Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
5337daea
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5337daea
编写于
12月 28, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize 5x5 depthwise conv for speedup 6x
上级
8bae119c
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
844 addition
and
30 deletion
+844
-30
src/framework/operator.cpp
src/framework/operator.cpp
+8
-7
src/io/api_paddle_mobile.cc
src/io/api_paddle_mobile.cc
+1
-0
src/io/api_paddle_mobile.h
src/io/api_paddle_mobile.h
+1
-9
src/io/paddle_inference_api.h
src/io/paddle_inference_api.h
+3
-2
src/io/paddle_mobile.cpp
src/io/paddle_mobile.cpp
+22
-4
src/io/paddle_mobile.h
src/io/paddle_mobile.h
+5
-6
src/operators/kernel/arm/conv_kernel.cpp
src/operators/kernel/arm/conv_kernel.cpp
+11
-0
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+1
-0
src/operators/math/depthwise_conv5x5.cpp
src/operators/math/depthwise_conv5x5.cpp
+740
-0
src/operators/math/depthwise_conv5x5.h
src/operators/math/depthwise_conv5x5.h
+48
-0
src/operators/op_param.h
src/operators/op_param.h
+4
-2
未找到文件。
src/framework/operator.cpp
浏览文件 @
5337daea
...
...
@@ -64,9 +64,10 @@ void OperatorBase<Dtype>::Run() {
for
(
const
auto
key
:
input_keys
)
{
auto
var_vec_in
=
inputs_
.
at
(
key
);
for
(
int
i
=
0
;
i
<
var_vec_in
.
size
();
++
i
)
{
auto
vari
=
scope_
->
FindVar
(
var_vec_in
[
i
]);
DLOG
<<
var_vec_in
[
i
];
auto
vari
=
this
->
scope_
->
FindVar
(
"input"
);
if
(
vari
->
IsInitialized
())
{
Tensor
*
tensor
=
vari
->
template
GetMutable
<
framework
::
LoDTensor
>();
const
Tensor
*
tensor
=
vari
->
template
Get
<
framework
::
LoDTensor
>();
if
(
tensor
)
DLOG
<<
type_
<<
" input- "
<<
key
<<
"="
<<
*
tensor
;
}
}
...
...
@@ -76,7 +77,7 @@ void OperatorBase<Dtype>::Run() {
for
(
int
i
=
0
;
i
<
var_vec_out
.
size
();
++
i
)
{
auto
vari
=
scope_
->
FindVar
(
var_vec_out
[
i
]);
if
(
vari
->
IsInitialized
())
{
Tensor
*
tensor
=
vari
->
template
GetMutable
<
framework
::
LoDTensor
>();
const
Tensor
*
tensor
=
vari
->
template
Get
<
framework
::
LoDTensor
>();
if
(
tensor
)
DLOG
<<
type_
<<
" output- "
<<
key
<<
"="
<<
*
tensor
;
}
}
...
...
@@ -97,10 +98,10 @@ void OperatorBase<GPU_CL>::Run() {
auto
vari
=
scope_
->
FindVar
(
var_vec_in
[
i
]);
if
(
vari
->
IsInitialized
())
{
if
(
type_
==
"feed"
)
{
Tensor
*
tensor
=
vari
->
template
GetMutable
<
framework
::
LoDTensor
>();
const
Tensor
*
tensor
=
vari
->
template
Get
<
framework
::
LoDTensor
>();
if
(
tensor
)
DLOG
<<
type_
<<
" input- "
<<
key
<<
"="
<<
*
tensor
;
}
else
{
CLImage
*
cl_image
=
vari
->
template
GetMutable
<
framework
::
CLImage
>();
const
CLImage
*
cl_image
=
vari
->
template
Get
<
framework
::
CLImage
>();
if
(
cl_image
)
{
DLOG
<<
type_
<<
" input- "
<<
key
<<
"="
<<
*
cl_image
;
}
...
...
@@ -114,12 +115,12 @@ void OperatorBase<GPU_CL>::Run() {
auto
vari
=
scope_
->
FindVar
(
var_vec_out
[
i
]);
if
(
vari
->
IsInitialized
())
{
if
(
type_
==
"fetch"
)
{
Tensor
*
tensor
=
vari
->
template
GetMutable
<
framework
::
LoDTensor
>();
const
Tensor
*
tensor
=
vari
->
template
Get
<
framework
::
LoDTensor
>();
if
(
tensor
)
{
DLOG
<<
type_
<<
" output- "
<<
key
<<
"="
<<
*
tensor
;
}
}
else
{
CLImage
*
cl_image
=
vari
->
template
GetMutable
<
framework
::
CLImage
>();
const
CLImage
*
cl_image
=
vari
->
template
Get
<
framework
::
CLImage
>();
if
(
cl_image
)
{
DLOG
<<
type_
<<
" output- "
<<
key
<<
"="
<<
*
cl_image
;
}
...
...
src/io/api_paddle_mobile.cc
浏览文件 @
5337daea
...
...
@@ -14,6 +14,7 @@
#include "io/api_paddle_mobile.h"
#include <vector>
#include "common/enforce.h"
#include "framework/tensor.h"
namespace
paddle_mobile
{
...
...
src/io/api_paddle_mobile.h
浏览文件 @
5337daea
...
...
@@ -12,19 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file contains the implementation of inference API with Anakin engine
* embeded, this API can only support Anakin models.
*/
#pragma once
#include <vector>
#include "io/paddle_inference_api.h"
// from paddle_mobile
#include "common/enforce.h"
#include "common/types.h"
#include "io/paddle_inference_api.h"
#include "io/paddle_mobile.h"
namespace
paddle_mobile
{
...
...
src/io/paddle_inference_api.h
浏览文件 @
5337daea
...
...
@@ -104,6 +104,8 @@ class PaddlePredictor {
// The common configs for all the predictors.
struct
Config
{
std
::
string
model_dir
;
// path to the model directory.
std
::
string
prog_file
;
std
::
string
param_file
;
};
protected:
...
...
@@ -128,9 +130,8 @@ struct PaddleMobileConfig : public PaddlePredictor::Config {
int
batch_size
=
1
;
bool
optimize
=
true
;
bool
quantification
=
false
;
bool
lod_mode
=
false
;
int
thread_num
=
1
;
std
::
string
prog_file
;
std
::
string
param_file
;
std
::
string
cl_path
;
struct
PaddleModelMemoryPack
memory_pack
;
};
...
...
src/io/paddle_mobile.cpp
浏览文件 @
5337daea
...
...
@@ -15,6 +15,9 @@ limitations under the License. */
#include "io/paddle_mobile.h"
#include <utility>
#include "common/common.h"
#ifdef _OPENMP
#include <omp.h>
#endif // _OPENMP
#ifdef PADDLE_MOBILE_CL
#include <CL/cl.h>
#include "framework/cl/cl_tensor.h"
...
...
@@ -33,7 +36,7 @@ void PaddleMobile<Device, T>::SetThreadNum(int num) {
template
<
typename
Device
,
typename
T
>
PMStatus
PaddleMobile
<
Device
,
T
>::
Load
(
const
std
::
string
&
dirname
,
bool
optimize
,
bool
quantification
,
int
batch_size
,
bool
lod
dabl
e
)
{
int
batch_size
,
bool
lod
_mod
e
)
{
if
(
loader_
.
get
()
==
nullptr
)
{
loader_
=
std
::
make_shared
<
framework
::
Loader
<
Device
,
T
>>
();
}
else
{
...
