
unique_ptr
<
char
[]
>
buf
(
new
char
[
size
]);
is
.
read
(
reinterpret_cast
<
char
*>
(
buf
.
get
()),
size
);
const
framework
::
TensorDesc
&
desc
=
var_desc
.
Tensor_desc
();
PaddleMobile__Framework__Proto__VarType__TensorDesc
*
tensor_desc
=
NULL
;
// void *v;
// PaddleMobile__Framework__Proto__VarType__TensorDesc_Closure()(tensor_desc,
// buf.get());
// DLOG << "PaddleMobile__Framework__Proto__VarType__TensorDesc_Closure- " <<
// tensor_desc;
// framework::TensorDesc &tensor_desc = variable->
// PaddleMobile__Framework__Proto__ProgramDesc *c_program;
// uint8_t *proto_buf = NULL;
// size_t read_size = ReadBuffer(file_path.c_str(), &proto_buf);
// c_program = paddle_mobile__framework__proto__program_desc__unpack(NULL,
// read_size, buf);
// paddle_mobile__framework__proto__var_type__tensor_desc__init()
int
memory_size
=
1
;
for
(
auto
l
:
desc
.
Dims
())
{
memory_size
*=
l
;
}
tensor
->
Resize
(
framework
::
make_ddim
(
desc
.
Dims
()));
void
*
memory
=
tensor
;
int
type_size
=
0
;
switch
(
desc
.
DataType
())
{
case
framework
::
VARTYPE_TYPE_FP16
:
type_size
=
2
;
break
;
case
framework
::
VARTYPE_TYPE_FP32
:
type_size
=
4
;
memory
=
tensor
->
mutable_data
<
float
>
();
break
;
case
framework
::
VARTYPE_TYPE_FP64
:
type_size
=
8
;
break
;
case
framework
::
VARTYPE_TYPE_INT32
:
type_size
=
4
;
break
;
case
framework
::
VARTYPE_TYPE_INT64
:
type_size
=
8
;
break
;
case
framework
::
VARTYPE_TYPE_BOOL
:
type_size
=
1
;
break
;
default:
break
;
}
is
.
read
(
static_cast
<
char
*>
(
memory
),
memory_size
*
type_size
);
is
.
close
();
}
template
<
typename
Dtype
,
Precision
P
>
const
framework
::
Program
<
Dtype
,
P
>
Loader
<
Dtype
,
P
>::
Load
(
const
std
::
string
&
dirname
)
{
std
::
string
model_filename
=
dirname
+
"/__model__"
;
PaddleMobile__Framework__Proto__ProgramDesc
*
c_program
;
uint8_t
*
buf
=
NULL
;
size_t
read_size
=
ReadBuffer
(
model_filename
.
c_str
(),
&
buf
);
PADDLE_MOBILE_ENFORCE
(
buf
!=
NULL
,
"read from __model__ is null"
);
c_program
=
paddle_mobile__framework__proto__program_desc__unpack
(
NULL
,
read_size
,
buf
);
//
PADDLE_MOBILE_ENFORCE
(
c_program
!=
NULL
,
"program is null"
);
//
DLOG
<<
"n_ops: "
<<
(
*
c_program
->
blocks
)
->
n_ops
;
//
std
::
shared_ptr
<
framework
::
ProgramDesc
>
originProgramDesc
=
std
::
make_shared
<
framework
::
ProgramDesc
>
(
c_program
);
framework
::
Program
<
Dtype
,
P
>
program
;
program
.
model_path
=
dirname
;
program
.
originProgram
=
originProgramDesc
;
std
::
shared_ptr
<
framework
::
Scope
>
scope
=
std
::
make_shared
<
framework
::
Scope
>
();
program
.
scope
=
scope
;
originProgramDesc
->
Block
(
0
);
for
(
const
auto
&
block
:
originProgramDesc
->
Blocks
())
{
for
(
int
i
=
0
;
i
<
block
->
Vars
().
size
();
++
i
)
{
std
::
shared_ptr
<
framework
::
VarDesc
>
var_desc
=
block
->
Vars
()[
i
];
// DLOG << "var name-- " << var_desc->Name();
auto
var
=
scope
->
Var
(
var_desc
->
Name
());
if
(
var_desc
->
Type
()
==
framework
::
VARTYPE_TYPE_LOD_TENSOR
)
{
if
(
var_desc
->
Persistable
()
&&
var_desc
->
Type
()
!=
framework
::
VARTYPE_TYPE_FEED_MINIBATCH
&&
var_desc
->
Type
()
!=
framework
::
VARTYPE_TYPE_FETCH_LIST
)
{
// DLOG << "to load var ";
auto
dim
=
var_desc
->
Tensor_desc
().
Dims
();
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
(
dim
));
}
else
{
auto
dim
=
var_desc
->
Tensor_desc
().
