Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
523bbcca
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
523bbcca
编写于
12月 17, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix winograd if input height != width
上级
ce169c24
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
385 addition
and
66 deletion
+385
-66
src/operators/math/winograd/winograd_transform_f6k3.cpp
src/operators/math/winograd/winograd_transform_f6k3.cpp
+18
-33
src/operators/math/winograd/winograd_transform_f6k3_arm64.cpp
...operators/math/winograd/winograd_transform_f6k3_arm64.cpp
+367
-33
未找到文件。
src/operators/math/winograd/winograd_transform_f6k3.cpp
浏览文件 @
523bbcca
...
@@ -327,8 +327,8 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
...
@@ -327,8 +327,8 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
int
channel
=
input
.
dims
()[
1
];
int
channel
=
input
.
dims
()[
1
];
int
height
=
input
.
dims
()[
2
];
int
height
=
input
.
dims
()[
2
];
int
width
=
input
.
dims
()[
3
];
int
width
=
input
.
dims
()[
3
];
int
h_tiles
=
(
height
+
3
)
/
6
;
// (height -
8 + 5 + 6
) / 6
int
h_tiles
=
(
height
+
3
)
/
6
;
// (height -
2 + 5
) / 6
int
w_tiles
=
(
width
+
3
)
/
6
;
// (width -
8 + 5 + 6
) / 6
int
w_tiles
=
(
width
+
3
)
/
6
;
// (width -
2 + 5
) / 6
int
tiles
=
(
h_tiles
*
w_tiles
+
7
)
/
8
;
int
tiles
=
(
h_tiles
*
w_tiles
+
7
)
/
8
;
framework
::
DDim
transformed_shape
=
framework
::
DDim
transformed_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
tiles
,
64
,
channel
,
8
});
framework
::
make_ddim
(
std
::
vector
<
int
>
{
tiles
,
64
,
channel
,
8
});
...
@@ -336,16 +336,10 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
...
@@ -336,16 +336,10 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
memset
(
outptr
,
0
,
output
->
numel
()
*
sizeof
(
float
));
memset
(
outptr
,
0
,
output
->
numel
()
*
sizeof
(
float
));
const
float
*
inptr
=
input
.
data
<
float
>
();
const
float
*
inptr
=
input
.
data
<
float
>
();
int
inter_h
=
(
height
-
2
)
/
6
;
height
=
h_tiles
*
6
+
2
;
int
inter_w
=
(
width
-
2
)
/
6
;
width
=
w_tiles
*
6
+
2
;
int
remain_h
=
height
-
(
inter_h
*
6
);
int
remain_w
=
width
-
(
inter_w
*
6
);
framework
::
Tensor
input_pad
;
framework
::
Tensor
input_pad
;
if
(
remain_h
>
2
||
remain_w
>
2
)
{
if
(
height
>
input
.
dims
()[
2
]
||
width
>
input
.
dims
()[
3
])
{
inter_h
+=
(
remain_h
>
2
);
inter_w
+=
(
remain_w
>
2
);
height
=
(
inter_h
-
1
)
*
6
+
8
;
width
=
(
inter_w
-
1
)
*
6
+
8
;
framework
::
DDim
input_shape
=
framework
::
DDim
input_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
1
,
channel
,
height
,
width
});
framework
::
make_ddim
(
std
::
vector
<
int
>
{
1
,
channel
,
height
,
width
});
PadFunctor
<
CPU
,
float
>
pad
;
PadFunctor
<
CPU
,
float
>
pad
;
...
@@ -878,8 +872,8 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
...
@@ -878,8 +872,8 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
framework
::
Tensor
*
output
)
{
framework
::
Tensor
*
output
)
{
// weight shape is [out_channel/4, 64, in_channel, 4],
// weight shape is [out_channel/4, 64, in_channel, 4],
// input shape is [hw/8, 64, in_channel, 8]
// input shape is [hw/8, 64, in_channel, 8]
int
in_channel
=
input
.
dims
()[
2
];
int
tiles
=
input
.
dims
()[
0
];
int
tiles
=
input
.
dims
()[
0
];
int
in_channel
=
input
.
dims
()[
2
];
int
out_channel
=
weight
.
dims
()[
0
];
int
out_channel
=
weight
.
dims
()[
0
];
// compute U*V first
// compute U*V first
...
@@ -887,7 +881,6 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
...
