Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
59d079e8
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
59d079e8
编写于
1月 03, 2020
作者:
Z
zhupengyang
提交者:
GitHub
1月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] enhance unittest for bn, transpose (#2716)
test=develop
上级
a1527e80
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
27 addition
and
346 deletion
+27
-346
lite/kernels/npu/bridges/batch_norm_op_test.cc
lite/kernels/npu/bridges/batch_norm_op_test.cc
+0
-168
lite/kernels/npu/bridges/transpose_op.cc
lite/kernels/npu/bridges/transpose_op.cc
+1
-1
lite/kernels/npu/bridges/transpose_op_test.cc
lite/kernels/npu/bridges/transpose_op_test.cc
+0
-153
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+2
-2
lite/tests/kernels/batch_norm_compute_test.cc
lite/tests/kernels/batch_norm_compute_test.cc
+2
-0
lite/tests/kernels/transpose_compute_test.cc
lite/tests/kernels/transpose_compute_test.cc
+22
-22
未找到文件。
lite/kernels/npu/bridges/batch_norm_op_test.cc
已删除
100644 → 0
浏览文件 @
a1527e80
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/batch_norm_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
npu
{
namespace
bridges
{
template
<
typename
dtype
>
void
batch_norm_ref
(
const
std
::
shared_ptr
<
operators
::
BatchNormOp
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
y
=
scope
->
FindVar
(
op_info
->
Output
(
"Y"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
bias
=
scope
->
FindVar
(
op_info
->
Input
(
"Bias"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
scale
=
scope
->
FindVar
(
op_info
->
Input
(
"Scale"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
mean
=
scope
->
FindVar
(
op_info
->
Input
(
"Mean"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
variance
=
scope
->
FindVar
(
op_info
->
Input
(
"Variance"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
x_data
=
x
->
data
<
dtype
>
();
auto
y_data
=
y
->
mutable_data
<
dtype
>
();
auto
scale_data
=
scale
->
mutable_data
<
dtype
>
();
auto
bias_data
=
bias
->
mutable_data
<
dtype
>
();
auto
mean_data
=
mean
->
mutable_data
<
dtype
>
();
auto
variance_data
=
variance
->
mutable_data
<
dtype
>
();
DDim
x_dims
=
x
->
dims
();
float
epsilon
=
op_info
->
GetAttr
<
float
>
(
"epsilon"
);
float
momentum
=
op_info
->
GetAttr
<
float
>
(
"momentum"
);
auto
data_layout
=
op_info
->
GetAttr
<
std
::
string
>
(
"data_layout"
);
bool
global_stats
=
op_info
->
GetAttr
<
bool
>
(
"use_global_stats"
);
if
(
global_stats
)
{
int64_t
outer_size
=
0
;
int64_t
channel_size
=
0
;
int64_t
inner_size
=
0
;
if
(
data_layout
==
"NCHW"
)
{
outer_size
=
x_dims
[
0
];
channel_size
=
x_dims
[
1
];
inner_size
=
x_dims
.
Slice
(
2
,
x_dims
.
size
()).
production
();
}
else
{
LOG
(
FATAL
)
<<
"Unknown storage order: "
<<
data_layout
;
}
auto
x_ptr
=
x_data
;
auto
y_ptr
=
y_data
;
for
(
int
o
=
0
;
o
<
outer_size
;
o
++
)
{
for
(
int
c
=
0
;
c
<
channel_size
;
c
++
)
{
for
(
int
i
=
0
;
i
<
inner_size
;
i
++
)
{
dtype
norm_x
=
(
*
x_ptr
-
mean_data
[
c
])
/
std
::
sqrt
(
variance_data
[
c
]
+
epsilon
);
*
y_ptr
=
norm_x
*
scale_data
[
c
]
+
bias_data
[
c
];
x_ptr
++
;
y_ptr
++
;
}
}
}
}
}
void
test_batch_norm
(
int
bs
,
int
ic
,
int
ih
,
int
iw
,
float
epsilon
,
float
momentum
)
{
// prepare input&output variables
Scope
scope
;
std
::
string
x_var_name
=
"x"
;
std
::
string
out_var_name
=
"out"
;
std
::
string
out_ref_var_name
=
"out_ref"
;
std
::
string
scale_var_name
=
"scale"
;
std
::
string
bias_var_name
=
"bias"
;
std
::
string
mean_var_name
=
"mean"
;
std
::
string
variance_var_name
=
"variance"
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
scale
=
scope
.
