Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
5f227934
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5f227934
编写于
10月 08, 2019
作者:
J
Jiaying Zhao
提交者:
GitHub
10月 08, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pre and post process in feed and fetch kernel test=develop (#2157)
上级
69da22ec
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
288 addition
and
30 deletion
+288
-30
mobile/src/common/types.h
mobile/src/common/types.h
+6
-0
mobile/src/framework/executor.cpp
mobile/src/framework/executor.cpp
+3
-0
mobile/src/framework/operator.h
mobile/src/framework/operator.h
+8
-0
mobile/src/framework/tensor_base.h
mobile/src/framework/tensor_base.h
+3
-2
mobile/src/io/api_paddle_mobile.cc
mobile/src/io/api_paddle_mobile.cc
+39
-20
mobile/src/io/paddle_inference_api.h
mobile/src/io/paddle_inference_api.h
+3
-0
mobile/src/operators/kernel/cl/cl_kernel/feed_kernel.cl
mobile/src/operators/kernel/cl/cl_kernel/feed_kernel.cl
+48
-0
mobile/src/operators/kernel/cl/cl_kernel/fetch_kernel.cl
mobile/src/operators/kernel/cl/cl_kernel/fetch_kernel.cl
+35
-0
mobile/src/operators/kernel/cl/cl_kernel/pre_post_kernel.cl
mobile/src/operators/kernel/cl/cl_kernel/pre_post_kernel.cl
+22
-0
mobile/src/operators/kernel/cl/feed_kernel.cpp
mobile/src/operators/kernel/cl/feed_kernel.cpp
+14
-3
mobile/src/operators/kernel/cl/fetch_kernel.cpp
mobile/src/operators/kernel/cl/fetch_kernel.cpp
+20
-5
mobile/test/CMakeLists.txt
mobile/test/CMakeLists.txt
+3
-0
mobile/test/net/test_inference_pre_post.cpp
mobile/test/net/test_inference_pre_post.cpp
+84
-0
未找到文件。
mobile/src/common/types.h
浏览文件 @
5f227934
...
...
@@ -87,6 +87,11 @@ enum PMStatus {
PMException
=
0x09
/*!< throw exception. */
};
enum
PrePostType
{
NONE_PRE_POST
=
0
,
UINT8_255
=
1
,
};
enum
RoundType
{
ROUND_NEAREST_AWAY_ZERO
=
0
,
ROUND_NEAREST_TOWARDS_ZERO
=
1
,
...
...
@@ -143,6 +148,7 @@ struct PaddleMobileConfigInternal {
MemoryOptimizationLevel
memory_optimization_level
=
MemoryOptimizationWithoutFeeds
;
std
::
string
model_obfuscate_key
=
""
;
PrePostType
pre_post_type
=
NONE_PRE_POST
;
};
enum
ARMArch
{
...
...
mobile/src/framework/executor.cpp
浏览文件 @
5f227934
...
...
@@ -112,6 +112,9 @@ Executor<Device, T>::Executor(const Program<Device> &program,
profile
[
op_index
].
runBegin
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
#endif
DLOG
<<
"Initialize op["
<<
count
++
<<
"]: "
<<
op_handler
->
Type
();
if
(
op_handler
->
Type
()
==
"feed"
||
op_handler
->
Type
()
==
"fetch"
)
{
op_handler
->
setPrePostType
(
config_
.
pre_post_type
);
}
op_handler
->
Init
();
#ifdef PADDLE_MOBILE_PROFILE
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
...
...
mobile/src/framework/operator.h
浏览文件 @
5f227934
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <functional>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
...
...
@@ -73,6 +74,7 @@ class OperatorBase {
const
VariableNameMap
&
Outputs
()
const
{
return
outputs_
;
}
const
std
::
string
&
Type
()
const
{
return
type_
;
}
const
AttributeMap
&
Attrs
()
const
{
return
attrs_
;
}
void
setPrePostType
(
int
prePostType
)
{
pre_post_type_
=
prePostType
;
}
void
ClearVariables
(
const
std
::
vector
<
std
::
string
>
&
var_names
)
const
{
if
(
this
->
scope_
)
{
...