@@ -887,7 +881,6 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
framework
::
DDim
shape
=
framework
::
DDim
shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
out_channel
,
tiles
,
64
,
32
});
framework
::
make_ddim
(
std
::
vector
<
int
>
{
out_channel
,
tiles
,
64
,
32
});
float
*
uv_trans_ptr
=
uv_trans
.
mutable_data
<
float
>
(
shape
);
float
*
uv_trans_ptr
=
uv_trans
.
mutable_data
<
float
>
(
shape
);
memset
(
uv_trans_ptr
,
0
,
uv_trans
.
numel
()
*
sizeof
(
float
));
const
float
*
input_ptr
=
input
.
data
<
float
>
();
const
float
*
input_ptr
=
input
.
data
<
float
>
();
const
float
*
weight_ptr
=
weight
.
data
<
float
>
();
const
float
*
weight_ptr
=
weight
.
data
<
float
>
();
...
@@ -910,7 +903,8 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
...
@@ -910,7 +903,8 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
"veor q14, q14, q14
\n
"
"veor q14, q14, q14
\n
"
"veor q15, q15, q15
\n
"
"veor q15, q15, q15
\n
"
"b store_res_%=
\n
"
"cmp %[inter_channel], #0
\n
"
"ble loop_1c_%=
\n
"
// loop 2 channels
// loop 2 channels
"loop_2c_%=:
\n
"
"loop_2c_%=:
\n
"
"vld1.32 {d0-d3}, [%[w_ptr]]!
\n
"
"vld1.32 {d0-d3}, [%[w_ptr]]!
\n
"
...
@@ -936,13 +930,14 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
...
@@ -936,13 +930,14 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
"subs %[inter_channel], #1
\n
"
"subs %[inter_channel], #1
\n
"
"bne loop_2c_%=
\n
"
"bne loop_2c_%=
\n
"
"mov pc, lr
\n
"
// loop 1 channel
// loop 1 channel
"loop_c_%=:
\n
"
"loop_1c_%=:
\n
"
"cmp %[remain_channel], #0
\n
"
"ble store_res_%=
\n
"
"vld1.32 {d0-d1}, [%[w_ptr]]!
\n
"
"vld1.32 {d0-d1}, [%[w_ptr]]!
\n
"
"vld1.32 {d4-d7}, [%[in_ptr]]!
\n
"
"vld1.32 {d4-d7}, [%[in_ptr]]!
\n
"
"vmla.f32 q8, q2, d0[0]
\n
"
"vmla.f32 q8, q2, d0[0]
\n
"
"vmla.f32 q9, q3, d0[0]
\n
"
"vmla.f32 q9, q3, d0[0]
\n
"
"vmla.f32 q10, q2, d0[1]
\n
"
"vmla.f32 q10, q2, d0[1]
\n
"
...
@@ -952,28 +947,16 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
...
@@ -952,28 +947,16 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
"vmla.f32 q14, q2, d1[1]
\n
"
"vmla.f32 q14, q2, d1[1]
\n
"
"vmla.f32 q15, q3, d1[1]
\n
"
"vmla.f32 q15, q3, d1[1]
\n
"
"subs %[remain_channel], #1
\n
"
"bne loop_c_%=
\n
"
"mov pc, lr
\n
"
"store_res_%=:
\n
"
"store_res_%=:
\n
"
"cmp %[inter_channel], #0
\n
"
"it gt
\n
"
"blgt loop_2c_%=
\n
"
"cmp %[remain_channel], #0
\n
"
"it gt
\n
"
"blgt loop_c_%=
\n
"
"vst1.32 {d16-d19}, [%[uv_ptr]]!
\n
"
"vst1.32 {d16-d19}, [%[uv_ptr]]!
\n
"
"vst1.32 {d20-d23}, [%[uv_ptr]]!
\n
"
"vst1.32 {d20-d23}, [%[uv_ptr]]!
\n
"
"vst1.32 {d24-d27}, [%[uv_ptr]]!
\n
"
"vst1.32 {d24-d27}, [%[uv_ptr]]!
\n
"
"vst1.32 {d28-d31}, [%[uv_ptr]]!
\n
"
"vst1.32 {d28-d31}, [%[uv_ptr]]!
\n
"
:
[
w_ptr
]
"+r"
(
w_ptr
),
[
in_ptr
]
"+r"
(
in_ptr
),
[
uv_ptr
]
"+r"
(
uv_ptr
),
:
[
w_ptr
]
"+r"
(
w_ptr
),
[
in_ptr
]
"+r"
(
in_ptr
),
[
uv_ptr
]
"+r"
(
uv_ptr
),
[
remain_channel
]
"+r"
(
remain_channel
),
[
inter_channel
]
"+r"
(
inter_channel
)
[
inter_channel
]
"+r"
(
inter_channel
)
:
:
[
remain_channel
]
"r"
(
remain_channel
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
,
"pc"
,
"lr"
);
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
}
}
}
}
}
}
...