Var
(
scale_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
bias
=
scope
.
Var
(
bias_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
mean
=
scope
.
Var
(
mean_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
variance
=
scope
.
Var
(
variance_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
bs
,
ic
,
ih
,
iw
});
scale
->
Resize
({
ic
});
bias
->
Resize
({
ic
});
mean
->
Resize
({
ic
});
variance
->
Resize
({
ic
});
// initialize input&output data
FillTensor
<
float
,
int
>
(
x
);
FillTensor
<
float
,
int
>
(
scale
);
FillTensor
<
float
,
int
>
(
bias
);
FillTensor
<
float
,
int
>
(
mean
);
// variance > 0
FillTensor
<
float
,
int
>
(
variance
,
1.
f
,
5.
f
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"batch_norm"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetInput
(
"Scale"
,
{
scale_var_name
});
opdesc
.
SetInput
(
"Bias"
,
{
bias_var_name
});
opdesc
.
SetInput
(
"Mean"
,
{
mean_var_name
});
opdesc
.
SetInput
(
"Variance"
,
{
variance_var_name
});
opdesc
.
SetOutput
(
"Y"
,
{
out_var_name
});
opdesc
.
SetAttr
(
"is_test"
,
1
);
opdesc
.
SetAttr
(
"use_global_stats"
,
true
);
opdesc
.
SetAttr
(
"epsilon"
,
epsilon
);
opdesc
.
SetAttr
(
"momentum"
,
momentum
);
opdesc
.
SetAttr
(
"data_layout"
,
std
::
string
(
"NCHW"
));
// create and convert op to NPU model, then run it on NPU
auto
op
=
CreateOp
<
operators
::
BatchNormOp
>
(
opdesc
,
&
scope
);
LauchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
out_ref
->
CopyDataFrom
(
*
out
);
// execute reference implementation and save to output tensor
batch_norm_ref
<
float
>
(
op
);
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
1e-2
);
}
}
TEST
(
NPUBridges
,
batch_norm
)
{
for
(
auto
bs
:
{
1
,
4
,
7
})
{
for
(
auto
ic
:
{
1
,
4
,
7
})
{
for
(
auto
ih
:
{
1
,
4
,
7
})
{
for
(
auto
iw
:
{
1
,
4
,
7
})
{
for
(
auto
epsilon
:
{
1e-4
f
,
1e-5
f
})
{
for
(
auto
momentum
:
{
0.9
f
,
0.99
f
})
{
test_batch_norm
(
bs
,
ic
,
ih
,
iw
,
epsilon
,
momentum
);
}
}
}
}
}
}
}
}
// namespace bridges
}
// namespace npu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_OP
(
batch_norm
);
USE_NPU_BRIDGE
(
batch_norm
);
lite/kernels/npu/bridges/transpose_op.cc
浏览文件 @
59d079e8
...
@@ -37,7 +37,7 @@ int TransposeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -37,7 +37,7 @@ int TransposeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
x
=
scope
->
FindMutableTensor
(
x_name
);
auto
x
=
scope
->
FindMutableTensor
(
x_name
);
auto
x_dims
=
x
->
dims
();
auto
x_dims
=
x
->
dims
();
auto
out_name
=
op_info
->
In
put
(
"Out"
).
front
();
auto
out_name
=
op_info
->
Out
put
(
"Out"
).
front
();
auto
axis
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"axis"
);
auto
axis
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"axis"
);
// X node
// X node
...
