Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
61a89ef2
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
61a89ef2
编写于
10月 23, 2019
作者:
X
xiebaiyuan
提交者:
GitHub
10月 23, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix out range in conv 1x1 for nano yolo ,test=develop (#2246)
上级
e954a6e5
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
284 addition
and
849 deletion
+284
-849
mobile/src/framework/cl/cl_image.h
mobile/src/framework/cl/cl_image.h
+9
-1
mobile/src/operators/elementwise_mul_op.cpp
mobile/src/operators/elementwise_mul_op.cpp
+3
-0
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
+4
-0
mobile/src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
mobile/src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+120
-848
mobile/src/operators/kernel/cl/cl_kernel/elementwise_mul_kernel.cl
...c/operators/kernel/cl/cl_kernel/elementwise_mul_kernel.cl
+45
-0
mobile/src/operators/kernel/cl/elementwise_mul_kernel.cpp
mobile/src/operators/kernel/cl/elementwise_mul_kernel.cpp
+103
-0
未找到文件。
mobile/src/framework/cl/cl_image.h
浏览文件 @
61a89ef2
...
...
@@ -126,6 +126,9 @@ class CLImage {
void
InitEmptyImage
(
cl_context
context
,
cl_command_queue
command_queue
,
const
DDim
&
dim
)
{
if
(
image_converter_
!=
nullptr
)
{
delete
image_converter_
;
}
PADDLE_MOBILE_ENFORCE
(
tensor_data_
==
nullptr
,
" empty image tensor data shouldn't have value"
);
...
...
@@ -153,7 +156,9 @@ class CLImage {
const
DDim
&
need_dims
,
const
DDim
&
real_image_dims
)
{
PADDLE_MOBILE_ENFORCE
(
tensor_data_
==
nullptr
,
" empty image tensor data shouldn't have value"
);
if
(
image_converter_
!=
nullptr
)
{
delete
image_converter_
;
}
CLImageConverterNormal
*
normal_converter
=
new
CLImageConverterNormal
();
// use real image dims to create mem
real_image_dims_
=
real_image_dims
;
...
...
@@ -178,6 +183,9 @@ class CLImage {
*/
void
InitWithExistMem
(
cl_context
context
,
cl_command_queue
command_queue
,
DDim
need_dims
,
const
CLImage
&
src
)
{
if
(
image_converter_
!=
nullptr
)
{
delete
image_converter_
;
}
CLImageConverterNormal
*
normal_converter
=
new
CLImageConverterNormal
();
real_image_dims_
=
src
.
real_image_dims_
;
...
...
mobile/src/operators/elementwise_mul_op.cpp
浏览文件 @
61a89ef2
...
...
@@ -32,6 +32,9 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
elementwise_mul
,
ops
::
ElementwiseMulOp
);
#endif
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CL
(
elementwise_mul
,
ops
::
ElementwiseMulOp
);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA
(
elementwise_mul
,
ops
::
ElementwiseMulOp
);
#endif
...
...
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
浏览文件 @
61a89ef2
...
...
@@ -212,6 +212,7 @@ void ConvAddBnRelu(framework::CLHelper *cl_helper,
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
input_c_origin
=
param
.
Input
()
->
dims
()[
1
];
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
...
...
@@ -284,6 +285,9 @@ void ConvAddBnRelu(framework::CLHelper *cl_helper,
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_c_origin
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
...
...
mobile/src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
61a89ef2
...
...
@@ -1018,7 +1018,7 @@ __kernel void conv_1x1_spl(
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int offset, __private const int input_c,
__private const int input_c_origin,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
...
...
@@ -1036,10 +1036,6 @@ __kernel void conv_1x1_spl(
int out_w2 = out_w + global_size_dim1 * 2;
int out_w3 = out_w + global_size_dim1 * 3;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
...
...
@@ -1084,6 +1080,9 @@ __kernel void conv_1x1_spl(
half4 output2 = 0.0f;
half4 output3 = 0.0f;
#endif
int max_w_bound = input_c * input_width;
int burndary_index = input_c * 4 - input_c_origin;
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
...
...