...
@@ -89,6 +91,7 @@ class OperatorBase {
VariableNameMap
inputs_
;
VariableNameMap
outputs_
;
AttributeMap
attrs_
;
int
pre_post_type_
=
0
;
private:
void
CheckAllInputOutputSet
()
const
;
...
...
@@ -111,6 +114,9 @@ class OperatorWithKernel : public OperatorBase<Dtype> {
virtual
void
InferShape
()
const
=
0
;
void
Init
()
{
if
(
this
->
pre_post_type_
!=
NONE_PRE_POST
)
{
kernel_
.
setPrePostType
(
this
->
pre_post_type_
);
}
PADDLE_MOBILE_ENFORCE
(
kernel_
.
Init
(
&
param_
),
" %s kernel init failed"
,
this
->
type_
.
c_str
());
}
...
...
@@ -134,11 +140,13 @@ class OpKernelBase {
virtual
void
Compute
(
const
P
&
para
)
=
0
;
virtual
bool
Init
(
P
*
para
)
{
return
true
;
}
virtual
~
OpKernelBase
()
=
default
;
virtual
void
setPrePostType
(
int
prePostType
)
{
pre_post_type_
=
prePostType
;
}
protected:
#ifdef PADDLE_MOBILE_CL
CLHelper
cl_helper_
;
#endif
int
pre_post_type_
=
0
;
private:
};
...
...
mobile/src/framework/tensor_base.h
浏览文件 @
5f227934
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <memory>
#include "common/enforce.h"
#include "common/type_define.h"
#include "common/types.h"
...
...
@@ -55,8 +56,8 @@ struct SizeOfTypeFunctor<HEAD, TAIL...> {
};
static
inline
size_t
SizeOfType
(
const
kTypeId_t
type
)
{
SizeOfTypeFunctor
<
int8_t
,
int
,
half
,
float
,
double
,
int16_t
,
int64_t
,
bool
,
size_t
>
SizeOfTypeFunctor
<
int8_t
,
uint8_t
,
int
,
half
,
float
,
double
,
int16_t
,
int64_t
,
bool
,
size_t
>
functor
;
size_t
size
=
functor
(
type
);
...
...
mobile/src/io/api_paddle_mobile.cc
浏览文件 @
5f227934
...
...
@@ -38,6 +38,9 @@ template <typename Device, typename T>
bool
PaddleMobilePredictor
<
Device
,
T
>::
Init
(
const
PaddleMobileConfig
&
config
)
{
PaddleMobileConfigInternal
configInternal
;
configInternal
.
load_when_predict
=
config
.
load_when_predict
;
if
(
config
.
pre_post_type
==
PaddleMobileConfig
::
UINT8_255
)
{
configInternal
.
pre_post_type
=
PrePostType
::
UINT8_255
;
}
paddle_mobile_
.
reset
(
new
PaddleMobile
<
Device
,
T
>
(
configInternal
));
#ifdef PADDLE_MOBILE_CL
paddle_mobile_
->
SetCLPath
(
config
.
cl_path
);
...
...
@@ -86,27 +89,34 @@ bool PaddleMobilePredictor<Device, T>::Run(
// use tensor
framework
::
DDim
ddim
=
framework
::
make_ddim
(
dims
);
framework
::
Tensor
input_tensor
;
int
input_length
=
framework
::
product
(
ddim
);
if
(
input
.
lod
.
size
()
>
0
)
{
framework
::
LoDTensor
input_lod_tensor
;
paddle_mobile
::
framework
::
LoD
lod
{{}};
for
(
int
i
=
0
;
i
<
input
.
lod
.
size
();
++
i
)
{
lod
[
0
].
push_back
(
input
.
lod
[
i
]);
}
input_lod_tensor
.
set_lod
(
lod
);
int
input_length
=
framework
::
product
(
ddim
);
if
(
input
.
lod
.
size
()
>
0
)
{
input_lod_tensor
.