...
@@ -43,7 +46,7 @@ PMStatus PaddleMobile<Device, T>::Load(const std::string &dirname,
if
(
executor_
.
get
()
==
nullptr
)
{
executor_
=
std
::
make_shared
<
framework
::
Executor
<
Device
,
T
>>
(
loader_
->
Load
(
dirname
,
optimize
,
quantification
),
batch_size
,
optimize
,
lod
dabl
e
);
lod
_mod
e
);
}
else
{
LOG
(
kLOG_INFO
)
<<
"executor inited"
;
}
...
...
@@ -55,7 +58,7 @@ template <typename Device, typename T>
PMStatus
PaddleMobile
<
Device
,
T
>::
Load
(
const
std
::
string
&
model_path
,
const
std
::
string
&
para_path
,
bool
optimize
,
bool
quantification
,
int
batch_size
,
bool
lod
dabl
e
)
{
int
batch_size
,
bool
lod
_mod
e
)
{
if
(
loader_
.
get
()
==
nullptr
)
{
loader_
=
std
::
make_shared
<
framework
::
Loader
<
Device
,
T
>>
();
}
else
{
...
...
@@ -65,7 +68,7 @@ PMStatus PaddleMobile<Device, T>::Load(const std::string &model_path,
if
(
executor_
.
get
()
==
nullptr
)
{
executor_
=
std
::
make_shared
<
framework
::
Executor
<
Device
,
T
>>
(
loader_
->
Load
(
model_path
,
para_path
,
optimize
,
quantification
),
batch_size
,
optimize
,
lod
dabl
e
);
batch_size
,
optimize
,
lod
_mod
e
);
}
else
{
LOG
(
kLOG_INFO
)
<<
"executor inited"
;
}
...
...
@@ -73,6 +76,21 @@ PMStatus PaddleMobile<Device, T>::Load(const std::string &model_path,
return
PMSuccess
;
}
template
<
typename
Device
,
typename
T
>
PMStatus
PaddleMobile
<
Device
,
T
>::
Load
(
const
PaddleMobileConfig
&
config
)
{
if
(
!
config
.
model_dir
.
empty
())
{
return
this
->
Load
(
config
.
model_dir
,
config
.
optimize
,
config
.
quantification
,
config
.
batch_size
,
config
.
lod_mode
);
}
else
if
(
!
config
.
prog_file
.
empty
()
&&
!
config
.
param_file
.
empty
())
{
return
this
->
Load
(
config
.
prog_file
,
config
.
param_file
,
config
.
optimize
,
config
.
quantification
,
config
.
batch_size
,
config
.
lod_mode
);
}
else
{
LOG
(
kLOG_ERROR
)
<<
"Failed to load inference model"
;
return
PMNotInitialized
;
}
}
template
<
typename
Device
,
typename
T
>
bool
PaddleMobile
<
Device
,
T
>::
LoadCombinedMemory
(
size_t
model_len
,
const
uint8_t
*
model_buf
,
...
...
src/io/paddle_mobile.h
浏览文件 @
5337daea
...
...
@@ -18,15 +18,12 @@ limitations under the License. */
#include <string>
#include <utility>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif // _OPENMP
#include "common/types.h"
#include "framework/executor.h"
#include "framework/load_ops.h"
#include "framework/loader.h"
#include "framework/tensor.h"
#include "io/paddle_inference_api.h"
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_engine.h"
#endif
...
...
@@ -46,10 +43,12 @@ class PaddleMobile {
PMStatus
Load
(
const
std
::
string
&
dirname
,
const
bool
optimize
=
false
,
const
bool
quantification
=
false
,
const
int
batch_size
=
1
,
const
bool
lod
=
false
);
const
bool
lod
_mode
=
false
);
PMStatus
Load
(
const
std
::
string
&
model_path
,
const
std
::
string
&
para_path
,
const
bool
optimize
=
false
,
const
bool
quantification
=
false
,
const
int
batch_size
=
1
,
const
bool
lod
=
false
);
const
int
batch_size
=
1
,
const
bool
lod_mode
=
false
);
PMStatus
Load
(
const
PaddleMobileConfig
&
config
);
PMStatus
Predict
(
const
framework
::
Tensor
&
input
);
PMStatus
Predict
(
const
framework
::
LoDTensor
&
input
);
...
...
src/operators/kernel/arm/conv_kernel.cpp
浏览文件 @
5337daea
...
...
@@ -24,8 +24,12 @@ template <>
bool
ConvKernel
<
CPU
,
float
>::
Init
(
ConvParam
<
CPU
>
*
param
)
{
bool
conv3x3
=
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
;
bool
conv5x5
=
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
5
;
bool
depth3x3
=
conv3x3
&&
param
->
Groups
()
==
param
->
Input
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
];
bool
depth5x5
=
conv5x5
&&
param
->
Groups
()
==
param
->
Input
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
];
if
(
param
->
Filter
()
->
type
()
==
typeid
(
int8_t
))
{
if
(
depth3x3
&&
param
->
Strides
()[
0
]
<
3
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
])
{
...
...
@@ -46,6 +50,9 @@ bool ConvKernel<CPU, float>::Init(ConvParam<CPU> *param) {
param
->
Strides
()[
0
]
==
2
&&
param
->
Paddings
()[
0
]
==
1
&&
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
])
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P1_FLOAT
;
}
else
if
(
depth5x5
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
param
->
Strides
()[
0
]
==
1
)
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE5x5S1_FLOAT
;
#ifndef __aarch64__
}
else
if
(
conv3x3
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
param
->
Dilations
()[
0
]
==
param
->
Dilations
()[
1
]
&&
...
...
@@ -87,6 +94,10 @@ void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> ¶m) {
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
nullptr
,
false
);
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE5x5S1_FLOAT
:
math
::
DepthwiseConv5x5S1
<
float
,
float
>
(
*
param
.
Input
(),
*
param
.
Filter
(),
param
.
Paddings
(),
param
.
Output
());
break
;
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
break
;
...
...
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
5337daea
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv3x3.h"
#include "operators/math/depthwise_conv5x5.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/pad.h"
...