Dims
();
PADDLE_MOBILE_ENFORCE
(
dim
.
size
()
>
0
,
"dim size is 0"
);
dim
[
0
]
=
1
;
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
(
dim
));
}
}
else
{
// TODO(codeWorm): some.
}
}
}
originProgramDesc
->
Description
(
"program: "
);
paddle_mobile__framework__proto__program_desc__free_unpacked
(
c_program
,
NULL
);
return
program
;
}
template
class
Loader
<
CPU
,
Precision
::
FP32
>;
#pragma mark - executor
template
<
typename
Dtype
,
Precision
P
>
Executor
<
Dtype
,
P
>::
Executor
(
const
framework
::
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
to_predict_program_
=
program_
.
originProgram
;
}
const
std
::
vector
<
std
::
shared_ptr
<
framework
::
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
op_base
->
InferShape
();
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
op_base
);
}
}
InitMemory
();
}
template
<
typename
Dtype
,
Precision
P
>
Executor
<
Dtype
,
P
>::
Executor
(
const
framework
::
Program
<
Dtype
>
p
,
int
batch_size
)
:
program_
(
p
),
batch_size_
(
batch_size
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
to_predict_program_
=
program_
.
originProgram
;
}
Variable
*
variable_ptr
=
program_
.
scope
->
Var
(
"batch_size"
);
variable_ptr
[
0
].
SetValue
<
int
>
(
batch_size
);
const
std
::
vector
<
std
::
shared_ptr
<
framework
::
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
op_base
->
InferShape
();
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
op_base
);
}
}
InitMemory
();
}
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
LoadMemory
(
const
framework
::
VarDesc
var_desc
,
framework
::
LoDTensor
*
tensor
,
const
std
::
string
&
file_path
)
{
std
::
ifstream
is
(
file_path
);
PADDLE_MOBILE_ENFORCE
(
is
.
is_open
(),
"open file: %s failed"
,
file_path
.
c_str
());
std
::
fpos
<
mbstate_t
>
pos
;
pos
=
is
.
tellg
();
// save current position
is
.
seekg
(
0
,
std
::
ios
::
end
);
is
.
seekg
(
pos
);
// restore saved position
// 1. version
uint32_t
version
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
version
),
sizeof
(
version
));
// 2 Lod information
uint64_t
lod_level
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
lod_level
),
sizeof
(
lod_level
));
auto
&
lod
=
*
tensor
->
mutable_lod
();
lod
.
resize
(
lod_level
);
for
(
uint64_t
i
=
0
;
i
<
lod_level
;
++
i
)
{
uint64_t
size
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
size
),
sizeof
(
size
));
std
::
vector
<
size_t
>
tmp
(
size
/
sizeof
(
size_t
));
is
.
read
(
reinterpret_cast
<
char
*>
(
tmp
.
data
()),
static_cast
<
std
::
streamsize
>
(
size
));
for
(
auto
j
:
tmp
)
{
LOG
(
kLOG_DEBUG1
)
<<
" lod - "
<<
j
;
}
lod
[
i
]
=
tmp
;
}
// 3. tensor version
uint32_t
tensor_version
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
tensor_version
),
sizeof
(
tensor_version
));
// 4. tensor desc
int32_t
size
;
is
.
read
(
reinterpret_cast
<
char
*>
(
&
size
),
sizeof
(
size
));
std
::
unique_ptr
<
char
[]
>
buf
(
new
char
[
size
]);
is
.
read
(
reinterpret_cast
<
char
*>
(
buf
.
get
()),
size
);
const
framework
::
TensorDesc
&
desc
=
var_desc
.
Tensor_desc
();
int
memory_size
=
1
;
for
(
auto
l
:
desc
.
Dims
())
{
memory_size
*=
l
;
}
tensor
->
Resize
(
framework
::
make_ddim
(
desc
.
Dims
()));
void
*
memory
=
tensor
;
int
type_size
=
0
;
switch
(
desc
.
DataType
())
{
case
framework
::
VARTYPE_TYPE_FP16
:
type_size
=
2
;
break
;
case
framework
::
VARTYPE_TYPE_FP32
:
type_size
=
4
;
memory
=
tensor
->
mutable_data
<
float
>
();
break
;
case
framework
::
VARTYPE_TYPE_FP64
:
type_size
=
8
;
break
;
case
framework
::
VARTYPE_TYPE_INT32
:
type_size
=
4
;
break
;
case
framework
::
VARTYPE_TYPE_INT64
:
type_size
=
8
;
break
;
case
framework
::
VARTYPE_TYPE_BOOL
:
type_size
=
1
;
break
;
default:
break
;
}
is
.
read
(
static_cast
<
char
*>
(
memory
),
memory_size
*
type_size
);
is
.