Resize
(
ddim
);
if
(
input
.
dtype
==
UINT8
)
{
memcpy
(
input_lod_tensor
.
mutable_data
<
uint8_t
>
(),
static_cast
<
uint8_t
*>
(
input
.
data
.
data
()),
input_length
*
sizeof
(
uint8_t
));
}
else
{
memcpy
(
input_lod_tensor
.
mutable_data
<
T
>
(),
static_cast
<
T
*>
(
input
.
data
.
data
()),
input_length
*
sizeof
(
T
));
}
paddle_mobile_
->
Predict
(
input_lod_tensor
);
}
else
{
input_tensor
.
Resize
(
ddim
);
memcpy
(
input_tensor
.
mutable_data
<
T
>
(),
static_cast
<
T
*>
(
input
.
data
.
data
()),
input_length
*
sizeof
(
T
));
if
(
input
.
dtype
==
UINT8
)
{
framework
::
Tensor
input_tensor
(
static_cast
<
uint8_t
*>
(
input
.
data
.
data
()),
ddim
);
paddle_mobile_
->
Predict
(
input_tensor
);
}
else
{
framework
::
Tensor
input_tensor
(
static_cast
<
T
*>
(
input
.
data
.
data
()),
ddim
);
paddle_mobile_
->
Predict
(
input_tensor
);
}
}
auto
output_tensor
=
paddle_mobile_
->
Fetch
();
...
...
@@ -124,12 +134,21 @@ bool PaddleMobilePredictor<Device, T>::Run(
output
.
shape
.
push_back
(
static_cast
<
int
>
(
d
));
}
if
(
output
.
dtype
==
UINT8
)
{
if
(
output
.
data
.
length
()
<
output_length
*
sizeof
(
uint8_t
))
{
output
.
data
.
Resize
(
output_length
*
sizeof
(
uint8_t
));
}
memcpy
(
output
.
data
.
data
(),
output_tensor
->
template
data
<
uint8_t
>(),
output_length
*
sizeof
(
uint8_t
));
}
else
{
if
(
output
.
data
.
length
()
<
output_length
*
sizeof
(
T
))
{
output
.
data
.
Resize
(
output_length
*
sizeof
(
T
));
}
memcpy
(
output
.
data
.
data
(),
output_tensor
->
template
data
<
T
>(),
output_length
*
sizeof
(
T
));
}
return
true
;
}
...
...
mobile/src/io/paddle_inference_api.h
浏览文件 @
5f227934
...
...
@@ -48,6 +48,7 @@ enum PaddleDType {
FLOAT16
,
INT64
,
INT8
,
UINT8
,
};
enum
LayoutType
{
...
...
@@ -206,9 +207,11 @@ struct PaddleModelMemoryPack {
struct
PaddleMobileConfig
:
public
PaddlePredictor
::
Config
{
enum
Precision
{
FP32
=
0
};
enum
Device
{
kCPU
=
0
,
kFPGA
=
1
,
kGPU_MALI
=
2
,
kGPU_CL
=
3
};
enum
PrePostType
{
NONE_PRE_POST
=
0
,
UINT8_255
=
1
};
enum
Precision
precision
;
enum
Device
device
;
enum
PrePostType
pre_post_type
;
int
batch_size
=
1
;
bool
optimize
=
true
;
...
...
mobile/src/operators/kernel/cl/cl_kernel/feed_kernel.cl
浏览文件 @
5f227934
...
...