...
src/operators/math/depthwise_conv5x5.cpp
0 → 100644
浏览文件 @
5337daea
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#if defined(__ARM_NEON__) && !defined(__aarch64__)
#include "operators/math/depthwise_conv5x5.h"
#include <arm_neon.h>
#include <iostream>
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
#ifndef __aarch64__
inline
float32x4_t
vpaddq_f32
(
float32x4_t
r0
,
float32x4_t
r1
)
{
float32x2_t
sum0
=
vpadd_f32
(
vget_low_f32
(
r0
),
vget_high_f32
(
r0
));
float32x2_t
sum1
=
vpadd_f32
(
vget_low_f32
(
r1
),
vget_high_f32
(
r1
));
return
vcombine_f32
(
sum0
,
sum1
);
}
#endif
template
<
int
Stride
=
1
>
inline
void
Depth5x5NormalRowLoadInput
(
const
float
*
input
,
float32x4_t
*
y
)
{
y
[
0
]
=
vld1q_f32
(
input
);
y
[
4
]
=
vld1q_f32
(
input
+
4
);
y
[
1
]
=
vextq_f32
(
y
[
0
],
y
[
4
],
1
);
y
[
2
]
=
vextq_f32
(
y
[
0
],
y
[
4
],
2
);
y
[
3
]
=
vextq_f32
(
y
[
0
],
y
[
4
],
3
);
}
template
<
>
inline
void
Depth5x5NormalRowLoadInput
<
2
>
(
const
float
*
input
,
float32x4_t
*
y
)
{
float32x4x2_t
x
=
vld2q_f32
(
input
);
y
[
0
]
=
x
.
val
[
0
];
y
[
1
]
=
x
.
val
[
1
];
y
[
2
]
=
vextq_f32
(
y
[
0
],
y
[
0
],
1
);
y
[
3
]
=
vextq_f32
(
y
[
1
],
y
[
1
],
1
);
y
[
4
]
=
vextq_f32
(
y
[
0
],
y
[
0
],
2
);
}
#define DEPTHWISE_CONV_NORMAL_BORDER(start, end) \
for (int w = start; w < end; ++w) { \
const int w_in_start = -padding_w + w * Stride_w; \
const int w_in_end = w_in_start + 5; \
const int w_start = w_in_start > 0 ? w_in_start : 0; \
const int w_end = w_in_end < input_w ? w_in_end : input_w; \
float value = 0; \
for (int h_in = h_start; h_in < h_end; ++h_in) { \
for (int w_in = w_start; w_in < w_end; ++w_in) { \
value += filter[(h_in - h_in_start) * 5 + (w_in - w_in_start)] * \
input[h_in * input_w + w_in]; \
} \
} \
output_ptr[w] = value; \
}
template
<
int
Stride_h
,
int
Stride_w
>
inline
void
DepthwiseConv5x5NormalRow
(
const
float
*
input
,
const
float
*
filter
,
const
int
h_output
,
const
int
input_h
,
const
int
input_w
,
const
int
padding_h
,
const
int
padding_w
,
const
int
output_w
,
float
*
output
,
float32x4_t
*
ker
,
float32_t
*
ker1
)
{
const
int
h_in_start
=
-
padding_h
+
h_output
*
Stride_h
;
const
int
h_in_end
=
h_in_start
+
5
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
h_end
=
h_in_end
<
input_h
?
h_in_end
:
input_h
;
int
valid_w_start
=
(
padding_w
+
Stride_w
-
1
)
/
Stride_w
;
int
valid_w_end
=
output_w
-
valid_w_start
;
float
*
output_ptr
=
output
+
h_output
*
output_w
;
// border left
DEPTHWISE_CONV_NORMAL_BORDER
(
0
,
valid_w_start
)
// middle
int
output_tiles
=
(
valid_w_end
-
valid_w_start
)
>>
2
;
float32x4_t
_sum
,
_x
[
5
];
// valid w
for
(
int
w
=
0
;
w
<
output_tiles
*
4
;
w
+=
4
)
{
_sum
=
vdupq_n_f32
(
0.
f
);
int
output_offset
=
valid_w_start
+
w
;
int
input_w_offset
=
output_offset
*
Stride_w
-
padding_w
;
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
int
index
=
h_in
-
h_in_start
;
Depth5x5NormalRowLoadInput
<
Stride_w
>
(
input
+
h_in
*
input_w
+
input_w_offset
,
_x
);
_sum
=
vmlaq_n_f32
(
_sum
,
_x
[
0
],
ker1
[
index
]);
_sum
=
vmlaq_lane_f32
(
_sum
,
_x
[
1
],
vget_low_f32
(
ker
[
index
]),
0
);
_sum
=
vmlaq_lane_f32
(
_sum
,
_x
[
2
],
vget_low_f32
(
ker
[
index
]),
1
);
_sum
=
vmlaq_lane_f32
(
_sum
,
_x
[
3
],
vget_high_f32
(
ker
[
index
]),
0
);
_sum
=
vmlaq_lane_f32
(
_sum
,
_x
[
4
],
vget_high_f32
(
ker
[
index
]),
1
);
}
vst1q_f32
(
output_ptr
+
output_offset
,
_sum
);
}
// remain valid w
int
remain
=
(
valid_w_end
-
valid_w_start
)
&
0x3
;
if
(
remain
>
0
)
{
_sum
=
vdupq_n_f32
(
0.
f
);
int
remain_start
=
valid_w_start
+
(
output_tiles
<<
2
);
int
input_w_offset
=
remain_start
*
Stride_w
-
padding_w
;
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
int
index
=
h_in
-
h_in_start
;
Depth5x5NormalRowLoadInput
<
Stride_w
>
(
input
+
h_in
*
input_w
+
input_w_offset
,
_x
);
_sum
=
vmlaq_n_f32
(
_sum
,
_x
[
0
],
ker1
[
index
]);
_sum
=
vmlaq_lane_f32
(
_sum
,
_x
[
1
],
vget_low_f32
(
ker
[
index
]),
0
);
_sum
=
vmlaq_lane_f32
(
_sum
,
_x
[
2
],
vget_low_f32
(
ker
[
index
]),
1
);
_sum
=
vmlaq_lane_f32
(
_sum
,
_x
[
3
],
vget_high_f32
(
ker
[
index
]),
0
);
_sum
=
vmlaq_lane_f32
(
_sum
,
_x
[
4
],
vget_high_f32
(
ker
[
index
]),
1
);
}
switch
(
remain
)
{
case
1
:
vst1_lane_f32
(
output_ptr
+
remain_start
,
vget_low_f32
(
_sum
),
0
);
break
;
case
2
:
vst1_f32
(
output_ptr
+
remain_start
,
vget_low_f32
(
_sum
));
break
;
case
3
:
vst1_f32
(
output_ptr
+
remain_start
,
vget_low_f32
(
_sum
));
vst1_lane_f32
(
output_ptr
+
remain_start
+
2
,
vget_high_f32
(
_sum
),
0
);
break
;
}
}
// border right
DEPTHWISE_CONV_NORMAL_BORDER
(
valid_w_end
,
output_w
)
}
template
<
>
void
DepthwiseConv5x5S1
<
float
,
float
>
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
)
{
const
float
*
input_data
=
input
.
data
<
float
>
();
const
float
*
filter_data
=
filter
.
data
<
float
>
();
float
*
out_data
=
output
->
mutable_data
<
float
>
();
int
input_h
=
input
.
dims
()[
2
];
int
input_w
=
input
.
dims
()[
3
];
int
output_h
=
output
->
dims
()[
2
];
int
output_w
=
output
->
dims
()[
3
];
int
padding_h
=
paddings
[
0
];
int
padding_w
=
paddings
[
1
];
int
image_size
=
input_h
*
input_w
;
int
out_image_size
=
output_h
*
output_w
;
int
valid_h_start
=
padding_h
;
int
valid_h_end
=
output_h
-
valid_h_start
;
int
valid_h
=
valid_h_end
-
valid_h_start
;
int
valid_w_start
=
padding_w
;
int
valid_w_end
=
output_w
-
valid_w_start
;
int
valid_w
=
valid_w_end
-
valid_w_start
;
DLOG
<<
"valid_h_start: "
<<
valid_h_start
;
DLOG
<<
"valid_h_end: "
<<
valid_h_end
;
DLOG
<<
"valid_w_start: "
<<
valid_w_start
;
DLOG
<<
"valid_w_end: "
<<
valid_w_end
;
for
(
int
g
=
0
;
g
<
input
.