@@ -1223,8 +1206,10 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
...
@@ -1223,8 +1206,10 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
size_t
offset
=
(
oc
*
out_h
+
6
*
tile_h
)
*
out_w
+
6
*
tile_w
;
size_t
offset
=
(
oc
*
out_h
+
6
*
tile_h
)
*
out_w
+
6
*
tile_w
;
float
*
out_ptr
=
output_ptr
+
offset
;
float
*
out_ptr
=
output_ptr
+
offset
;
int
remain_row
=
(
tile_h
<
h_tiles
-
1
)
?
6
:
remain_h
;
int
remain_row
=
out_h
-
6
*
tile_h
;
int
remain_col
=
(
tile_w
<
w_tiles
-
1
)
?
6
:
remain_w
;
int
remain_col
=
out_w
-
6
*
tile_w
;
remain_row
=
(
remain_row
>
6
)
?
6
:
remain_row
;
remain_col
=
(
remain_col
>
6
)
?
6
:
remain_col
;
for
(
int
i
=
0
;
i
<
remain_row
;
++
i
,
out_ptr
+=
out_w
)
{
for
(
int
i
=
0
;
i
<
remain_row
;
++
i
,
out_ptr
+=
out_w
)
{
memcpy
(
out_ptr
,
output_tmp
+
i
*
6
,
remain_col
*
sizeof
(
float
));
memcpy
(
out_ptr
,
output_tmp
+
i
*
6
,
remain_col
*
sizeof
(
float
));
}
}
...
...
src/operators/math/winograd/winograd_transform_f6k3_arm64.cpp
浏览文件 @
523bbcca
...
@@ -12,14 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,14 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
//
Inspired by https://arxiv.org/abs/1509.09308 and refered from nnpack and ncnn
//
We refer https://github.com/andravin/wincnn to access the winograd transform
//
project.
//
matrixs
#ifdef CONV_OP
#ifdef CONV_OP
#ifdef __aarch64__
#ifdef __aarch64__
#include "operators/math/pad.h"
#include "operators/math/winograd/winograd_transform.h"
#include "operators/math/winograd/winograd_transform.h"
namespace
paddle_mobile
{
namespace
paddle_mobile
{
...
@@ -29,46 +27,382 @@ namespace math {
...
@@ -29,46 +27,382 @@ namespace math {
template
<
>
template
<
>
void
winograd_transform_weight
<
8
,
3
>
(
const
framework
::
Tensor
&
weight
,
void
winograd_transform_weight
<
8
,
3
>
(
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
framework
::
Tensor
*
output
)
{
/*
// weight shape is [out_channel, in_channel, kernel_h, kernel_w]
* w0 = g0
int
out_channel
=
weight
.
dims
()[
0
];
* w1 = ((g0 + g2) + g1) * (-2.0 / 9)
int
in_channel
=
weight
.
dims
()[
1
];
* w2 = ((g0 + g2) - g1) * (-2.0 / 9)
// reshape and alloc transformed weight
* w3 = ((g0 + 4 * g2) + 2 * g1) * (1.0 / 90)
framework
::
DDim
transformed_shape
=
* w4 = ((g0 + 4 * g2) - 2 * g1) * (1.0 / 90)
framework
::
make_ddim
(
std
::
vector
<
int
>
{
out_channel
,
in_channel
,
64
});
* w5 = ((g2 + 4 * g0) + 2 * g1) * (1.0 / 180)
float
*
outptr
=
output
->
mutable_data
<
float
>
(
transformed_shape
);
* w6 = ((g2 + 4 * g0) - 2 * g1) * (1.0 / 180)
const
float
*
inptr
=
weight
.
data
<
float
>
();
* w7 = g2
for
(
int
oc
=
0
;
oc
<
out_channel
;
++
oc
)
{
*/
for
(
int
ic
=
0
;
ic
<
in_channel
;
++
ic
)
{
// TODO(hjchen2)
size_t
offset
=
oc
*
in_channel
+
ic
;
PADDLE_MOBILE_THROW_EXCEPTION
(
float
*
kout
=
outptr
+
offset
*
64
;
"Winograd for arm v8 has not been implemented."