@@ -1094,317 +1093,137 @@ __kernel void conv_1x1_spl(
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
if ((max_w_bound - pos_in.x-1) < input_width && (max_w_bound - pos_in.x-1)>=0 ){
if (burndary_index==0){
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
} else if (burndary_index==1){
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(0.0f, weight3, output0);
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
// -------------2--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
half4 input2 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(input2.z, weight2, output2);
output2 = mad(input2.w, weight3, output2);
// -------------3--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
half4 input3 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(input3.z, weight2, output3);
output3 = mad(input3.w, weight3, output3);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
output2 = activation(output2);
output3 = activation(output3);
#endif
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
if (out_w2 < old_w){
write_imageh(output_image, output_pos2, output2);
}
if (out_w3 < old_w){
write_imageh(output_image, output_pos3, output3);
} else if (burndary_index==2){
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(0.0f, weight2, output0);
output0 = mad(0.0f, weight3, output0);
} else if (burndary_index==3){
output0 = mad(input0.x, weight0, output0);
output0 = mad(0.0f, weight1, output0);
output0 = mad(0.0f, weight2, output0);
output0 = mad(0.0f, weight3, output0);
}
}
__kernel void conv_1x1_spl2(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
int out_w3 = out_w + global_size_dim1 * 3;
int out_w4 = out_w + global_size_dim1 * 4;
int out_w5 = out_w + global_size_dim1 * 5;
int out_w6 = out_w + global_size_dim1 * 6;
int out_w7 = out_w + global_size_dim1 * 7;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
| CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
int2 in_pos_in_one_block0 =
ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block1 = (int2)(out_w1, out_nh);
int2 in_pos_in_one_block1 =
ouput_pos_in_one_block1 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block2 = (int2)(out_w2, out_nh);
int2 in_pos_in_one_block2 =
ouput_pos_in_one_block2 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block3 = (int2)(out_w3, out_nh);
int2 in_pos_in_one_block3 =
ouput_pos_in_one_block3 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block4 = (int2)(out_w4, out_nh);
int2 in_pos_in_one_block4 =
ouput_pos_in_one_block4 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block5 = (int2)(out_w5, out_nh);
int2 in_pos_in_one_block5 =
ouput_pos_in_one_block5 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block6 = (int2)(out_w6, out_nh);
int2 in_pos_in_one_block6 =
ouput_pos_in_one_block6 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block7 = (int2)(out_w7, out_nh);
int2 in_pos_in_one_block7 =
ouput_pos_in_one_block7 * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output1 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output2 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output3 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output4 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output5 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output6 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output7 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output0 = 0.0f;
// half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
#else
half4 output0 = 0.0f;
half4 output1 = 0.0f;
half4 output2 = 0.0f;
half4 output3 = 0.0f;
half4 output4 = 0.0f;
half4 output5 = 0.0f;
half4 output6 = 0.0f;
half4 output7 = 0.0f;
#endif
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
half4 input0 = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
}else {
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
}
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
if (abs(max_w_bound - pos_in.x) < input_width){
if (burndary_index==0){
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
} else if (burndary_index==1){
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(0.0f, weight3, output1);
} else if (burndary_index==2){
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(0.0f, weight2, output1);
output1 = mad(0.0f, weight3, output1);
} else if (burndary_index==3){
output1 = mad(input1.x, weight0, output1);
output1 = mad(0.0f, weight1, output1);
output1 = mad(0.0f, weight2, output1);
output1 = mad(0.0f, weight3, output1);
}
}else {
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
}
// -------------2--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
half4 input2 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
if (abs(max_w_bound - pos_in.x) < input_width){