...
lite/kernels/npu/bridges/transpose_op_test.cc
已删除
100644 → 0
浏览文件 @
a1527e80
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/transpose_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
npu
{
namespace
bridges
{
int
data_index
(
std
::
vector
<
int
>
pos
,
DDimLite
dims
)
{
int
d1
=
dims
[
1
];
int
d2
=
dims
[
2
];
int
d3
=
dims
[
3
];
return
pos
[
3
]
+
pos
[
2
]
*
d3
+
pos
[
1
]
*
d3
*
d2
+
pos
[
0
]
*
d3
*
d2
*
d1
;
}
std
::
vector
<
int
>
pos_trans
(
std
::
vector
<
int
>
in_pos
,
std
::
vector
<
int
>
axis
)
{
std
::
vector
<
int
>
out_pos
(
in_pos
.
size
());
for
(
int
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
out_pos
[
axis
[
i
]]
=
in_pos
[
i
];
}
return
out_pos
;
}
void
transpose_ref
(
const
std
::
shared_ptr
<
operators
::
TransposeOp
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
input
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
output
=
scope
->
FindVar
(
op_info
->
Output
(
"Out"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
x_dims
=
input
->
dims
();
auto
y_dims
=
output
->
dims
();
auto
axis
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"axis"
);
auto
*
input_data
=
input
->
data
<
float
>
();
auto
*
output_data
=
output
->
mutable_data
<
float
>
();
int
input_n
=
x_dims
[
0
];
int
input_c
=
x_dims
[
1
];
int
input_h
=
x_dims
[
2
];
int
input_w
=
x_dims
[
3
];
int
output_n
=
y_dims
[
0
];
int
output_c
=
y_dims
[
1
];
int
output_h
=
y_dims
[
2
];
int
output_w
=
y_dims
[
3
];
for
(
int
n
=
0
;
n
<
input_n
;
++
n
)
{
for
(
int
c
=
0
;
c
<
input_c
;
++
c
)
{
for
(
int
h
=
0
;
h
<
input_h
;
++
h
)
{
for
(
int
w
=
0
;
w
<
input_w
;
++
w
)
{
std
::
vector
<
int
>
in_pos
{
n
,
c
,
h
,
w
};
std
::
vector
<
int
>
out_pos
=
pos_trans
(
in_pos
,
axis
);
int
in_index
=
data_index
(
in_pos
,
x_dims
);
int
out_index
=
data_index
(
out_pos
,
y_dims
);
output_data
[
out_index
]
=
input_data
[
in_index
];
}
}
}
}
}
void
test_transpose
(
int
bs
,
int
ic
,
int
ih
,
int
iw
,
std
::
vector
<
int
>
axis
)
{
// prepare input&output variables
Scope
scope
;
std
::
string
x_var_name
=
"x"
;
std
::
string
out_var_name
=
"out"
;
std
::
string
out_ref_var_name
=
"out_ref"
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
bs
,
ic
,
ih
,
iw
});
// initialize input&output data
FillTensor
<
float
>
(
x
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"transpose"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetAttr
(
"axis"
,
axis
);
// create and convert op to NPU model, then run it on NPU
auto
op
=
CreateOp
<
operators
::
TransposeOp
>
(
opdesc
,
&
scope
);
LauchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
out_ref
->
CopyDataFrom
(
*
out
);
// execute reference implementation and save to output tensor
transpose_ref
(
op
);
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
1e-2
);
}
}
TEST
(
NPUBridges
,
transpose
)
{
#if 0
for (auto bs : {1, 4, 7}) {
for (auto ic : {1, 4, 7}) {
for (auto ih : {1, 4, 7}) {
for (auto iw : {1, 4, 7}) {
for (auto axis : {std::vector<int>{0, 1, 2, 3},
std::vector<int>{0, 1, 3, 2},
std::vector<int>{0, 3, 1, 2},
std::vector<int>{1, 2, 3, 0},
std::vector<int>{3, 2, 1, 0},
std::vector<int>{2, 3, 1, 0}}) {
test_transpose(bs, ic, ih, iw, axis);
}
}
}
}
}
#endif
test_transpose
(
2
,
3
,
4
,
5
,
std
::
vector
<
int
>
{
0
,
1
,
3
,
2
});
// test_transpose(2, 3, 4, 5, std::vector<int>{0, 1, 2, 3});
// test_transpose(2, 2, 2, 2, std::vector<int>{0,1,3,2});
// test_transpose(1, 1, 2, 2, std::vector<int>{0,1,3,2});
// test_transpose(1, 1, 1, 2, std::vector<int>{0,1,2,3});
}
}
// namespace bridges
}
// namespace npu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_OP
(
transpose
);
USE_NPU_BRIDGE
(
transpose
);
USE_LITE_OP
(
transpose2
);
USE_NPU_BRIDGE
(
transpose2
);
lite/tests/kernels/CMakeLists.txt
浏览文件 @
59d079e8
...