);
const
float
*
k
=
inptr
+
offset
*
9
;
float
gw
[
3
][
8
];
for
(
int
i
=
0
;
i
<
3
;
++
i
,
k
+=
3
)
{
float
g0
=
k
[
0
];
float
g1
=
k
[
1
];
float
g2
=
k
[
2
];
float
d0
=
g0
+
g2
;
float
d1
=
g0
+
4
*
g2
;
float
d2
=
g2
+
4
*
g0
;
float
d3
=
2
*
g1
;
gw
[
i
][
0
]
=
g0
;
gw
[
i
][
1
]
=
-
2.
f
/
9
*
(
d0
+
g1
);
// -2.f/9 * (g0 + g1 + g2)
gw
[
i
][
2
]
=
-
2.
f
/
9
*
(
d0
-
g1
);
// -2.f/9 * (g0 - g1 + g2)
gw
[
i
][
3
]
=
1.
f
/
90
*
(
d1
+
d3
);
// 1.f/90 * (g0 + 2 * g1 + 4 * g2)
gw
[
i
][
4
]
=
1.
f
/
90
*
(
d1
-
d3
);
// 1.f/90 * (g0 - 2 * g1 + 4 * g2)
gw
[
i
][
5
]
=
1.
f
/
180
*
(
d2
+
d3
);
// 1.f/180 * (4 * g0 + 2 * g1 + g2)
gw
[
i
][
6
]
=
1.
f
/
180
*
(
d2
-
d3
);
// 1.f/180 * (4 * g0 - 2 * g1 + g2)
gw
[
i
][
7
]
=
g2
;
}
for
(
int
i
=
0
;
i
<
8
;
++
i
,
kout
+=
8
)
{
float
g0
=
gw
[
0
][
i
];
float
g1
=
gw
[
1
][
i
];
float
g2
=
gw
[
2
][
i
];
float
d0
=
g0
+
g2
;
float
d1
=
g0
+
4
*
g2
;
float
d2
=
g2
+
4
*
g0
;
float
d3
=
2
*
g1
;
kout
[
0
]
=
g0
;
kout
[
1
]
=
-
2.
f
/
9
*
(
d0
+
g1
);
// -2.f/9 * (k0 + k1 + k2)
kout
[
2
]
=
-
2.
f
/
9
*
(
d0
-
g1
);
// -2.f/9 * (k0 - k1 + k2)
kout
[
3
]
=
1.
f
/
90
*
(
d1
+
d3
);
// 1.f/90 * (k0 + 2 * k1 + 4 * k2)
kout
[
4
]
=
1.
f
/
90
*
(
d1
-
d3
);
// 1.f/90 * (k0 - 2 * k1 + 4 * k2)
kout
[
5
]
=
1.
f
/
180
*
(
d2
+
d3
);
// 8.f/45 * (4 * k0 + 2 * k1 + k2)
kout
[
6
]
=
1.
f
/
180
*
(
d2
-
d3
);
// 8.f/45 * (4 * k0 - 2 * k1 + k2)
kout
[
7
]
=
g2
;
}
}
}
}
}
template
<
>
template
<
>
void
winograd_transform_input
<
8
,
3
>
(
const
framework
::
Tensor
&
input
,
void
winograd_transform_input
<
8
,
3
>
(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
output
)
{
framework
::
Tensor
*
output
)
{
/*
// tile input to [c, roundup(h/6), roundup(w/6), 64] and do transformation
* x0 = (d0 - d6) + (d4 - d2) * 5.25
int
channel
=
input
.
dims
()[
1
];
* x1 = (d2 + d6) - 4.25 * (d4 + d3) + (d1 + d5)
int
height
=
input
.
dims
()[
2
];
* x2 = (d2 + d6) - 4.25 * (d4 - d3) - (d1 + d5)
int
width
=
input
.
dims
()[
3
];
* x3 = (0.25 * d2 - 1.25 * d4 + d6) + (0.5 * d1 - 2.5 * d3 + 2 * d5)
int
h_tiles
=
(
height
+
3
)
/
6
;
// (height + 5 - 2) / 6
* x4 = (0.25 * d2 - 1.25 * d4 + d6) - (0.5 * d1 - 2.5 * d3 + 2 * d5)
int
w_tiles
=
(
width
+
3
)
/
6
;
// (width + 5 - 2) / 6
* x5 = (4 * d2 - 5 * d4 + d6) + (2 * d1 - 2.5 * d3 + 0.5 * d5)
framework
::
DDim
transformed_shape
=
* x6 = (4 * d2 - 5 * d4 + d6) - (2 * d1 - 2.5 * d3 + 0.5 * d5)
framework
::
make_ddim
(
std
::
vector
<
int
>
{
channel
,
h_tiles
,
w_tiles
,
64
});
* x7 = (d7 - d1) + (d3 - d5) * 5.25
float
*
outptr
=
output
->
mutable_data
<
float
>
(
transformed_shape
);
*/
memset
(
outptr
,
0
,
channel
*
h_tiles
*
w_tiles
*
64
*
sizeof
(
float
));
// TODO(hjchen2)
const
float
*
inptr
=
input
.