if (burndary_index==0){
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(input2.z, weight2, output2);
output2 = mad(input2.w, weight3, output2);
} else if (burndary_index==1){
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(input2.z, weight2, output2);
output2 = mad(0.0f, weight3, output2);
} else if (burndary_index==2){
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(0.0f, weight2, output2);
output2 = mad(0.0f, weight3, output2);
} else if (burndary_index==3){
output2 = mad(input2.x, weight0, output2);
output2 = mad(0.0f, weight1, output2);
output2 = mad(0.0f, weight2, output2);
output2 = mad(0.0f, weight3, output2);
}
}else {
output2 = mad(input2.x, weight0, output2);
output2 = mad(input2.y, weight1, output2);
output2 = mad(input2.z, weight2, output2);
output2 = mad(input2.w, weight3, output2);
}
// -------------3--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
half4 input3 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
if (abs(max_w_bound - pos_in.x) < input_width){
if (burndary_index==0){
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(input3.z, weight2, output3);
output3 = mad(input3.w, weight3, output3);
} else if (burndary_index==1){
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(input3.z, weight2, output3);
output3 = mad(0.0f, weight3, output3);
// -------------4--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block4.x, in_pos_in_one_block4.y);
half4 input4 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output4 = mad(input4.x, weight0, output4);
output4 = mad(input4.y, weight1, output4);
output4 = mad(input4.z, weight2, output4);
output4 = mad(input4.w, weight3, output4);
// -------------5--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block5.x, in_pos_in_one_block5.y);
half4 input5 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output5= mad(input5.x, weight0, output5);
output5 = mad(input5.y, weight1, output5);
output5 = mad(input5.z, weight2, output5);
output5 = mad(input5.w, weight3, output5);
// -------------6--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block6.x, in_pos_in_one_block6.y);
half4 input6 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output6 = mad(input6.x, weight0, output6);
output6 = mad(input6.y, weight1, output6);
output6 = mad(input6.z, weight2, output6);
output6 = mad(input6.w, weight3, output6);
// -------------7--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block7.x, in_pos_in_one_block7.y);
half4 input7 = read_imageh(input_image, sampler, pos_in);
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output7 = mad(input7.x, weight0, output7);
output7 = mad(input7.y, weight1, output7);
output7 = mad(input7.z, weight2, output7);
output7 = mad(input7.w, weight3, output7);
} else if (burndary_index==2){
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(0.0f, weight2, output3);
output3 = mad(0.0f, weight3, output3);
} else if (burndary_index==3){
output3 = mad(input3.x, weight0, output3);
output3 = mad(0.0f, weight1, output3);
output3 = mad(0.0f, weight2, output3);
output3 = mad(0.0f, weight3, output3);
}
}else {
output3 = mad(input3.x, weight0, output3);
output3 = mad(input3.y, weight1, output3);
output3 = mad(input3.z, weight2, output3);
output3 = mad(input3.w, weight3, output3);
}
}
#ifdef BATCH_NORM
...
...
@@ -1419,19 +1238,6 @@ __kernel void conv_1x1_spl2(
output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output4 = output4 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output5 = output5 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output6 = output6 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output7 = output7 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
...
...
@@ -1439,559 +1245,25 @@ __kernel void conv_1x1_spl2(
output1 = activation(output1);
output2 = activation(output2);
output3 = activation(output3);
output4 = activation(output4);
output5 = activation(output5);
output6 = activation(output6);
output7 = activation(output7);
#endif
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
int2 output_pos2 = (int2)(outpos_main + out_w2, out_nh);
if (out_w2 < old_w){
write_imageh(output_image, output_pos2, output2);
}
int2 output_pos3 = (int2)(outpos_main + out_w3, out_nh);
if (out_w3 < old_w){
write_imageh(output_image, output_pos3, output3);
}
int2 output_pos4 = (int2)(outpos_main + out_w4, out_nh);
if (out_w4 < old_w){
write_imageh(output_image, output_pos4, output4);
}
int2 output_pos5 = (int2)(outpos_main + out_w5, out_nh);
if (out_w5 < old_w){
write_imageh(output_image, output_pos5, output5);
}
int2 output_pos6 = (int2)(outpos_main + out_w6, out_nh);
if (out_w6 < old_w){
write_imageh(output_image, output_pos6, output6);
}
int2 output_pos7 = (int2)(outpos_main + out_w7, out_nh);