dims
()[
1
];
++
g
)
{
const
float
*
input_ptr
=
input_data
+
g
*
image_size
;
const
float
*
filter_ptr
=
filter_data
+
g
*
25
;
float
*
output_ptr
=
out_data
+
g
*
out_image_size
;
const
float
*
filter_ptr0
=
filter_ptr
;
const
float
*
filter_ptr1
=
filter_ptr0
+
5
;
const
float
*
filter_ptr2
=
filter_ptr1
+
5
;
const
float
*
filter_ptr3
=
filter_ptr2
+
5
;
const
float
*
filter_ptr4
=
filter_ptr3
+
5
;
float32x4_t
_ker
[
7
];
float32_t
_ker1
[
5
]
=
{
*
filter_ptr0
,
*
filter_ptr1
,
*
filter_ptr2
,
*
filter_ptr3
,
*
filter_ptr4
};
_ker
[
0
]
=
vld1q_f32
(
filter_ptr0
+
1
);
_ker
[
1
]
=
vld1q_f32
(
filter_ptr1
+
1
);
_ker
[
2
]
=
vld1q_f32
(
filter_ptr2
+
1
);
_ker
[
3
]
=
vld1q_f32
(
filter_ptr3
+
1
);
_ker
[
4
]
=
vld1q_f32
(
filter_ptr4
+
1
);
_ker
[
5
]
=
vld1q_f32
(
_ker1
);
_ker
[
6
]
=
vld1q_f32
(
_ker1
+
4
);
// pad top
for
(
int
h
=
0
;
h
<
valid_h_start
;
++
h
)
{
DepthwiseConv5x5NormalRow
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
,
_ker
,
_ker1
);
}
// output 4x4
int
output_w_tiles
=
valid_w
/
4
;
int
output_w_remain
=
valid_w
-
output_w_tiles
*
4
;
for
(
int
h
=
valid_h_start
;
h
<
valid_h_end
-
1
;
h
+=
2
)
{
const
float
*
input_ptr0
=
input_ptr
+
(
h
-
padding_h
)
*
input_w
;
const
float
*
input_ptr1
=
input_ptr0
+
input_w
;
const
float
*
input_ptr2
=
input_ptr1
+
input_w
;
const
float
*
input_ptr3
=
input_ptr2
+
input_w
;
const
float
*
input_ptr4
=
input_ptr3
+
input_w
;
const
float
*
input_ptr5
=
input_ptr4
+
input_w
;
float
*
output_ptr0
=
output_ptr
+
h
*
output_w
;
float
*
output_ptr1
=
output_ptr0
+
output_w
;
// pad left
if
(
padding_w
)
{
float32x4_t
row0
=
vld1q_f32
(
input_ptr0
);
float32x4_t
row1
=
vld1q_f32
(
input_ptr1
);
float32x4_t
row2
=
vld1q_f32
(
input_ptr2
);
float32x4_t
row3
=
vld1q_f32
(
input_ptr3
);
float32x4_t
row4
=
vld1q_f32
(
input_ptr4
);
float32x4_t
row5
=
vld1q_f32
(
input_ptr5
);
float32x4_t
zero
=
vdupq_n_f32
(
0.
f
);
for
(
int
w
=
valid_w_start
-
1
;
w
>=
0
;
--
w
)
{
int
padding
=
padding_w
-
w
;
if
(
padding
>=
5
)
{
output_ptr0
[
w
]
=
0.
f
;
output_ptr1
[
w
]
=
0.
f
;
}
else
{
row0
=
vmulq_f32
(
row0
,
_ker
[
0
]);
row0
=
vmlaq_f32
(
row0
,
row1
,
_ker
[
1
]);
row0
=
vmlaq_f32
(
row0
,
row2
,
_ker
[
2
]);
row0
=
vmlaq_f32
(
row0
,
row3
,
_ker
[
3
]);
row0
=
vmlaq_f32
(
row0
,
row4
,
_ker
[
4
]);
row1
=
vmulq_f32
(
row1
,
_ker
[
0
]);
row1
=
vmlaq_f32
(
row1
,
row2
,
_ker
[
1
]);
row1
=
vmlaq_f32
(
row1
,
row3
,
_ker
[
2
]);
row1
=
vmlaq_f32
(
row1
,
row4
,
_ker
[
3
]);
row1
=
vmlaq_f32
(
row1
,
row5
,
_ker
[
4
]);
row0
=
vpaddq_f32
(
row0
,
row1
);
float32x2_t
sum
=
vpadd_f32
(
vget_low_f32
(
row0
),
vget_high_f32
(
row0
));
vst1_lane_f32
(
output_ptr0
+
w
,
sum
,
0
);
vst1_lane_f32
(
output_ptr1
+
w
,
sum
,
1
);
row0
=
vextq_f32
(
zero
,
row0
,
3
);
row1
=
vextq_f32
(
zero
,
row1
,
3
);
row2
=
vextq_f32
(
zero
,
row2
,
3
);
row3
=
vextq_f32
(
zero
,
row3
,
3
);
row4
=
vextq_f32
(
zero
,
row4
,
3
);
row5
=
vextq_f32
(
zero
,
row5
,
3
);
}
}
output_ptr0
+=
valid_w_start
;
output_ptr1
+=
valid_w_start
;
}
// valid
int
loop
=
output_w_tiles
;
asm
volatile
(
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #16
\n
"
"loop_2h4w_%=:
\n
"
"vld1.32 {d14-d17}, [%[input_ptr0]], r0
\n
"
"vld1.32 {d18-d21}, [%[input_ptr1]], r0
\n
"
"vld1.32 {d22-d25}, [%[input_ptr2]], r0
\n
"
"vmul.f32 q14, q7, %e[ker0][0]
\n
"
"vext.32 q13, q7, q8, #1
\n
"
"vmla.f32 q14, q13, %e[kr0][0]
\n
"
"vext.32 q13, q7, q8, #2
\n
"
"vmla.f32 q14, q13, %e[kr0][1]
\n
"
"vext.32 q13, q7, q8, #3
\n
"
"vmla.f32 q14, q13, %f[kr0][0]
\n
"
"vmla.f32 q14, q8, %f[kr0][1]
\n
"
"vmla.f32 q14, q9, %e[ker0][1]
\n
"
"vmul.f32 q15, q9, %e[ker0][0]
\n
"
"vext.32 q13, q9, q10, #1
\n
"
"vmla.f32 q14, q13, %e[kr1][0]
\n
"
"vmla.f32 q15, q13, %e[kr0][0]
\n
"
"vext.32 q13, q9, q10, #2
\n
"
"vmla.f32 q14, q13, %e[kr1][1]
\n
"
"vmla.f32 q15, q13, %e[kr0][1]
\n
"
"vext.32 q13, q9, q10, #3
\n
"
"vmla.f32 q14, q13, %f[kr1][0]
\n
"
"vmla.f32 q15, q13, %f[kr0][0]
\n
"
"vmla.f32 q14, q10, %f[kr1][1]
\n
"
"vmla.f32 q15, q10, %f[kr0][1]
\n
"
"vmla.f32 q14, q11, %f[ker0][0]
\n
"
"vmla.f32 q15, q11, %e[ker0][1]
\n
"
"vext.32 q13, q11, q12, #1
\n
"
"vmla.f32 q14, q13, %e[kr2][0]
\n
"
"vmla.f32 q15, q13, %e[kr1][0]
\n
"
"vext.32 q13, q11, q12, #2
\n
"
"vmla.f32 q14, q13, %e[kr2][1]
\n
"
"vmla.f32 q15, q13, %e[kr1][1]
\n
"
"vext.32 q13, q11, q12, #3
\n
"
"vmla.f32 q14, q13, %f[kr2][0]
\n
"