data
<
float
>
();
PADDLE_MOBILE_THROW_EXCEPTION
(
// pack input to tiles
"Winograd for arm v8 has not been implemented."
);
for
(
int
c
=
0
;
c
<
channel
;
++
c
)
{
int
inter_h
=
(
height
-
2
)
/
6
;
int
inter_w
=
(
width
-
2
)
/
6
;
int
remain_h
=
height
-
(
inter_h
*
6
);
int
remain_w
=
width
-
(
inter_w
*
6
);
const
float
*
in0
=
inptr
+
c
*
height
*
width
;
const
float
*
in1
=
in0
+
width
;
const
float
*
in2
=
in1
+
width
;
const
float
*
in3
=
in2
+
width
;
const
float
*
in4
=
in3
+
width
;
const
float
*
in5
=
in4
+
width
;
const
float
*
in6
=
in5
+
width
;
const
float
*
in7
=
in6
+
width
;
float
*
out
=
outptr
+
c
*
h_tiles
*
w_tiles
*
64
;
for
(
int
h
=
0
;
h
<
inter_h
;
++
h
)
{
for
(
int
w
=
0
;
w
<
inter_w
;
++
w
)
{
memcpy
(
out
,
in0
,
8
*
sizeof
(
float
));
memcpy
(
out
+
8
,
in1
,
8
*
sizeof
(
float
));
memcpy
(
out
+
16
,
in2
,
8
*
sizeof
(
float
));
memcpy
(
out
+
24
,
in3
,
8
*
sizeof
(
float
));
memcpy
(
out
+
32
,
in4
,
8
*
sizeof
(
float
));
memcpy
(
out
+
40
,
in5
,
8
*
sizeof
(
float
));
memcpy
(
out
+
48
,
in6
,
8
*
sizeof
(
float
));
memcpy
(
out
+
56
,
in7
,
8
*
sizeof
(
float
));
in0
+=
6
;
in1
+=
6
;
in2
+=
6
;
in3
+=
6
;
in4
+=
6
;
in5
+=
6
;
in6
+=
6
;
in7
+=
6
;
out
+=
64
;
}
// remain width
if
(
remain_w
>
2
)
{
memcpy
(
out
,
in0
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
8
,
in1
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
16
,
in2
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
24
,
in3
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
32
,
in4
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
40
,
in5
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
48
,
in6
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
56
,
in7
,
remain_w
*
sizeof
(
float
));
out
+=
64
;
}
in0
+=
5
*
width
+
remain_w
;
in1
+=
5
*
width
+
remain_w
;
in2
+=
5
*
width
+
remain_w
;
in3
+=
5
*
width
+
remain_w
;
in4
+=
5
*
width
+
remain_w
;
in5
+=
5
*
width
+
remain_w
;
in6
+=
5
*
width
+
remain_w
;
in7
+=
5
*
width
+
remain_w
;
}
// remain height
if
(
remain_h
>
2
)
{
for
(
int
w
=
0
;
w
<
inter_w
;
++
w
)
{
for
(
int
rh
=
0
;
rh
<
remain_h
;
++
rh
)
{
memcpy
(
out
+
rh
*
8
,
in0
+
rh
*
width
,
8
*
sizeof
(
float
));
}
out
+=
64
;
in0
+=
6
;
}
// remain width
if
(
remain_w
>
2
)
{
for
(
int
rh
=
0
;
rh
<
remain_h
;
++
rh
)
{
memcpy
(
out
+
rh
*
8
,
in0
+
rh
*
width
,
remain_w
*
sizeof
(
float
));
}
}
}
}
// transform tiles, compute B_T * d(c, b) * B
for
(
int
c
=
0
;
c
<
channel
;
++
c
)
{
for
(
int
tile
=
0
;
tile
<
h_tiles
*
w_tiles
;
++
tile
)
{
float
*
out
=
outptr
+
(
c
*
h_tiles
*
w_tiles
+
tile