if (out_w7 < old_w){
write_imageh(output_image, output_pos7, output7);
}
}
__kernel void conv_1x1_spl3(
__private const int global_size_dim0, __private const int global_size_dim1,
__private const int global_size_dim2, __read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale, __read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image, __private const int stride,
__private const int offset, __private const int input_c,
__private const int dilation,
__private const int input_width, /* of one block */
__private const int input_height, /* of one block */
__private const int output_width,
__private const int output_height,
__private const int old_w
) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_w0 = out_w;
int out_w1 = out_w + global_size_dim1;
int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
// int out_w4 = out_w + global_size_dim1 * 4;
// int out_w5 = out_w + global_size_dim1 * 5;
// int out_w6 = out_w + global_size_dim1 * 6;
// int out_w7 = out_w + global_size_dim1 * 7;
// int out_w1 = out_w + global_size_dim1;
// int out_w2 = out_w + global_size_dim1 * 2;
// int out_w3 = out_w + global_size_dim1 * 3;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
| CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
int2 in_pos_in_one_block0 =
ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
int2 ouput_pos_in_one_block1 = (int2)(out_w1, out_nh);
int2 in_pos_in_one_block1 =
ouput_pos_in_one_block1 * stride_xy + (int2)(offset, offset);
// int2 ouput_pos_in_one_block2 = (int2)(out_w2, out_nh);
// int2 in_pos_in_one_block2 =
// ouput_pos_in_one_block2 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block3 = (int2)(out_w3, out_nh);
// int2 in_pos_in_one_block3 =
// ouput_pos_in_one_block3 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block4 = (int2)(out_w4, out_nh);
// int2 in_pos_in_one_block4 =
// ouput_pos_in_one_block4 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block5 = (int2)(out_w5, out_nh);
// int2 in_pos_in_one_block5 =
// ouput_pos_in_one_block5 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block6 = (int2)(out_w6, out_nh);
// int2 in_pos_in_one_block6 =
// ouput_pos_in_one_block6 * stride_xy + (int2)(offset, offset);
//
// int2 ouput_pos_in_one_block7 = (int2)(out_w7, out_nh);
// int2 in_pos_in_one_block7 =
// ouput_pos_in_one_block7 * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output1 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output2 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output3 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output4 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output5 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output6 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output7 = read_imageh(bias, sampler, (int2)(out_c, 0));
// half4 output0 = 0.0f;
// half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
#else
half4 output0 = 0.0f;
half4 output1 = 0.0f;
// half4 output2 = 0.0f;
// half4 output3 = 0.0f;
// half4 output4 = 0.0f;
// half4 output5 = 0.0f;
// half4 output6 = 0.0f;
// half4 output7 = 0.0f;
#endif
for (int i = 0; i < input_c; ++i) {
// ------------0---------------
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
half4 input0 = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
output0 = mad(input0.x, weight0, output0);
output0 = mad(input0.y, weight1, output0);
output0 = mad(input0.z, weight2, output0);
output0 = mad(input0.w, weight3, output0);
// -------------1--------------
pos_in = (int2)(i * input_width + in_pos_in_one_block1.x, in_pos_in_one_block1.y);
half4 input1 = read_imageh(input_image, sampler, pos_in);
//
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// * 4 + 3));
output1 = mad(input1.x, weight0, output1);
output1 = mad(input1.y, weight1, output1);
output1 = mad(input1.z, weight2, output1);
output1 = mad(input1.w, weight3, output1);
//
// // -------------2--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block2.x, in_pos_in_one_block2.y);
// half4 input2 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output2 = mad(input2.x, weight0, output2);
// output2 = mad(input2.y, weight1, output2);
// output2 = mad(input2.z, weight2, output2);
// output2 = mad(input2.w, weight3, output2);
//
// // -------------3--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block3.x, in_pos_in_one_block3.y);
// half4 input3 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output3 = mad(input3.x, weight0, output3);
// output3 = mad(input3.y, weight1, output3);
// output3 = mad(input3.z, weight2, output3);
// output3 = mad(input3.w, weight3, output3);
//
//
// // -------------4--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block4.x, in_pos_in_one_block4.y);