@@ -25,13 +25,13 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH
...
@@ -25,13 +25,13 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH
#lite_cc_test(test_kernel_write_to_array_compute SRCS write_to_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_write_to_array_compute SRCS write_to_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_read_from_array_compute SRCS read_from_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_read_from_array_compute SRCS read_from_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test
(
test_concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
npu_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reshape_compute SRCS reshape_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reshape_compute SRCS reshape_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_layer_norm_compute SRCS layer_norm_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_layer_norm_compute SRCS layer_norm_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_dropout_compute SRCS dropout_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_dropout_compute SRCS dropout_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_softmax_compute SRCS softmax_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_softmax_compute SRCS softmax_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_mul_compute SRCS mul_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_mul_compute SRCS mul_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_batch_norm_compute SRCS batch_norm_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_batch_norm_compute SRCS batch_norm_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
npu_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
if
(
LITE_BUILD_EXTRA
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_test
(
test_gru_unit SRCS gru_unit_test.cc DEPS arena_framework
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_gru_unit SRCS gru_unit_test.cc DEPS arena_framework
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/batch_norm_compute_test.cc
浏览文件 @
59d079e8
...
@@ -159,6 +159,8 @@ TEST(BatchNorm, precision) {
...
@@ -159,6 +159,8 @@ TEST(BatchNorm, precision) {
Place
place
;
Place
place
;
#if defined(LITE_WITH_XPU)
#if defined(LITE_WITH_XPU)
place
=
TARGET
(
kXPU
);
place
=
TARGET
(
kXPU
);
#elif defined(LITE_WITH_NPU)
place
=
TARGET
(
kNPU
);
#else
#else
return
;
return
;
#endif
#endif
...
...
lite/tests/kernels/transpose_compute_test.cc
浏览文件 @
59d079e8
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"
namespace
paddle
{
namespace
paddle
{
namespace
lite
{
namespace
lite
{
...
@@ -24,13 +25,13 @@ int data_index(std::vector<int> pos, DDimLite dims) {
...
@@ -24,13 +25,13 @@ int data_index(std::vector<int> pos, DDimLite dims) {
int
d1
=
dims
[
1
];
int
d1
=
dims
[
1
];
int
d2
=
dims
[
2
];
int
d2
=
dims
[
2
];
int
d3
=
dims
[
3
];
int
d3
=
dims
[
3
];
return
pos
[
3
]
+
pos
[
2
]
*
d3
+
pos
[
1
]
*
d3
*
d2
+
pos
[
0
]
*
d3
*
d2
*
d1
;
return
pos
[
0
]
*
d1
*
d2
*
d3
+
pos
[
1
]
*
d2
*
d3
+
pos
[
2
]
*
d3
+
pos
[
3
]
;
}
}
std
::
vector
<
int
>
pos_trans
(
std
::
vector
<
int
>
in_pos
,
std
::
vector
<
int
>
axis
)
{
std
::
vector
<
int
>
pos_trans
(
std
::
vector
<
int
>
in_pos
,
std
::
vector
<
int
>
axis
)
{
std
::
vector
<
int
>
out_pos
(
in_pos
.