close
();
}
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
InitMemory
()
{
for
(
const
auto
&
block
:
to_predict_program_
->
Blocks
())
{
for
(
const
auto
&
var_desc
:
block
->
Vars
())
{
auto
var
=
program_
.
scope
->
Var
(
var_desc
->
Name
());
if
(
var_desc
->
Persistable
())
{
auto
tensor
=
var
->
template
GetMutable
<
framework
::
LoDTensor
>();
if
(
var_desc
->
Name
()
==
"feed"
||
var_desc
->
Name
()
==
"fetch"
)
{
continue
;
}
LoadMemory
(
*
var_desc
,
tensor
,
program_
.
model_path
+
"/"
+
var_desc
->
Name
());
}
else
{
if
(
var_desc
->
Type
()
==
framework
::
VARTYPE_TYPE_LOD_TENSOR
)
{
auto
tensor
=
var
->
template
GetMutable
<
framework
::
LoDTensor
>();
tensor
->
template
mutable_data
<
Ptype
>();
}
}
}
}
}
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
predict
(
const
framework
::
Tensor
&
t
,
int
block_id
)
{
framework
::
Variable
*
g_feed_value
=
program_
.
scope
->
Var
(
"feed"
);
framework
::
Tensor
*
feed_tensor
=
g_feed_value
->
GetMutable
<
framework
::
LoDTensor
>
();
feed_tensor
->
Resize
(
t
.
dims
());
feed_tensor
->
ShareDataWith
(
t
);
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
block_id
);
for
(
int
j
=
0
;
j
<
ops_of_block_
[
*
to_predict_block
.
get
()].
size
();
++
j
)
{
auto
op
=
ops_of_block_
[
*
to_predict_block
.
get
()][
j
];
op
->
Run
();
}
}
template
<
typename
Dtype
,
Precision
P
>
std
::
vector
<
typename
Executor
<
Dtype
,
P
>::
Ptype
>
Executor
<
Dtype
,
P
>::
predict
(
const
std
::
vector
<
Ptype
>
&
input
,
const
std
::
vector
<
int64_t
>
&
dims
)
{
framework
::
Tensor
tensor
(
input
,
framework
::
make_ddim
(
dims
));
predict
(
tensor
,
0
);
framework
::
Variable
*
g_feed_value
=
program_
.
scope
->
Var
(
"col"
);
auto
feed_tensor
=
g_feed_value
->
GetMutable
<
framework
::
Tensor
>
();
return
{};
}
template
class
Executor
<
CPU
,
Precision
::
FP32
>;
}
// namespace paddle_mobile
src/common/io.h
0 → 100644
浏览文件 @
66c9efdd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory.h>
#include <string>
#include <vector>
#include "common/types.h"
#include "framework/lod_tensor.h"
#include "framework/operator.h"
#include "framework/paddle_mobile_object.h"
#include "framework/program/program.h"
#include "framework/tensor.h"
namespace
paddle_mobile
{
template
<
typename
Dtype
,
Precision
P
=
Precision
::
FP32
>
class
Loader
:
PaddleMobileObject
{
public:
const
framework
::
Program
<
Dtype
,
P
>
Load
(
const
std
::
string
&
dirname
);
private:
void
LoadVar
(
framework
::
Variable
*
variable
,
const
framework
::
VarDesc
&
var_desc
,
const
std
::
string
&
file_path
);
};
template
<
typename
Dtype
,
Precision
P
=
Precision
::
FP32
>
class
Executor
{
public:
typedef
typename
PrecisionTrait
<
P
>::
ptype
Ptype
;
Executor
()
=
default
;
Executor
(
const
framework
::
Program
<
Dtype
>
p
);
Executor
(
const
framework
::
Program
<
Dtype
>
p
,
int
batch_size
);
std
::
shared_ptr
<
framework
::
Tensor
>
predict
(
framework
::
Tensor
&
t
);
std
::
vector
<
Ptype
>
predict
(
const
std
::
vector
<
Ptype
>
&
input
,
const
std
::
vector
<
int64_t
>
&
dims
);
protected:
void
InitMemory
();
void
LoadMemory
(
const
framework
::
VarDesc
var_desc
,
framework
::
LoDTensor
*
tensor
,
const
std
::
string
&
file_path
);
framework
::
Program
<
Dtype
>
program_
;
int
batch_size_
=
1
;
std
::
shared_ptr
<
framework
::
ProgramDesc
>
to_predict_program_
;
void
predict
(
const
framework
::
Tensor
&
t
,
int
block_id
);
std
::
map
<
framework
::
BlockDesc
,
std
::
vector
<
std
::
shared_ptr
<
framework
::
OperatorBase
<
Dtype
>>>>
ops_of_block_
;
bool
use_optimize_
=
false
;
};
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录