// half4 input4 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output4 = mad(input4.x, weight0, output4);
// output4 = mad(input4.y, weight1, output4);
// output4 = mad(input4.z, weight2, output4);
// output4 = mad(input4.w, weight3, output4);
//
//
//
// // -------------5--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block5.x, in_pos_in_one_block5.y);
// half4 input5 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output5= mad(input5.x, weight0, output5);
// output5 = mad(input5.y, weight1, output5);
// output5 = mad(input5.z, weight2, output5);
// output5 = mad(input5.w, weight3, output5);
//
//
// // -------------6--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block6.x, in_pos_in_one_block6.y);
// half4 input6 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output6 = mad(input6.x, weight0, output6);
// output6 = mad(input6.y, weight1, output6);
// output6 = mad(input6.z, weight2, output6);
// output6 = mad(input6.w, weight3, output6);
//
//
// // -------------7--------------
// pos_in = (int2)(i * input_width + in_pos_in_one_block7.x, in_pos_in_one_block7.y);
// half4 input7 = read_imageh(input_image, sampler, pos_in);
//
// // half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 +
// // 0)); half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4
// // + 1)); half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i *
// // 4 + 2)); half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i
// // * 4 + 3));
//
// output7 = mad(input7.x, weight0, output7);
// output7 = mad(input7.y, weight1, output7);
// output7 = mad(input7.z, weight2, output7);
// output7 = mad(input7.w, weight3, output7);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output4 = output4 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output5 = output5 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output6 = output6 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
//
// output7 = output7 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) +
// read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
// output2 = activation(output2);
// output3 = activation(output3);
// output4 = activation(output4);
// output5 = activation(output5);
// output6 = activation(output6);
// output7 = activation(output7);
#endif
int outpos_main = mul24(out_c , old_w);
int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
if (out_w0 < old_w) {
write_imageh(output_image, output_pos0, output0);
}
int2 output_pos1 = (int2)(outpos_main + out_w1, out_nh);
if (out_w1 < old_w){
write_imageh(output_image, output_pos1, output1);
}
//
// int2 output_pos2 = (int2)(outpos_main + out_w2, out_nh);
// if (out_w2 < old_w){
// write_imageh(output_image, output_pos2, output2);
// }
//
// int2 output_pos3 = (int2)(outpos_main + out_w3, out_nh);
// if (out_w3 < old_w){
// write_imageh(output_image, output_pos3, output3);
// }
//
// int2 output_pos4 = (int2)(outpos_main + out_w4, out_nh);
// if (out_w4 < old_w){
// write_imageh(output_image, output_pos4, output4);
// }
//
// int2 output_pos5 = (int2)(outpos_main + out_w5, out_nh);
// if (out_w5 < old_w){
// write_imageh(output_image, output_pos5, output5);
//
// }
// int2 output_pos6 = (int2)(outpos_main + out_w6, out_nh);
// if (out_w6 < old_w){
// write_imageh(output_image, output_pos6, output6);
// }
//
// int2 output_pos7 = (int2)(outpos_main + out_w7, out_nh);
// if (out_w7 < old_w){
// write_imageh(output_image, output_pos7, output7);
// }
}
//__kernel void conv_1x1_c(
// __private const int global_size_dim0,
// __private const int global_size_dim1,
// __private const int global_size_dim2,
// __read_only image2d_t input_image,
// __read_only image2d_t filter,
//#ifdef BIASE
// __read_only image2d_t bias,
//#endif
//#ifdef BATCH_NORM
// __read_only image2d_t new_scale,
// __read_only image2d_t new_biase,
//#endif
// __write_only image2d_t output_image,
// __private const int stride,
// __private const int offset,
// __private const int input_c,
// __private const int dilation,
// __private const int input_width, /* of one block */
// __private const int input_height, /* of one block */
// __private const int output_width,
// __private const int output_height,
// __private const int old_w) {
//
// const int out_c = get_global_id(0);
// const int out_w = get_global_id(1);
// const int out_nh = get_global_id(2);
//
// const sampler_t sampler =
// CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
| CLK_FILTER_NEAREST;
// const int2 stride_xy = (int2)(stride, stride);
//
// for (int i = 0; i < input_c; ++i) {
// half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
// half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
// half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
// half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