@@ -60,3 +60,51 @@ __kernel void feed(__global float *in,
write_imageh
(
output_image,
output_pos,
output
)
;
}
__kernel
void
feed_with_pre
(
__global
uchar
*in,
__write_only
image2d_t
output_image,
__private
const
int
out_H,
__private
const
int
out_W,
__private
const
int
out_C,
__private
const
int
Stride0,
__private
const
int
Stride1,
__private
const
int
Stride2
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
out_n
=
out_nh/out_H
;
const
int
out_h
=
out_nh%out_H
;
const
int
in_n
=
out_n
;
const
int
in_c0
=
out_c
*
4
+
0
;
const
int
in_c1
=
out_c
*
4
+
1
;
const
int
in_c2
=
out_c
*
4
+
2
;
const
int
in_c3
=
out_c
*
4
+
3
;
const
int
in_h
=
out_h
;
const
int
in_w
=
out_w
;
int
input_pos0
=
in_n
*
Stride2
+
in_c0
*
Stride1
+
in_h
*
Stride0
+
in_w
;
int
input_pos1
=
in_n
*
Stride2
+
in_c1
*
Stride1
+
in_h
*
Stride0
+
in_w
;
int
input_pos2
=
in_n
*
Stride2
+
in_c2
*
Stride1
+
in_h
*
Stride0
+
in_w
;
int
input_pos3
=
in_n
*
Stride2
+
in_c3
*
Stride1
+
in_h
*
Stride0
+
in_w
;
int2
output_pos
;
output_pos.x
=
out_c
*
out_W
+
out_w
;
output_pos.y
=
out_nh
;
half4
output
=
(
half4
)
0.0f
;
output.x
=
convert_half
(
in[input_pos0]
)
/
255
;
if
(
out_C
-
4
*
out_c>=2
)
{
output.y
=
convert_half
(
in[input_pos1]
)
/
255
;
}
if
(
out_C
-
4
*
out_c>=3
)
{
output.z
=
convert_half
(
in[input_pos2]
)
/
255
;
}
if
(
out_C
-
4
*
out_c>=4
)
{
output.w
=
convert_half
(
in[input_pos3]
)
/
255
;
}
write_imageh
(
output_image,
output_pos,
output
)
;
}
mobile/src/operators/kernel/cl/cl_kernel/fetch_kernel.cl
浏览文件 @
5f227934
...
...
@@ -67,3 +67,38 @@ __kernel void fetch_2d(__private const int in_height,
out[index
+
2]
=
convert_float
(
in.z
)
;
out[index
+
3]
=
convert_float
(
in.w
)
;
}
__kernel
void
fetch_with_post
(
__private
const
int
in_height,
__private
const
int
in_width,
__read_only
image2d_t
input,
__global
uchar*
out,
__private
const
int
size_ch,
__private
const
int
size_block,
__private
const
int
size_batch,
__private
const
int
C
)
{
const
int
in_c
=
get_global_id
(
0
)
;
const
int
in_w
=
get_global_id
(
1
)
;
const
int
in_nh
=
get_global_id
(
2
)
;
const
int
in_n
=
in_nh
/
in_height
;
const
int
in_h
=
in_nh
%
in_height
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
const
int
pos_x
=
mad24
(
in_c,
in_width,
in_w
)
;
half4
in
=
read_imageh
(
input,
sampler,
(
int2
)(
pos_x,
in_nh
))
;
const
int
index
=
in_n
*
size_batch
+
in_c
*
size_block
+
in_h
*
in_width
+
in_w
;
out[index]
=
convert_uchar_sat
(
in.x
*
255
)
;
if
(
C
-
4
*
in_c>=2
)
{
out[index
+
size_ch]
=
convert_uchar_sat
(
in.y
*
255
)
;
}
if
(
C
-
4
*
in_c>=3
)
{
out[index
+
size_ch
*
2]
=
convert_uchar_sat
(
in.z
*
255
)
;
}
if
(
C
-
4
*
in_c>=4
)
{
out[index
+
size_ch
*
3]
=
convert_uchar_sat
(
in.w
*
255
)
;
}
}
mobile/src/operators/kernel/cl/cl_kernel/pre_post_kernel.cl
0 → 100644
浏览文件 @
5f227934
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
pre
(
__global
const
uchar
*input,
__global
float
*output
)
{
int
index
=
get_global_id
(
0
)
;
output[index]
=
convert_float
(
input[index]
)
/
255
;
}
mobile/src/operators/kernel/cl/feed_kernel.cpp
浏览文件 @
5f227934
...
...
@@ -21,7 +21,11 @@ namespace operators {
template
<
>
bool
FeedKernel
<
GPU_CL
,
float
>::
Init
(
FeedParam
<
GPU_CL
>
*
param
)
{
DLOG
<<
"Init feed"
;
if
(
this
->
pre_post_type_
==
UINT8_255
)
{
this
->
cl_helper_
.