)
*
64
;
// compute B_T * d(c, b)
float
bd
[
8
][
8
];
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
float
d0
=
out
[
8
*
i
+
0
];
float
d1
=
out
[
8
*
i
+
1
];
float
d2
=
out
[
8
*
i
+
2
];
float
d3
=
out
[
8
*
i
+
3
];
float
d4
=
out
[
8
*
i
+
4
];
float
d5
=
out
[
8
*
i
+
5
];
float
d6
=
out
[
8
*
i
+
6
];
float
d7
=
out
[
8
*
i
+
7
];
bd
[
i
][
0
]
=
d0
-
d6
+
(
d4
-
d2
)
*
5.25
;
float
v1
=
d2
-
4.25
*
d4
+
d6
;
float
v2
=
d1
-
4.25
*
d3
+
d5
;
// d1 + d2 - 4.25 * d3 - 4.25 * d4 + d5 + d6
bd
[
i
][
1
]
=
v1
+
v2
;
// -d1 + d2 + 4.25 * d3 - 4.25 * d4 - d5 + d6
bd
[
i
][
2
]
=
v1
-
v2
;
v1
=
0.25
*
d2
-
1.25
*
d4
+
d6
;
v2
=
0.5
*
d1
-
2.5
*
d3
+
2
*
d5
;
// 0.5 * d1 + 0.25 * d2 - 2.5 * d3 - 1.25 * d4 + 2 * d5 + d6
bd
[
i
][
3
]
=
v1
+
v2
;
// -0.5 * d1 + 0.25 * d2 + 2.5 * d3 - 1.25 * d4 - 2 * d5 + d6
bd
[
i
][
4
]
=
v1
-
v2
;
v1
=
4
*
d2
-
5
*
d4
+
d6
;
v2
=
2
*
d1
-
2.5
*
d3
+
0.5
*
d5
;
// 2 * d1 + 4 * d2 - 2.5 * d3 - 5 * d4 + 0.5 * d5 + d6
bd
[
i
][
5
]
=
v1
+
v2
;
// -2 * d1 + 4 * d2 + 2.5 * d3 - 5 * d4 - 0.5 * d5 + d6
bd
[
i
][
6
]
=
v1
-
v2
;
bd
[
i
][
7
]
=
d7
-
d1
+
(
d3
-
d5
)
*
5.25
;
}
// compute B_T * d(c, b) * B
for
(
int
i
=
0
;
i
<
8
;
++
i
,
out
+=
8
)
{
float
d0
=
bd
[
0
][
i
];
float
d1
=
bd
[
1
][
i
];
float
d2
=
bd
[
2
][
i
];
float
d3
=
bd
[
3
][
i
];
float
d4
=
bd
[
4
][
i
];
float
d5
=
bd
[
5
][
i
];
float
d6
=
bd
[
6
][
i
];
float
d7
=
bd
[
7
][
i
];
out
[
0
]
=
d0
-
d6
+
(
d4
-
d2
)
*
5.25
;
float
v1
=
d2
-
4.25
*
d4
+
d6
;
float
v2
=
d1
-
4.25
*
d3
+
d5
;
// d1 + d2 - 4.25 * d3 - 4.25 * d4 + d5 + d6
out
[
1
]
=
v1
+
v2
;
// -d1 + d2 + 4.25 * d3 - 4.25 * d4 - d5 + d6
out
[
2
]
=
v1
-
v2
;
v1
=
0.25
*
d2
-
1.25
*
d4
+
d6
;
v2
=
0.5
*
d1
-
2.5
*
d3
+
2
*
d5
;
// 0.5 * d1 + 0.25 * d2 - 2.5 * d3 - 1.25 * d4 + 2 * d5 + d6
out
[
3
]
=
v1
+
v2
;
// -0.5 * d1 + 0.25 * d2 + 2.5 * d3 - 1.25 * d4 - 2 * d5 + d6
out
[
4
]
=
v1
-
v2
;
v1
=
4
*
d2
-
5
*
d4
+
d6
;
v2
=
2
*
d1
-
2.5
*
d3
+
0.5
*
d5
;
// 2 * d1 + 4 * d2 - 2.5 * d3 - 5 * d4 + 0.5 * d5 + d6
out
[
5
]
=
v1
+
v2
;
// -2 * d1 + 4 * d2 + 2.5 * d3 - 5 * d4 - 0.5 * d5 + d6
out
[
6
]
=
v1
-
v2
;
out
[
7
]
=
d7
-
d1
+
(
d3
-
d5
)
*
5.25
;
}
}
}
}
}
template
<
>
template
<
>
void
winograd_transform_output
<
8
,
3
>
(
const
framework
::
Tensor
&
input
,
void
winograd_transform_output
<
8
,
3
>
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
framework
::
Tensor
*
output
)
{
// TODO(hjchen2)
// input shape is [in_channel, h_tiles, w_tiles, 64]
PADDLE_MOBILE_THROW_EXCEPTION
(
// weight shape is [out_channel, in_channel, 64]
"Winograd for arm v8 has not been implemented."