"vmla.f32 q15, q13, %f[kr1][0]
\n
"
"vmla.f32 q14, q12, %f[kr2][1]
\n
"
"vmla.f32 q15, q12, %f[kr1][1]
\n
"
"vld1.32 {d14-d17}, [%[input_ptr3]], r0
\n
"
"vld1.32 {d18-d21}, [%[input_ptr4]], r0
\n
"
"vld1.32 {d22-d25}, [%[input_ptr5]], r0
\n
"
"vmla.f32 q14, q7, %f[ker0][1]
\n
"
"vmla.f32 q15, q7, %f[ker0][0]
\n
"
"vext.32 q13, q7, q8, #1
\n
"
"vmla.f32 q14, q13, %e[kr3][0]
\n
"
"vmla.f32 q15, q13, %e[kr2][0]
\n
"
"vext.32 q13, q7, q8, #2
\n
"
"vmla.f32 q14, q13, %e[kr3][1]
\n
"
"vmla.f32 q15, q13, %e[kr2][1]
\n
"
"vext.32 q13, q7, q8, #3
\n
"
"vmla.f32 q14, q13, %f[kr3][0]
\n
"
"vmla.f32 q15, q13, %f[kr2][0]
\n
"
"vmla.f32 q14, q8, %f[kr3][1]
\n
"
"vmla.f32 q15, q8, %f[kr2][1]
\n
"
"vmla.f32 q14, q9, %e[ker1][0]
\n
"
"vmla.f32 q15, q9, %f[ker0][1]
\n
"
"vext.32 q13, q9, q10, #1
\n
"
"vmla.f32 q14, q13, %e[kr4][0]
\n
"
"vmla.f32 q15, q13, %e[kr3][0]
\n
"
"vext.32 q13, q9, q10, #2
\n
"
"vmla.f32 q14, q13, %e[kr4][1]
\n
"
"vmla.f32 q15, q13, %e[kr3][1]
\n
"
"vext.32 q13, q9, q10, #3
\n
"
"vmla.f32 q14, q13, %f[kr4][0]
\n
"
"vmla.f32 q15, q13, %f[kr3][0]
\n
"
"vmla.f32 q14, q10, %f[kr4][1]
\n
"
"vmla.f32 q15, q10, %f[kr3][1]
\n
"
"vmla.f32 q15, q11, %e[ker1][0]
\n
"
"vext.32 q13, q11, q12, #1
\n
"
"vmla.f32 q15, q13, %e[kr4][0]
\n
"
"vext.32 q13, q11, q12, #2
\n
"
"vmla.f32 q15, q13, %e[kr4][1]
\n
"
"vext.32 q13, q11, q12, #3
\n
"
"vmla.f32 q15, q13, %f[kr4][0]
\n
"
"vmla.f32 q15, q12, %f[kr4][1]
\n
"
// restore output
"vst1.32 {q14}, [%[output_ptr0]]!
\n
"
"vst1.32 {q15}, [%[output_ptr1]]!
\n
"
"subs %[loop], #1
\n
"
"bne loop_2h4w_%=
\n
"
"start_remain_%=:
\n
"
"cmp %[remain], #0
\n
"
"ble end_%=
\n
"
"mov r0, %[remain], lsl #2
\n
"
"vld1.32 {d14-d17}, [%[input_ptr0]], r0
\n
"
"vld1.32 {d18-d21}, [%[input_ptr1]], r0
\n
"
"vld1.32 {d22-d25}, [%[input_ptr2]], r0
\n
"
"vmul.f32 q14, q7, %e[ker0][0]
\n
"
"vext.32 q13, q7, q8, #1
\n
"
"vmla.f32 q14, q13, %e[kr0][0]
\n
"
"vext.32 q13, q7, q8, #2
\n
"
"vmla.f32 q14, q13, %e[kr0][1]
\n
"
"vext.32 q13, q7, q8, #3
\n
"
"vmla.f32 q14, q13, %f[kr0][0]
\n
"
"vmla.f32 q14, q8, %f[kr0][1]
\n
"
"vmla.f32 q14, q9, %e[ker0][1]
\n
"
"vmul.f32 q15, q9, %e[ker0][0]
\n
"
"vext.32 q13, q9, q10, #1
\n
"
"vmla.f32 q14, q13, %e[kr1][0]
\n
"
"vmla.f32 q15, q13, %e[kr0][0]
\n
"
"vext.32 q13, q9, q10, #2
\n
"
"vmla.f32 q14, q13, %e[kr1][1]
\n
"
"vmla.f32 q15, q13, %e[kr0][1]
\n
"
"vext.32 q13, q9, q10, #3
\n
"
"vmla.f32 q14, q13, %f[kr1][0]
\n
"
"vmla.f32 q15, q13, %f[kr0][0]
\n
"
"vmla.f32 q14, q10, %f[kr1][1]
\n
"
"vmla.f32 q15, q10, %f[kr0][1]
\n
"
"vmla.f32 q14, q11, %f[ker0][0]
\n
"
"vmla.f32 q15, q11, %e[ker0][1]
\n
"
"vext.32 q13, q11, q12, #1
\n
"
"vmla.f32 q14, q13, %e[kr2][0]
\n
"
"vmla.f32 q15, q13, %e[kr1][0]
\n
"
"vext.32 q13, q11, q12, #2
\n
"
"vmla.f32 q14, q13, %e[kr2][1]
\n
"
"vmla.f32 q15, q13, %e[kr1][1]
\n
"
"vext.32 q13, q11, q12, #3
\n
"
"vmla.f32 q14, q13, %f[kr2][0]
\n
"
"vmla.f32 q15, q13, %f[kr1][0]
\n
"
"vmla.f32 q14, q12, %f[kr2][1]
\n
"
"vmla.f32 q15, q12, %f[kr1][1]
\n
"
"vld1.32 {d14-d17}, [%[input_ptr3]], r0
\n
"
"vld1.32 {d18-d21}, [%[input_ptr4]], r0
\n
"
"vld1.32 {d22-d25}, [%[input_ptr5]], r0
\n
"
"vmla.f32 q14, q7, %f[ker0][1]
\n
"
"vmla.f32 q15, q7, %f[ker0][0]
\n
"
"vext.32 q13, q7, q8, #1
\n
"
"vmla.f32 q14, q13, %e[kr3][0]
\n
"
"vmla.f32 q15, q13, %e[kr2][0]
\n
"
"vext.32 q13, q7, q8, #2
\n
"
"vmla.f32 q14, q13, %e[kr3][1]
\n
"
"vmla.f32 q15, q13, %e[kr2][1]
\n
"
"vext.32 q13, q7, q8, #3
\n
"
"vmla.f32 q14, q13, %f[kr3][0]
\n
"
"vmla.f32 q15, q13, %f[kr2][0]
\n
"
"vmla.f32 q14, q8, %f[kr3][1]
\n
"
"vmla.f32 q15, q8, %f[kr2][1]
\n
"
"vmla.f32 q14, q9, %e[ker1][0]
\n
"
"vmla.f32 q15, q9, %f[ker0][1]
\n
"
"vext.32 q13, q9, q10, #1
\n
"
"vmla.f32 q14, q13, %e[kr4][0]
\n
"
"vmla.f32 q15, q13, %e[kr3][0]
\n
"
"vext.32 q13, q9, q10, #2
\n
"
"vmla.f32 q14, q13, %e[kr4][1]
\n
"
"vmla.f32 q15, q13, %e[kr3][1]
\n
"
"vext.32 q13, q9, q10, #3
\n
"
"vmla.f32 q14, q13, %f[kr4][0]
\n
"
"vmla.f32 q15, q13, %f[kr3][0]
\n
"
"vmla.f32 q14, q10, %f[kr4][1]
\n
"
"vmla.f32 q15, q10, %f[kr3][1]
\n
"
"vmla.f32 q15, q11, %e[ker1][0]
\n
"
"vext.32 q13, q11, q12, #1
\n
"
"vmla.f32 q15, q13, %e[kr4][0]
\n
"
"vext.32 q13, q11, q12, #2
\n
"
"vmla.f32 q15, q13, %e[kr4][1]
\n
"
"vext.32 q13, q11, q12, #3
\n
"
"vmla.f32 q15, q13, %f[kr4][0]
\n
"
"vmla.f32 q15, q12, %f[kr4][1]
\n
"
"cmp %[remain], #2
\n
"
"blt store_2h1w_%=
\n
"
"vst1.32 {d28}, [%[output_ptr0]]!
