Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
6126d29c
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6126d29c
编写于
6月 03, 2019
作者:
Z
zp7
提交者:
Jiaying Zhao
6月 03, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add density_prior_box op (#1674)
上级
59423dea
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
174 addition
and
2 deletion
+174
-2
src/common/types.cpp
src/common/types.cpp
+3
-0
src/operators/kernel/arm/density_prior_box_kernel.cpp
src/operators/kernel/arm/density_prior_box_kernel.cpp
+2
-1
src/operators/kernel/central-arm-func/density_prior_box_arm_func.h
...tors/kernel/central-arm-func/density_prior_box_arm_func.h
+161
-0
src/operators/kernel/prior_box_kernel.h
src/operators/kernel/prior_box_kernel.h
+4
-1
tools/op.cmake
tools/op.cmake
+4
-0
未找到文件。
src/common/types.cpp
浏览文件 @
6126d29c
...
...
@@ -42,6 +42,7 @@ const char *G_OP_TYPE_NORM = "norm";
const
char
*
G_OP_TYPE_POLYGON_BOX_TRANSFORM
=
"polygon_box_transform"
;
const
char
*
G_OP_TYPE_POOL2D
=
"pool2d"
;
const
char
*
G_OP_TYPE_PRIOR_BOX
=
"prior_box"
;
const
char
*
G_OP_TYPE_DENSITY_PRIOR_BOX
=
"density_prior_box"
;
const
char
*
G_OP_TYPE_RELU
=
"relu"
;
const
char
*
G_OP_TYPE_RELU6
=
"relu6"
;
const
char
*
G_OP_TYPE_LEAKY_RELU
=
"leaky_relu"
;
...
...
@@ -154,6 +155,8 @@ std::unordered_map<
{
G_OP_TYPE_FUSION_CONV_ADD_BN_RELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_CONV_BN_ADD_RELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_PRIOR_BOX
,
{{
"Image"
,
"Input"
},
{
"Boxes"
,
"Variances"
}}},
{
G_OP_TYPE_DENSITY_PRIOR_BOX
,
{{
"Image"
,
"Input"
},
{
"Boxes"
,
"Variances"
}}},
{
G_OP_TYPE_MULTICLASS_NMS
,
{{
"BBoxes"
,
"Scores"
},
{
"Out"
}}},
{
G_OP_TYPE_POLYGON_BOX_TRANSFORM
,
{{
"Input"
},
{
"Output"
}}},
{
G_OP_TYPE_FC
,
{{
"X"
,
"Y"
,
"Z"
},
{
"Out"
}}},
...
...
src/operators/kernel/arm/density_prior_box_kernel.cpp
浏览文件 @
6126d29c
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#ifdef DENSITY_PRIORBOX_OP
#include "operators/kernel/central-arm-func/density_prior_box_arm_func.h"
#include "operators/kernel/prior_box_kernel.h"
namespace
paddle_mobile
{
...
...
@@ -27,7 +28,7 @@ bool DensityPriorBoxKernel<CPU, float>::Init(DensityPriorBoxParam<CPU> *param) {
template
<
>
void
DensityPriorBoxKernel
<
CPU
,
float
>::
Compute
(
const
DensityPriorBoxParam
<
CPU
>
&
param
)
{
// TODO(hjchen2)
DensityPriorBoxCompute
<
float
>
(
param
);
}
}
// namespace operators
...
...
src/operators/kernel/central-arm-func/density_prior_box_arm_func.h
0 → 100644
浏览文件 @
6126d29c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DENSITY_PRIORBOX_OP
#pragma once
#include <operators/kernel/prior_box_kernel.h>
#include <algorithm>
#include <cmath>
#include <vector>
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
ClipFunctor
{
inline
T
operator
()(
T
in
)
const
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
in
,
0.
),
1.
);
}
};
template
<
typename
P
>
void
DensityPriorBoxCompute
(
const
DensityPriorBoxParam
<
CPU
>
&
param
)
{
const
auto
*
input_
=
param
.
Input
();
const
auto
&
input_dims
=
input_
->
dims
();
const
auto
*
input_image
=
param
.
InputImage
();
const
auto
&
input_image_dims
=
input_image
->
dims
();
auto
densities
=
param
.
Densities
();
auto
fixed_ratios
=
param
.
FixedRatios
();
auto
fixed_sizes
=
param
.
FixedSizes
();
const
auto
&
variances
=
param
.
Variances
();
const
bool
&
clip
=
param
.
Clip
();
const
float
&
step_w
=
param
.
StepW
();
const
float
&
step_h
=
param
.
StepH
();
const
float
&
offset
=
param
.
Offset
();
Tensor
*
output_boxes
=
param
.
OutputBoxes
();
auto
output_boxes_dataptr
=
output_boxes
->
mutable_data
<
float
>
();
Tensor
*
output_variances
=
param
.