);
int
in_channel
=
input
.
dims
()[
0
];
int
h_tiles
=
input
.
dims
()[
1
];
int
w_tiles
=
input
.
dims
()[
2
];
int
tiles
=
h_tiles
*
w_tiles
;
int
out_channel
=
weight
.
dims
()[
0
];
// compute U*V first
framework
::
Tensor
output_m
;
framework
::
DDim
shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
out_channel
,
tiles
,
64
});
float
*
output_m_ptr
=
output_m
.
mutable_data
<
float
>
(
shape
);
memset
(
output_m_ptr
,
0
,
output_m
.
numel
()
*
sizeof
(
float
));
const
float
*
input_ptr
=
input
.
data
<
float
>
();
const
float
*
weight_ptr
=
weight
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
out_channel
;
++
i
)
{
for
(
int
j
=
0
;
j
<
tiles
;
++
j
)
{
const
float
*
w_ptr
=
weight_ptr
+
i
*
in_channel
*
64
;
const
float
*
in_ptr
=
input_ptr
+
j
*
64
;
float
*
m_ptr
=
output_m_ptr
+
(
i
*
tiles
+
j
)
*
64
;
for
(
int
c
=
0
;
c
<
in_channel
;
++
c
)
{
for
(
int
k
=
0
;
k
<
64
;
++
k
)
{
m_ptr
[
k
]
+=
w_ptr
[
k
]
*
in_ptr
[
k
];
}
w_ptr
+=
64
;
in_ptr
+=
tiles
*
64
;
}
}
}
for
(
int
oc
=
0
;
oc
<
out_channel
;
++
oc
)
{
for
(
int
tile
=
0
;
tile
<
tiles
;
++
tile
)
{
float
*
m
=
output_m_ptr
+
(
oc
*
tiles
+
tile
)
*
64
;
// compute A_T * m
float
am
[
6
][
8
];
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
float
d0
=
m
[
i
*
8
+
0
];
float
d1
=
m
[
i
*
8
+
1
];
float
d2
=
m
[
i
*
8
+
2
];
float
d3
=
m
[
i
*
8
+
3
];
float
d4
=
m
[
i
*
8
+
4
];
float
d5
=
m
[
i
*
8
+
5
];
float
d6
=
m
[
i
*
8
+
6
];
float
d7
=
m
[
i
*
8
+
7
];
float
v0
=
d1
+
d2
;
float
v1
=
d1
-
d2
;
float
v2
=
d3
+
d4
;
float
v3
=
d3
-
d4
;
float
v4
=
d5
+
d6
;
float
v5
=
d5
-
d6
;
am
[
0
][
i
]
=
d0
+
v0
+
v2
+
32
*
v4
;
am
[
1
][
i
]
=
v1
+
2
*
v3
+
16
*
v5
;
am
[
2
][
i
]
=
v0
+
4
*
v2
+
8
*
v4
;
am
[
3
][
i
]
=
v1
+
8
*
v3
+
4
*
v5
;
am
[
4
][
i
]
=
v0
+
16
*
v2
+
2
*
v4
;
am
[
5
][
i
]
=
v1
+
32
*
v3
+
v5
+
d7
;
}
// compute A_T * m * A
for
(
int
i
=
0
;
i
<
6
;
++
i
,
m
+=
8
)
{
float
d0
=
am
[
i
][
0
];
float
d1
=
am
[
i
][
1
];
float
d2
=
am
[
i
][
2
];
float
d3
=
am
[
i
][
3
];
float
d4
=
am
[
i
][
4
];
float
d5
=
am
[
i
][
5
];
float
d6
=
am
[
i
][
6
];
float
d7
=
am
[
i
][
7
];
float
v0
=
d1
+
d2
;
float
v1
=
d1
-
d2
;
float
v2
=
d3
+
d4
;
float
v3
=
d3
-
d4
;
float
v4
=
d5
+
d6
;
float
v5
=
d5
-
d6
;
m
[
0
]
=
d0
+
v0
+
v2
+
32
*
v4
;
m
[
1
]
=
v1
+
2
*
v3
+
16
*
v5
;
m
[
2
]
=
v0
+
4
*
v2
+
8
*
v4
;
m
[
3
]
=
v1
+
8
*
v3
+
4
*
v5
;
m
[
4
]
=
v0
+
16
*
v2
+
2
*
v4
;
m
[
5
]
=
v1
+
32
*
v3
+
v5
+
d7
;
}
}
}
int
out_h
=
output
->
dims
()[
2
];
int
out_w
=
output
->
dims
()[
3
];
float
*
output_ptr
=