//
//#pragma unroll
// for (int j = 0; j < 4; ++j) {
// int out_w0 = out_w + global_size_dim1 * j;
// int2 ouput_pos_in_one_block0 = (int2)(out_w0, out_nh);
// int2 in_pos_in_one_block0 = ouput_pos_in_one_block0 * stride_xy + (int2)(offset, offset);
//
//#ifdef BIASE
// half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
//#else
// half4 output0 = 0.0f;
//#endif
// int2 pos_in = (int2)(i * input_width + in_pos_in_one_block0.x, in_pos_in_one_block0.y);
// half4 input0 = read_imageh(input_image, sampler, pos_in);
//
// output0 = mad(input0.x, weight0, output0);
// output0 = mad(input0.y, weight1, output0);
// output0 = mad(input0.z, weight2, output0);
// output0 = mad(input0.w, weight3, output0);
//
//#ifdef BATCH_NORM
// output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
//#endif
//
//#ifdef RELU
// output0 = activation(output0);
//#endif
// int outpos_main = mul24(out_c, old_w);
// int2 output_pos0 = (int2)(outpos_main + out_w0, out_nh);
//
// if (out_w0 < old_w) {
// write_imageh(output_image, output_pos0, output0);
// }
// }
// }
//}
/*
__kernel void conv_1x1_4(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,
__private const int input_height,
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0) * 4;
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
half4 output1 = read_imageh(bias, sampler, (int2)(out_c + 1, 0));
half4 output2 = read_imageh(bias, sampler, (int2)(out_c + 2, 0));
half4 output3 = read_imageh(bias, sampler, (int2)(out_c + 3, 0));
#else
half4 output0 = 0.0f;
half4 output1 = 0.0f;
half4 output2 = 0.0f;
half4 output3 = 0.0f;
#endif
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
half4 input = read_imageh(input_image, sampler, pos_in);
half4 weight0_0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight0_1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight0_2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight0_3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
output0 = mad(input.x, weight0_0, output0);
output0 = mad(input.y, weight0_1, output0);
output0 = mad(input.z, weight0_2, output0);
output0 = mad(input.w, weight0_3, output0);
half4 weight1_0 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 0));
half4 weight1_1 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 1));
half4 weight1_2 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 2));
half4 weight1_3 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 3));
output1 = mad(input.x, weight1_0, output1);
output1 = mad(input.y, weight1_1, output1);
output1 = mad(input.z, weight1_2, output1);
output1 = mad(input.w, weight1_3, output1);
half4 weight2_0 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 0));
half4 weight2_1 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 1));
half4 weight2_2 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 2));
half4 weight2_3 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 3));
output2 = mad(input.x, weight2_0, output2);
output2 = mad(input.y, weight2_1, output2);
output2 = mad(input.z, weight2_2, output2);
output2 = mad(input.w, weight2_3, output2);
half4 weight3_0 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 0));
half4 weight3_1 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 1));
half4 weight3_2 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 2));
half4 weight3_3 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 3));
output3 = mad(input.x, weight3_0, output3);
output3 = mad(input.y, weight3_1, output3);
output3 = mad(input.z, weight3_2, output3);
output3 = mad(input.w, weight3_3, output3);
}
#ifdef BATCH_NORM
output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c + 0, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 0, 0));
output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c + 1, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 1, 0));
output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c + 2, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 2, 0));
output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c + 3, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 3, 0));
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
output2 = activation(output2);
output3 = activation(output3);
#endif
int2 output_pos0 = (int2)(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos0, output0);
int2 output_pos1 = (int2)((out_c + 1) * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos1, output1);
int2 output_pos2 = (int2)((out_c + 2) * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos2, output2);
int2 output_pos3 = (int2)((out_c + 3) * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos3, output3);
}
*/
__kernel void conv_7x7(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
...