size
());
std
::
vector
<
int
>
out_pos
(
in_pos
.
size
());
for
(
int
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
for
(
int
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
out_pos
[
axis
[
i
]]
=
in_pos
[
i
];
out_pos
[
i
]
=
in_pos
[
axis
[
i
]
];
}
}
return
out_pos
;
return
out_pos
;
}
}
...
@@ -42,35 +43,34 @@ class TransposeComputeTester : public arena::TestCase {
...
@@ -42,35 +43,34 @@ class TransposeComputeTester : public arena::TestCase {
std
::
string
input_
=
"x"
;
std
::
string
input_
=
"x"
;
std
::
string
output_
=
"out"
;
std
::
string
output_
=
"out"
;
std
::
string
xshape_
=
"xshape"
;
std
::
string
xshape_
=
"xshape"
;
DDim
x_
dims_
;
DDim
dims_
;
std
::
vector
<
int
>
axis_
;
std
::
vector
<
int
>
axis_
;
public:
public:
TransposeComputeTester
(
const
Place
&
place
,
TransposeComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
const
std
::
string
&
alias
,
DDim
x_
dims
,
DDim
dims
,
std
::
vector
<
int
>
axis
)
std
::
vector
<
int
>
axis
)
:
TestCase
(
place
,
alias
),
x_dims_
(
x_
dims
),
axis_
(
axis
)
{}
:
TestCase
(
place
,
alias
),
dims_
(
dims
),
axis_
(
axis
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
*
out
=
scope
->
NewTensor
(
output_
);
auto
*
out
=
scope
->
NewTensor
(
output_
);
CHECK
(
out
);
CHECK
(
out
);
auto
*
x
=
scope
->
FindTensor
(
input_
);
auto
*
x
=
scope
->
FindTensor
(
input_
);
auto
x_dims
=
x
->
dims
();
std
::
vector
<
int64_t
>
out_shape
(
x_dims
.
size
(),
0
);
std
::
vector
<
int64_t
>
out_shape
(
dims_
.
size
(),
0
);
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
dims_
.
size
();
i
++
)
{
out_shape
[
i
]
=
x_dims
[
axis_
[
i
]];
out_shape
[
i
]
=
dims_
[
axis_
[
i
]];
}
}
out
->
Resize
(
out_shape
);
out
->
Resize
(
out_shape
);
auto
y_dims
=
out
->
dims
();
auto
y_dims
=
out
->
dims
();
int
input_n
=
x_dims
[
0
];
int
input_n
=
dims_
[
0
];
int
input_c
=
x_dims
[
1
];
int
input_c
=
dims_
[
1
];
int
input_h
=
x_dims
[
2
];
int
input_h
=
dims_
[
2
];
int
input_w
=
x_dims
[
3
];
int
input_w
=
dims_
[
3
];
auto
input_data
=
x
->
data
<
float
>
();
auto
input_data
=
x
->
data
<
float
>
();
auto
output_data
=
out
->
mutable_data
<
float
>
();
auto
output_data
=
out
->
mutable_data
<
float
>
();
...
@@ -81,7 +81,7 @@ class TransposeComputeTester : public arena::TestCase {
...