output
->
mutable_data
<
float
>
();
// copy valid region to final output
for
(
int
oc
=
0
;
oc
<
out_channel
;
++
oc
)
{
int
inter_h
=
out_h
/
6
;
int
inter_w
=
out_w
/
6
;
int
remain_h
=
out_h
-
inter_h
*
6
;
int
remain_w
=
out_w
-
inter_w
*
6
;
float
*
out_ptr0
=
output_ptr
+
oc
*
out_h
*
out_w
;
float
*
out_ptr1
=
out_ptr0
+
out_w
;
float
*
out_ptr2
=
out_ptr1
+
out_w
;
float
*
out_ptr3
=
out_ptr2
+
out_w
;
float
*
out_ptr4
=
out_ptr3
+
out_w
;
float
*
out_ptr5
=
out_ptr4
+
out_w
;
const
float
*
m_ptr
=
output_m_ptr
+
oc
*
tiles
*
64
;
for
(
int
tile_h
=
0
;
tile_h
<
inter_h
;
++
tile_h
)
{
for
(
int
tile_w
=
0
;
tile_w
<
inter_w
;
++
tile_w
)
{
const
float
*
m
=
m_ptr
+
(
tile_h
*
w_tiles
+
tile_w
)
*
64
;
memcpy
(
out_ptr0
,
m
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr1
,
m
+
8
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr2
,
m
+
16
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr3
,
m
+
24
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr4
,
m
+
32
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr5
,
m
+
40
,
6
*
sizeof
(
float
));
out_ptr0
+=
6
;
out_ptr1
+=
6
;
out_ptr2
+=
6
;
out_ptr3
+=
6
;
out_ptr4
+=
6
;
out_ptr5
+=
6
;
}
// remain w
if
(
remain_w
>
0
)
{
const
float
*
m
=
m_ptr
+
(
tile_h
*
w_tiles
+
inter_w
)
*
64
;
memcpy
(
out_ptr0
,
m
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr1
,
m
+
8
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr2
,
m
+
16
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr3
,
m
+
24
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr4
,
m
+
32
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr5
,
m
+
40
,
remain_w
*
sizeof
(
float
));
out_ptr0
+=
remain_w
;
out_ptr1
+=
remain_w
;
out_ptr2
+=
remain_w
;
out_ptr3
+=
remain_w
;
out_ptr4
+=
remain_w
;
out_ptr5
+=
remain_w
;
}
out_ptr0
+=
5
*
out_w
;
out_ptr1
+=
5
*
out_w
;
out_ptr2
+=
5
*
out_w
;
out_ptr3
+=
5
*
out_w
;
out_ptr4
+=
5
*
out_w
;
out_ptr5
+=
5
*
out_w
;
}
// remain h
if
(
remain_h
>
0
)
{
for
(
int
tile_w
=
0
;
tile_w
<
inter_w
;
++
tile_w
)
{
const
float
*
m
=
m_ptr
+
(
inter_h
*
w_tiles
+
tile_w
)
*
64
;
for
(
int
rh
=
0
;
rh
<
remain_h
;
++
rh
)
{
memcpy
(
out_ptr0
+
rh
*
out_w
,
m
+
rh
*
8
,
6
*
sizeof
(
float
));
}
out_ptr0
+=
6
;
}
if
(
remain_w
>
0
)
{
const
float
*
m
=
m_ptr
+
(
inter_h
*
w_tiles
+
inter_w
)
*
64
;
for
(
int
rh
=
0
;
rh
<
remain_h
;
++
rh
)
{
memcpy
(
out_ptr0
+
rh
*
out_w
,
m
+
rh
*
8
,
remain_w
*
sizeof
(
float
));
}
}
}
}
}
}
}
// namespace math
}
// namespace math
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录