\n
"
"vst1.32 {d30}, [%[output_ptr1]]!
\n
"
"cmp %[remain], #3
\n
"
"blt end_%=
\n
"
"vst1.32 {d29[0]}, [%[output_ptr0]]!
\n
"
"vst1.32 {d31[0]}, [%[output_ptr1]]!
\n
"
"b end_%=
\n
"
"store_2h1w_%=:
\n
"
"vst1.32 {d28[0]}, [%[output_ptr0]]!
\n
"
"vst1.32 {d30[0]}, [%[output_ptr1]]!
\n
"
"end_%=:
\n
"
:
[
input_ptr0
]
"+r"
(
input_ptr0
),
[
input_ptr1
]
"+r"
(
input_ptr1
),
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
input_ptr3
]
"+r"
(
input_ptr3
),
[
input_ptr4
]
"+r"
(
input_ptr4
),
[
input_ptr5
]
"+r"
(
input_ptr5
),
[
output_ptr0
]
"+r"
(
output_ptr0
),
[
output_ptr1
]
"+r"
(
output_ptr1
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
output_w_remain
),
[
kr0
]
"w"
(
_ker
[
0
]),
[
kr1
]
"w"
(
_ker
[
1
]),
[
kr2
]
"w"
(
_ker
[
2
]),
[
kr3
]
"w"
(
_ker
[
3
]),
[
kr4
]
"w"
(
_ker
[
4
]),
[
ker0
]
"w"
(
_ker
[
5
]),
[
ker1
]
"w"
(
_ker
[
6
])
:
"cc"
,
"memory"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
,
"r0"
);
// pad right
if
(
padding_w
)
{
float32x4_t
row0
=
vld1q_f32
(
input_ptr0
);
float32x4_t
row1
=
vld1q_f32
(
input_ptr1
);
float32x4_t
row2
=
vld1q_f32
(
input_ptr2
);
float32x4_t
row3
=
vld1q_f32
(
input_ptr3
);
float32x4_t
row4
=
vld1q_f32
(
input_ptr4
);
float32x4_t
row5
=
vld1q_f32
(
input_ptr5
);
float32x4_t
zero
=
vdupq_n_f32
(
0.
f
);
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
int
padding
=
w
+
5
-
(
padding_w
+
input_w
);
if
(
padding
>=
5
)
{
*
output_ptr0
=
0.
f
;
*
output_ptr1
=
0.
f
;
}
else
{
int
iw
=
w
-
valid_w_end
;
float
sum0
=
input_ptr0
[
iw
]
*
filter_ptr0
[
0
]
+
input_ptr1
[
iw
]
*
filter_ptr1
[
0
]
+
input_ptr2
[
iw
]
*
filter_ptr2
[
0
]
+
input_ptr3
[
iw
]
*
filter_ptr3
[
0
]
+
input_ptr4
[
iw
]
*
filter_ptr4
[
0
];
float
sum1
=
input_ptr1
[
iw
]
*
filter_ptr0
[
0
]
+
input_ptr2
[
iw
]
*
filter_ptr1
[
0
]
+
input_ptr3
[
iw
]
*
filter_ptr2
[
0
]
+
input_ptr4
[
iw
]
*
filter_ptr3
[
0
]
+
input_ptr5
[
iw
]
*
filter_ptr4
[
0
];
row0
=
vextq_f32
(
row0
,
zero
,
1
);
row1
=
vextq_f32
(
row1
,
zero
,
1
);
row2
=
vextq_f32
(
row2
,
zero
,
1
);
row3
=
vextq_f32
(
row3
,
zero
,
1
);
row4
=
vextq_f32
(
row4
,
zero
,
1
);
row5
=
vextq_f32
(
row5
,
zero
,
1
);
row0
=
vmulq_f32
(
row0
,
_ker
[
0
]);
row0
=
vmlaq_f32
(
row0
,
row1
,
_ker
[
1
]);
row0
=
vmlaq_f32
(
row0
,
row2
,
_ker
[
2
]);
row0
=
vmlaq_f32
(
row0
,
row3
,
_ker
[
3
]);
row0
=
vmlaq_f32
(
row0
,
row4
,
_ker
[
4
]);
row1
=
vmulq_f32
(
row1
,
_ker
[
0
]);
row1
=
vmlaq_f32
(
row1
,
row2
,
_ker
[
1
]);
row1
=
vmlaq_f32
(
row1
,
row3
,
_ker
[
2
]);
row1
=
vmlaq_f32
(
row1
,
row4
,
_ker
[
3
]);
row1
=
vmlaq_f32
(
row1
,
row5
,
_ker
[
4
]);
row0
=
vpaddq_f32
(
row0
,
row1
);
float32x2_t
sum
=
vpadd_f32
(
vget_low_f32
(
row0
),
vget_high_f32
(
row0
));
sum0
+=
vget_lane_f32
(
sum
,
0
);
sum1
+=
vget_lane_f32
(
sum
,
1
);
*
output_ptr0
=
sum0
;
*
output_ptr1
=
sum1
;
}
output_ptr0
++
;
output_ptr1
++
;
}
}
}
// remain height
int
start_h
=
valid_h_start
+
(
valid_h
&
0xfffe
);
if
(
start_h
<
valid_h_end
)
{
const
float
*
input_ptr0
=
input_ptr
+
(
start_h
-
padding_h
)
*
input_w
;
const
float
*
input_ptr1
=
input_ptr0
+
input_w
;
const
float
*
input_ptr2
=
input_ptr1
+
input_w
;
const
float
*
input_ptr3
=
input_ptr2
+
input_w
;
const
float
*
input_ptr4
=
input_ptr3
+
input_w
;
float
*
output_ptr0
=
output_ptr
+
start_h
*
output_w
;
// pad left
if
(
padding_w
)
{
float32x4_t
row0
=
vld1q_f32
(
input_ptr0
);
float32x4_t
row1
=
vld1q_f32
(
input_ptr1
);
float32x4_t
row2
=
vld1q_f32
(
input_ptr2
);
float32x4_t
row3
=
vld1q_f32
(
input_ptr3
);
float32x4_t
row4
=
vld1q_f32
(
input_ptr4
);
float32x4_t
zero
=
vdupq_n_f32
(
0.