@@ -81,7 +81,7 @@ class TransposeComputeTester : public arena::TestCase {
for
(
int
w
=
0
;
w
<
input_w
;
++
w
)
{
for
(
int
w
=
0
;
w
<
input_w
;
++
w
)
{
std
::
vector
<
int
>
in_pos
{
n
,
c
,
h
,
w
};
std
::
vector
<
int
>
in_pos
{
n
,
c
,
h
,
w
};
std
::
vector
<
int
>
out_pos
=
pos_trans
(
in_pos
,
axis_
);
std
::
vector
<
int
>
out_pos
=
pos_trans
(
in_pos
,
axis_
);
int
in_index
=
data_index
(
in_pos
,
x_dims
);
int
in_index
=
data_index
(
in_pos
,
dims_
);
int
out_index
=
data_index
(
out_pos
,
y_dims
);
int
out_index
=
data_index
(
out_pos
,
y_dims
);
output_data
[
out_index
]
=
input_data
[
in_index
];
output_data
[
out_index
]
=
input_data
[
in_index
];
}
}
...
@@ -91,7 +91,7 @@ class TransposeComputeTester : public arena::TestCase {
...
@@ -91,7 +91,7 @@ class TransposeComputeTester : public arena::TestCase {
if
(
op_type_
==
"transpose2"
)
{
if
(
op_type_
==
"transpose2"
)
{
auto
*
xshape
=
scope
->
NewTensor
(
xshape_
);
auto
*
xshape
=
scope
->
NewTensor
(
xshape_
);
auto
xshape_dims
=
x_dims
.
Vectorize
();
auto
xshape_dims
=
dims_
.
Vectorize
();
xshape_dims
.
insert
(
xshape_dims
.
begin
(),
0
);
xshape_dims
.
insert
(
xshape_dims
.
begin
(),
0
);
xshape
->
Resize
(
xshape_dims
);
xshape
->
Resize
(
xshape_dims
);
}
}
...
@@ -108,11 +108,9 @@ class TransposeComputeTester : public arena::TestCase {
...
@@ -108,11 +108,9 @@ class TransposeComputeTester : public arena::TestCase {
}
}
void
PrepareData
()
override
{
void
PrepareData
()
override
{
std
::
vector
<
float
>
data
(
x_dims_
.
production
());
std
::
vector
<
float
>
din
(
dims_
.
production
());
for
(
int
i
=
0
;
i
<
x_dims_
.
production
();
i
++
)
{
fill_data_rand
(
din
.
data
(),
-
1.
f
,
1.
f
,
dims_
.
production
());
data
[
i
]
=
i
*
1.1
;
SetCommonTensor
(
input_
,
dims_
,
din
.
data
());
}
SetCommonTensor
(
input_
,
x_dims_
,
data
.
data
());
}
}
};
};
...
@@ -122,14 +120,16 @@ TEST(Transpose, precision) {
...
@@ -122,14 +120,16 @@ TEST(Transpose, precision) {
Place
place
;
Place
place
;
#ifdef LITE_WITH_XPU
#ifdef LITE_WITH_XPU
place
=
TARGET
(
kXPU
);
place
=
TARGET
(
kXPU
);
#elif defined(LITE_WITH_NPU)
place
=
TARGET
(
kNPU
);
abs_error
=
1e-2
;
// Using fp16 in NPU
#else
#else
return
;
return
;
#endif
#endif
DDim
x_dims
{{
2
,
3
,
4
,
5
}};
DDim
x_dims
{{
2
,
3
,
4
,
5
}};
// [XPU]: {3, 1, 0, 2} is unsupported
std
::
vector
<
std
::
vector
<
int
>>
axes
{
std
::
vector
<
std
::
vector
<
int
>>
axes
{
{
0
,
1
,
2
,
3
},
{
0
,
1
,
3
,
2
},
{
0
,
2
,
1
,
3
},
{
3
,
1
,
2
,
0
}};
{
0
,
1
,
2
,
3
},
{
0
,
1
,
3
,
2
},
{
0
,
2
,
1
,
3
},
{
3
,
1
,
2
,
0
}
,
{
3
,
1
,
0
,
2
}
};
for
(
auto
axis
:
axes
)
{
for
(
auto
axis
:
axes
)
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
TransposeComputeTester
(
place
,
"def"
,
x_dims
,
axis
));
new
TransposeComputeTester
(
place
,
"def"
,
x_dims
,
axis
));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录