...
mobile/src/operators/kernel/cl/cl_kernel/elementwise_mul_kernel.cl
0 → 100644
浏览文件 @
61a89ef2
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
elementwise_mul
(
__global
image2d_t
input,
__global
image2d_t
bias,__write_only
image2d_t
outputImage
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
coords
;
coords.x
=
x
;
coords.y
=
y
;
half4
in
=
read_imageh
(
input,
sampler,
coords
)
;
half4
biase
=
read_imageh
(
bias,
sampler,
coords
)
;
half4
output
=
in
*
biase
;
write_imageh
(
outputImage,coords,output
)
;
}
__kernel
void
channel_mul
(
__global
image2d_t
input,
__global
image2d_t
bias,__write_only
image2d_t
outputImage,
int
w
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
coords
;
coords.x
=
x
;
coords.y
=
y
;
int2
coords_bias
;
coords_bias.x
=
x/w
;
coords_bias.y
=
0
;
half4
in
=
read_imageh
(
input,
sampler,
coords
)
;
half4
biase
=
read_imageh
(
bias,
sampler,
coords_bias
)
;
half4
output
=
in
*
biase
;
write_imageh
(
outputImage,coords,output
)
;
}
mobile/src/operators/kernel/cl/elementwise_mul_kernel.cpp
0 → 100644
浏览文件 @
61a89ef2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef ELEMENTWISEMUL_OP
#include "operators/kernel/elementwise_mul_kernel.h"
#include "framework/cl/cl_image.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
ElementwiseMulKernel
<
GPU_CL
,
float
>::
Init
(
ElementwiseMulParam
<
GPU_CL
>
*
param
)
{
DLOG
<<
"-----init add-----"
;
framework
::
CLImage
*
bias
=
reinterpret_cast
<
framework
::
CLImage
*>
(
const_cast
<
framework
::
CLImage
*>
(
param
->
InputY
()));
if
(
bias
->
dims
()
==
param
->
InputX
()
->
dims
())
{
this
->
cl_helper_
.
AddKernel
(
"elementwise_mul"
,
"elementwise_mul_kernel.cl"
);
}
else
if
(
bias
->
dims
().
size
()
==
4
)
{
this
->
cl_helper_
.
AddKernel
(
"channel_mul"
,
"elementwise_mul_kernel.cl"
);
}
else
{
DLOG
<<
"error:bias dims is error"
;
}
return
true
;
}
template
<
>
void
ElementwiseMulKernel
<
GPU_CL
,
float
>::
Compute
(
const
ElementwiseMulParam
<
GPU_CL
>
&
param
)
{
auto
input
=
param
.
InputX
();
auto
bias
=
param
.
InputY
();
auto
output
=
param
.
Out
();
cl_int
status
;
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
if
(
bias
->
dims
()
==
input
->
dims
())
{
cl_mem
input_image
=
input
->
GetCLImage
();
cl_mem
bias_image
=
bias
->
GetCLImage
();
cl_mem
output_image
=
output
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
reinterpret_cast
<
void
*>
(
&
input_image
));
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
reinterpret_cast
<
void
*>
(
&
bias_image
));
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_mem
),
reinterpret_cast
<
void
*>
(
&
output_image
));
CL_CHECK_ERRORS
(
status
);
auto
width
=
input
->
ImageWidth
();
auto
height
=
input
->
ImageHeight
();
size_t
global_work_size
[
2
]
=
{
width
,
height
};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
if
(
bias
->
dims
().
size
()
==
4
)
{
DLOG
<<
"zp7 444"
;
cl_mem
input_image
=
input
->
GetCLImage
();
cl_mem
bias_image
=
bias
->
GetCLImage
();
cl_mem
output_image
=
output
->
GetCLImage
();
int
tensor_w
=
input
->
dims
()[
input
->
dims
().
size
()
-
1
];
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
reinterpret_cast
<
void
*>
(
&
input_image
));
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
reinterpret_cast
<
void
*>
(
&
bias_image
));
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_mem
),
reinterpret_cast
<
void
*>
(
&
output_image
));
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
reinterpret_cast
<
void
*>
(
&
tensor_w
));
CL_CHECK_ERRORS
(
status
);
auto
width
=
input
->
ImageWidth
();
auto
height
=
input
->
ImageHeight
();
DLOG
<<
"dede:"
<<
width
<<
","
<<
height
;
size_t
global_work_size
[
2
]
=
{
width
,
height
};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
DLOG
<<
"error:bias dims is error"
;
}
}
template
class
ElementwiseMulKernel
<
GPU_CL
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录