f
);
for
(
int
w
=
valid_w_start
-
1
;
w
>=
0
;
--
w
)
{
int
padding
=
padding_w
-
w
;
if
(
padding
>=
5
)
{
output_ptr0
[
w
]
=
0.
f
;
}
else
{
row0
=
vmulq_f32
(
row0
,
_ker
[
0
]);
row0
=
vmlaq_f32
(
row0
,
row1
,
_ker
[
1
]);
row0
=
vmlaq_f32
(
row0
,
row2
,
_ker
[
2
]);
row0
=
vmlaq_f32
(
row0
,
row3
,
_ker
[
3
]);
row0
=
vmlaq_f32
(
row0
,
row4
,
_ker
[
4
]);
float32x2_t
sum
=
vpadd_f32
(
vget_low_f32
(
row0
),
vget_high_f32
(
row0
));
sum
=
vpadd_f32
(
sum
,
sum
);
vst1_lane_f32
(
output_ptr0
+
w
,
sum
,
0
);
row0
=
vextq_f32
(
zero
,
row0
,
3
);
row1
=
vextq_f32
(
zero
,
row1
,
3
);
row2
=
vextq_f32
(
zero
,
row2
,
3
);
row3
=
vextq_f32
(
zero
,
row3
,
3
);
row4
=
vextq_f32
(
zero
,
row4
,
3
);
}
}
output_ptr0
+=
valid_w_start
;
}
// valid
int
loop
=
output_w_tiles
;
asm
volatile
(
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #16
\n
"
"loop_1h4w_%=:
\n
"
"vld1.32 {d14-d17}, [%[input_ptr0]], r0
\n
"
"vld1.32 {d18-d21}, [%[input_ptr1]], r0
\n
"
"vld1.32 {d22-d25}, [%[input_ptr2]], r0
\n
"
"vmul.f32 q14, q7, %e[ker0][0]
\n
"
"vext.32 q13, q7, q8, #1
\n
"
"vmla.f32 q14, q13, %e[kr0][0]
\n
"
"vext.32 q13, q7, q8, #2
\n
"
"vmla.f32 q14, q13, %e[kr0][1]
\n
"
"vext.32 q13, q7, q8, #3
\n
"
"vmla.f32 q14, q13, %f[kr0][0]
\n
"
"vmla.f32 q14, q8, %f[kr0][1]
\n
"
"vmla.f32 q14, q9, %e[ker0][1]
\n
"
"vext.32 q13, q9, q10, #1
\n
"
"vmla.f32 q14, q13, %e[kr1][0]
\n
"
"vext.32 q13, q9, q10, #2
\n
"
"vmla.f32 q14, q13, %e[kr1][1]
\n
"
"vext.32 q13, q9, q10, #3
\n
"
"vmla.f32 q14, q13, %f[kr1][0]
\n
"
"vmla.f32 q14, q10, %f[kr1][1]
\n
"
"vmla.f32 q14, q11, %f[ker0][0]
\n
"
"vext.32 q13, q11, q12, #1
\n
"
"vmla.f32 q14, q13, %e[kr2][0]
\n
"
"vext.32 q13, q11, q12, #2
\n
"
"vmla.f32 q14, q13, %e[kr2][1]
\n
"
"vext.32 q13, q11, q12, #3
\n
"
"vmla.f32 q14, q13, %f[kr2][0]
\n
"
"vmla.f32 q14, q12, %f[kr2][1]
\n
"
"vld1.32 {d14-d17}, [%[input_ptr3]], r0
\n
"
"vld1.32 {d18-d21}, [%[input_ptr4]], r0
\n
"
"vmla.f32 q14, q7, %f[ker0][1]
\n
"
"vext.32 q13, q7, q8, #1
\n
"
"vmla.f32 q14, q13, %e[kr3][0]
\n
"
"vext.32 q13, q7, q8, #2
\n
"
"vmla.f32 q14, q13, %e[kr3][1]
\n
"
"vext.32 q13, q7, q8, #3
\n
"
"vmla.f32 q14, q13, %f[kr3][0]
\n
"
"vmla.f32 q14, q8, %f[kr3][1]
\n
"
"vmla.f32 q14, q9, %e[ker1][0]
\n
"
"vext.32 q13, q9, q10, #1
\n
"
"vmla.f32 q14, q13, %e[kr4][0]
\n
"
"vext.32 q13, q9, q10, #2
\n
"
"vmla.f32 q14, q13, %e[kr4][1]
\n
"
"vext.32 q13, q9, q10, #3
\n
"
"vmla.f32 q14, q13, %f[kr4][0]
\n
"
"vmla.f32 q14, q10, %f[kr4][1]
\n
"
// restore output
"vst1.32 {q14}, [%[output_ptr0]]!