AddKernel
(
"feed_with_pre"
,
"feed_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"feed"
,
"feed_kernel.cl"
);
}
return
true
;
}
...
...
@@ -34,7 +38,7 @@ void FeedKernel<GPU_CL, float>::Compute(const FeedParam<GPU_CL> ¶m) {
auto
output
=
param
.
Out
();
const
Tensor
*
input
=
&
param
.
InputX
()
->
at
(
col
);
// DLOG << *input;
const
float
*
input_data
=
input
->
data
<
float
>
();
int
numel
=
input
->
numel
();
cl_mem
output_image
=
output
->
GetCLImage
();
const
int
out_C
=
output
->
dims
()[
1
];
...
...
@@ -46,7 +50,14 @@ void FeedKernel<GPU_CL, float>::Compute(const FeedParam<GPU_CL> ¶m) {
framework
::
CLTensor
input_cl_tensor
(
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
input_cl_tensor
.
Resize
(
input
->
dims
());
cl_mem
inputBuffer
=
input_cl_tensor
.
mutable_with_data
<
float
>
(
input_data
);
cl_mem
inputBuffer
;
if
(
this
->
pre_post_type_
==
UINT8_255
)
{
inputBuffer
=
input_cl_tensor
.
mutable_with_data
<
uint8_t
>
(
input
->
data
<
uint8_t
>
());
}
else
{
inputBuffer
=
input_cl_tensor
.
mutable_with_data
<
float
>
(
input
->
data
<
float
>
());
}
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputBuffer
);
CL_CHECK_ERRORS
(
status
);
...
...
mobile/src/operators/kernel/cl/fetch_kernel.cpp
浏览文件 @
5f227934
...
...
@@ -20,7 +20,11 @@ namespace operators {
template
<
>
bool
FetchKernel
<
GPU_CL
,
float
>::
Init
(
FetchParam
<
GPU_CL
>
*
param
)
{
if
(
this
->
pre_post_type_
==
UINT8_255
)
{
this
->
cl_helper_
.
AddKernel
(
"fetch_with_post"
,
"fetch_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"fetch"
,
"fetch_kernel.cl"
);
}
return
true
;
}
...
...
@@ -33,7 +37,6 @@ void FetchKernel<GPU_CL, float>::Compute(const FetchParam<GPU_CL> ¶m) {
auto
input
=
param
.
InputX
()
->
GetCLImage
();
auto
*
out
=
&
param
.
Out
()
->
at
(
col
);
out
->
Resize
(
param
.
InputX
()
->
dims
());
out
->
mutable_data
<
float
>
();
DLOG
<<
"fetch kernel out dims = "
<<
out
->
dims
();
DLOG
<<
"fetch kernel out memory size = "
<<
out
->
memory_size
();
...
...
@@ -57,7 +60,14 @@ void FetchKernel<GPU_CL, float>::Compute(const FetchParam<GPU_CL> ¶m) {
framework
::
CLTensor
out_cl_tensor
(
this
->
cl_helper_
.
CLContext
(),
this
->
cl_helper_
.
CLCommandQueue
());
out_cl_tensor
.
Resize
(
out
->
dims
());
cl_mem
outBuffer
=
out_cl_tensor
.
mutable_data
<
float
>
();
cl_mem
outBuffer
;
if
(
this
->
pre_post_type_
==
UINT8_255
)
{
out
->
mutable_data
<
uint8_t
>
();
outBuffer
=
out_cl_tensor
.
mutable_data
<
uint8_t
>
();
}
else
{
out
->
mutable_data
<
float
>
();
outBuffer
=
out_cl_tensor
.
mutable_data
<
float
>
();
}
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
in_height
);
...
...
@@ -91,8 +101,13 @@ void FetchKernel<GPU_CL, float>::Compute(const FetchParam<GPU_CL> ¶m) {
DLOG
<<
"fetch kernel out_cl_tensor dims = "
<<
out_cl_tensor
.
dims
();
DLOG
<<
"fetch kernel out_cl_tensor memery size = "
<<
out_cl_tensor
.
memory_size
();
if
(
this
->
pre_post_type_
==
UINT8_255
)
{
memcpy
(
out
->
data
<
uint8_t
>
(),
out_cl_tensor
.