OutputVariances
();
auto
output_variances_dataptr
=
output_variances
->
mutable_data
<
float
>
();
auto
img_width
=
input_image_dims
[
3
];
auto
img_height
=
input_image_dims
[
2
];
auto
feature_width
=
input_dims
[
3
];
auto
feature_height
=
input_dims
[
2
];
auto
stride0
=
output_boxes
->
dims
()[
1
]
*
output_boxes
->
dims
()[
2
]
*
output_boxes
->
dims
()[
3
];
auto
stride1
=
output_boxes
->
dims
()[
2
]
*
output_boxes
->
dims
()[
3
];
auto
stride2
=
output_boxes
->
dims
()[
3
];
float
step_width
,
step_height
;
/// 300 / 19
if
(
step_w
==
0
||
step_h
==
0
)
{
step_width
=
static_cast
<
float
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
float
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
step_w
;
step_height
=
step_h
;
}
int
num_priors
=
0
;
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
num_priors
+=
(
fixed_ratios
.
size
())
*
(
pow
(
densities
[
i
],
2
));
}
auto
box_dim
=
output_variances
->
dims
();
output_boxes
->
Resize
({
feature_height
,
feature_width
,
num_priors
,
4
});
int
step_average
=
static_cast
<
int
>
((
step_width
+
step_height
)
*
0.5
);
std
::
vector
<
float
>
sqrt_fixed_ratios
;
for
(
size_t
i
=
0
;
i
<
fixed_ratios
.
size
();
i
++
)
{
sqrt_fixed_ratios
.
push_back
(
sqrt
(
fixed_ratios
[
i
]));
}
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
/// map origin image
float
center_x
=
(
w
+
offset
)
*
step_width
;
float
center_y
=
(
h
+
offset
)
*
step_height
;
int
idx
=
0
;
for
(
size_t
s
=
0
;
s
<
fixed_sizes
.
size
();
++
s
)
{
auto
fixed_size
=
fixed_sizes
[
s
];
int
density
=
densities
[
s
];
int
shift
=
step_average
/
density
;
// Generate density prior boxes with fixed ratios.
for
(
size_t
r
=
0
;
r
<
fixed_ratios
.
size
();
++
r
)
{
float
box_width_ratio
=
fixed_size
*
sqrt_fixed_ratios
[
r
];
float
box_height_ratio
=
fixed_size
/
sqrt_fixed_ratios
[
r
];
float
density_center_x
=
center_x
-
step_average
/
2.
+
shift
/
2.
;
float
density_center_y
=
center_y
-
step_average
/
2.
+
shift
/
2.
;
for
(
int
di
=
0
;
di
<
density
;
++
di
)
{
for
(
int
dj
=
0
;
dj
<
density
;
++
dj
)
{
float
center_x_temp
=
density_center_x
+
dj
*
shift
;
float
center_y_temp
=
density_center_y
+
di
*
shift
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
0
]
=
std
::
max
((
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
,
0.
);
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
1
]
=
std
::
max
((
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
,
0.
);
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
2
]
=
std
::
min
((
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
,
1.
);
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
3
]
=
std
::
min
((
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
,
1.
);
idx
++
;
}
}
}
}
}
}
if
(
clip
)
{
math
::
Transform
trans
;
ClipFunctor
<
float
>
clip_func
;
trans
(
output_boxes_dataptr
,
output_boxes_dataptr
+
output_boxes
->
numel
(),
output_boxes_dataptr
,
clip_func
);
}
if
((
variances
.
size
()
!=
4
))
{
LOG
(
kLOG_ERROR
)
<<
" variances.size() must be 4."
;
}
int64_t
box_num
=
feature_height
*
feature_width
*
num_priors
;
for
(
int
i
=
0
;
i
<
box_num
;
i
++
)
{
output_variances_dataptr
[
4
*
i
]
=
variances
[
0
];
output_variances_dataptr
[
4
*
i
+
1
]
=
variances
[
1
];
output_variances_dataptr
[
4
*
i
+
2
]
=
variances
[
2
];
output_variances_dataptr
[
4
*
i
+
3
]
=
variances
[
3
];
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/prior_box_kernel.h
浏览文件 @
6126d29c
...
...
@@ -89,11 +89,13 @@ class DensityPriorBoxParam : public OpParam {
const
vector
<
float
>
&
FixedSizes
()
const
{
return
fixed_sizes_
;
}
const
vector
<
float
>
&
FixedRatios
()
const
{
return
fixed_ratios_
;
}
const
vector
<
int
>
&
Densities
()
const
{
return
densities_
;
}
const
vector
<
float
>
&
Variances
()
const
{
return
variances_
;
}
public:
GType
*
input_
;
GType
*
input_image_
;
GType
*
output_boxes_
GType
*
output_variances_
;
GType
*
output_boxes_
;
GType
*
output_variances_
;
bool
clip_
;
bool
flatten_to_2d_
;
float
step_w_
;
...
...
@@ -102,6 +104,7 @@ class DensityPriorBoxParam : public OpParam {
vector
<
float
>
fixed_sizes_
;
vector
<
float
>
fixed_ratios_
;
vector
<
int
>
densities_
;
vector
<
float
>
variances_
;
};
DECLARE_KERNEL
(
DensityPriorBox
,
DensityPriorBoxParam
);
...
...
tools/op.cmake
浏览文件 @
6126d29c
...
...
@@ -290,6 +290,7 @@ if(NOT FOUND_MATCH)
set
(
ELEMENTWISESUB_OP ON
)
set
(
IM2SEQUENCE_OP ON
)
set
(
FILL_CONSTANT_OP ON
)
set
(
DENSITY_PRIORBOX_OP ON
)
set
(
FUSION_CONVADD_OP ON
)
set
(
FUSION_CONVADDPRELU_OP ON
)
set
(
FUSION_CONVADDRELU_OP ON
)
...
...
@@ -705,3 +706,6 @@ endif()
if
(
NEAREST_INTERP_OP
)
add_definitions
(
-DNEAREST_INTERP_OP
)
endif
()
if
(
DENSITY_PRIORBOX_OP
)
add_definitions
(
-DDENSITY_PRIORBOX_OP
)
endif
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录