\n
"
"subs %[loop], #1
\n
"
"bne loop_1h4w_%=
\n
"
"start_remain_%=:
\n
"
"cmp %[remain], #0
\n
"
"ble end_%=
\n
"
"mov r0, %[remain], lsl #2
\n
"
"vld1.32 {d14-d17}, [%[input_ptr0]], r0
\n
"
"vld1.32 {d18-d21}, [%[input_ptr1]], r0
\n
"
"vld1.32 {d22-d25}, [%[input_ptr2]], r0
\n
"
"vmul.f32 q14, q7, %e[ker0][0]
\n
"
"vext.32 q13, q7, q8, #1
\n
"
"vmla.f32 q14, q13, %e[kr0][0]
\n
"
"vext.32 q13, q7, q8, #2
\n
"
"vmla.f32 q14, q13, %e[kr0][1]
\n
"
"vext.32 q13, q7, q8, #3
\n
"
"vmla.f32 q14, q13, %f[kr0][0]
\n
"
"vmla.f32 q14, q8, %f[kr0][1]
\n
"
"vmla.f32 q14, q9, %e[ker0][1]
\n
"
"vext.32 q13, q9, q10, #1
\n
"
"vmla.f32 q14, q13, %e[kr1][0]
\n
"
"vext.32 q13, q9, q10, #2
\n
"
"vmla.f32 q14, q13, %e[kr1][1]
\n
"
"vext.32 q13, q9, q10, #3
\n
"
"vmla.f32 q14, q13, %f[kr1][0]
\n
"
"vmla.f32 q14, q10, %f[kr1][1]
\n
"
"vmla.f32 q14, q11, %f[ker0][0]
\n
"
"vext.32 q13, q11, q12, #1
\n
"
"vmla.f32 q14, q13, %e[kr2][0]
\n
"
"vext.32 q13, q11, q12, #2
\n
"
"vmla.f32 q14, q13, %e[kr2][1]
\n
"
"vext.32 q13, q11, q12, #3
\n
"
"vmla.f32 q14, q13, %f[kr2][0]
\n
"
"vmla.f32 q14, q12, %f[kr2][1]
\n
"
"vld1.32 {d14-d17}, [%[input_ptr3]], r0
\n
"
"vld1.32 {d18-d21}, [%[input_ptr4]], r0
\n
"
"vmla.f32 q14, q7, %f[ker0][1]
\n
"
"vext.32 q13, q7, q8, #1
\n
"
"vmla.f32 q14, q13, %e[kr3][0]
\n
"
"vext.32 q13, q7, q8, #2
\n
"
"vmla.f32 q14, q13, %e[kr3][1]
\n
"
"vext.32 q13, q7, q8, #3
\n
"
"vmla.f32 q14, q13, %f[kr3][0]
\n
"
"vmla.f32 q14, q8, %f[kr3][1]
\n
"
"vmla.f32 q14, q9, %e[ker1][0]
\n
"
"vext.32 q13, q9, q10, #1
\n
"
"vmla.f32 q14, q13, %e[kr4][0]
\n
"
"vext.32 q13, q9, q10, #2
\n
"
"vmla.f32 q14, q13, %e[kr4][1]
\n
"
"vext.32 q13, q9, q10, #3
\n
"
"vmla.f32 q14, q13, %f[kr4][0]
\n
"
"vmla.f32 q14, q10, %f[kr4][1]
\n
"
"cmp %[remain], #2
\n
"
"blt store_1h1w_%=
\n
"
"vst1.32 {d28}, [%[output_ptr0]]!
\n
"
"cmp %[remain], #3
\n
"
"blt end_%=
\n
"
"vst1.32 {d29[0]}, [%[output_ptr0]]!
\n
"
"b end_%=
\n
"
"store_1h1w_%=:
\n
"
"vst1.32 {d28[0]}, [%[output_ptr0]]!
\n
"
"end_%=:
\n
"
:
[
input_ptr0
]
"+r"
(
input_ptr0
),
[
input_ptr1
]
"+r"
(
input_ptr1
),
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
input_ptr3
]
"+r"
(
input_ptr3
),
[
input_ptr4
]
"+r"
(
input_ptr4
),
[
output_ptr0
]
"+r"
(
output_ptr0
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
output_w_remain
),
[
kr0
]
"w"
(
_ker
[
0
]),
[
kr1
]
"w"
(
_ker
[
1
]),
[
kr2
]
"w"
(
_ker
[
2
]),
[
kr3
]
"w"
(
_ker
[
3
]),
[
kr4
]
"w"
(
_ker
[
4
]),
[
ker0
]
"w"
(
_ker
[
5
]),
[
ker1
]
"w"
(
_ker
[
6
])
:
"cc"
,
"memory"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
,
"r0"
);
// pad right
if
(
padding_w
)
{
float32x4_t
row0
=
vld1q_f32
(
input_ptr0
);
float32x4_t
row1
=
vld1q_f32
(
input_ptr1
);
float32x4_t
row2
=
vld1q_f32
(
input_ptr2
);
float32x4_t
row3
=
vld1q_f32
(
input_ptr3
);
float32x4_t
row4
=
vld1q_f32
(
input_ptr4
);
float32x4_t
zero
=
vdupq_n_f32
(
0.
f
);
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
int
padding
=
w
+
5
-
(
padding_w
+
input_w
);
if
(
padding
>=
5
)
{
*
output_ptr0
=
0.
f
;
}
else
{
int
iw
=
w
-
valid_w_end
;
float
sum0
=
input_ptr0
[
iw
]
*
filter_ptr0
[
0
]
+
input_ptr1
[
iw
]
*
filter_ptr1
[
0
]
+
input_ptr2
[
iw
]
*
filter_ptr2
[
0
]
+
input_ptr3
[
iw
]
*
filter_ptr3
[
0
]
+
input_ptr4
[
iw
]
*
filter_ptr4
[
0
];
row0
=
vextq_f32
(
row0
,
zero
,
1
);
row1
=
vextq_f32
(
row1
,
zero
,
1
);
row2
=
vextq_f32
(
row2
,
zero
,
1
);
row3
=
vextq_f32
(
row3
,
zero
,
1
);
row4
=
vextq_f32
(
row4
,
zero
,
1
);
row0
=
vmulq_f32
(
row0
,
_ker
[
0
]);
row0
=
vmlaq_f32
(
row0
,
row1
,
_ker
[
1
]);
row0
=
vmlaq_f32
(
row0
,
row2
,
_ker
[
2
]);
row0
=
vmlaq_f32
(
row0
,
row3
,
_ker
[
3
]);
row0
=
vmlaq_f32
(
row0
,
row4
,
_ker
[
4
]);
float32x2_t
sum
=
vpadd_f32
(
vget_low_f32
(
row0
),
vget_high_f32
(
row0
));
sum
=
vpadd_f32
(
sum
,
sum
);
sum0
+=
vget_lane_f32
(
sum
,
0
);
*
output_ptr0
=
sum0
;
}
output_ptr0
++
;
}
}
}
// pad bottom
for
(
int
h
=
valid_h_end
;
h
<
output_h
;
++
h
)
{
DepthwiseConv5x5NormalRow
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
,
_ker
,
_ker1
);
}
}
}
template
<
>
void
DepthwiseConv5x5S2
<
float
,
float
>
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
)
{}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif // __ARM_NEON__
src/operators/math/depthwise_conv5x5.h
0 → 100644
浏览文件 @
5337daea
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "framework/tensor.h"
#include "operators/math/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
// TODO(hjchen2) need to be implemented
// template<typename Itype, typename Otype>
// void DepthwiseConv5x5(const framework::Tensor *input,
// const framework::Tensor *filter,
// const std::vector<int> &strides,
// const std::vector<int> &paddings,
// framework::Tensor *output);
template
<
typename
Itype
,
typename
Otype
>
void
DepthwiseConv5x5S1
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
);
template
<
typename
Itype
,
typename
Otype
>
void
DepthwiseConv5x5S2
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/op_param.h
浏览文件 @
5337daea
...
...
@@ -424,6 +424,8 @@ class ConvParam : public OpParam {
EXEC_DEPTHWISE3x3_FLOAT
,
EXEC_WINOGRAD3X3_FLOAT
,
EXEC_WINOGRAD5X5_FLOAT
,
EXEC_DEPTHWISE5x5S1_FLOAT
,
EXEC_DEPTHWISE5x5S2_FLOAT
,
EXEC_GEMM_INT8
,
EXEC_DEPTHWISE3x3_INT8
,
};
...
...
@@ -2598,8 +2600,8 @@ class QuantizeParam : public OpParam {
// if offine scale or not
bool
offline_
=
false
;
// round method type
//
RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
RoundType
round_type_
=
ROUND_NEAREST_TOWARDS_ZERO
;
RoundType
round_type_
=
ROUND_NEAREST_AWAY_ZERO
;
//
RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录