Data
<
uint8_t
>
(),
sizeof
(
uint8_t
)
*
out
->
numel
());
}
else
{
memcpy
(
out
->
data
<
float
>
(),
out_cl_tensor
.
Data
<
float
>
(),
sizeof
(
float
)
*
out
->
numel
());
}
}
template
class
FetchKernel
<
GPU_CL
,
float
>;
...
...
mobile/test/CMakeLists.txt
浏览文件 @
5f227934
...
...
@@ -539,4 +539,7 @@ else()
# gen test
ADD_EXECUTABLE
(
test-net net/test_net.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-net paddle-mobile
)
ADD_EXECUTABLE
(
test-inference-pre-post net/test_inference_pre_post.cpp
)
target_link_libraries
(
test-inference-pre-post paddle-mobile
)
endif
()
mobile/test/net/test_inference_pre_post.cpp
0 → 100644
浏览文件 @
5f227934
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include "../test_helper.h"
#include "io/paddle_inference_api.h"
using
namespace
paddle_mobile
;
// NOLINT
PaddleMobileConfig
GetConfig
()
{
PaddleMobileConfig
config
;
config
.
precision
=
PaddleMobileConfig
::
FP32
;
config
.
device
=
PaddleMobileConfig
::
kGPU_CL
;
config
.
pre_post_type
=
PaddleMobileConfig
::
UINT8_255
;
config
.
prog_file
=
"../models/superv2/model"
;
config
.
param_file
=
"../models/superv2/params"
;
config
.
lod_mode
=
false
;
config
.
load_when_predict
=
true
;
config
.
cl_path
=
"/data/local/tmp/bin"
;
return
config
;
}
int
main
()
{
PaddleMobileConfig
config
=
GetConfig
();
auto
predictor
=
CreatePaddlePredictor
<
PaddleMobileConfig
,
PaddleEngineKind
::
kPaddleMobile
>
(
config
);
int
input_length
=
1
*
1
*
300
*
300
;
int
output_length
=
input_length
;
uint8_t
data_ui
[
300
*
300
];
for
(
int
i
=
0
;
i
<
input_length
;
++
i
)
{
data_ui
[
i
]
=
i
%
256
;
}
PaddleTensor
input
;
input
.
shape
=
std
::
vector
<
int
>
({
1
,
1
,
300
,
300
});
input
.
data
=
PaddleBuf
(
data_ui
,
sizeof
(
data_ui
));
input
.
dtype
=
PaddleDType
::
UINT8
;
input
.
layout
=
LayoutType
::
LAYOUT_CHW
;
std
::
vector
<
PaddleTensor
>
inputs
(
1
,
input
);
PaddleTensor
output
;
output
.
shape
=
std
::
vector
<
int
>
({});
output
.
data
=
PaddleBuf
();
output
.
dtype
=
PaddleDType
::
UINT8
;
output
.
layout
=
LayoutType
::
LAYOUT_CHW
;
std
::
vector
<
PaddleTensor
>
outputs
(
1
,
output
);
std
::
cout
<<
" print input : "
<<
std
::
endl
;
int
stride
=
input_length
/
20
;
stride
=
stride
>
0
?
stride
:
1
;
for
(
size_t
j
=
0
;
j
<
input_length
;
j
+=
stride
)
{
std
::
cout
<<
(
unsigned
)
data_ui
[
j
]
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
predictor
->
Run
(
inputs
,
&
outputs
);
std
::
cout
<<
" print output : "
<<
std
::
endl
;
uint8_t
*
data_o
=
static_cast
<
uint8_t
*>
(
outputs
[
0
].
data
.
data
());
int
numel
=
outputs
[
0
].
data
.
length
()
/
sizeof
(
uint8_t
);
stride
=
numel
/
20
;
stride
=
stride
>
0
?
stride
:
1
;
for
(
size_t
j
=
0
;
j
<
numel
;
j
+=
stride
)
{
std
::
cout
<<
(
unsigned
)
data_o
[
j
]
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录