提交 4fb30240 编写于 作者: H hjchen2

update

上级 2bbf3ec6
......@@ -31,7 +31,8 @@ namespace paddle_mobile {
#ifdef ANDROID
extern const char *ANDROID_LOG_TAG;
static const char *ANDROID_LOG_TAG =
"paddle_mobile LOG built on " __DATE__ " " __TIME__;
#define ANDROIDLOGI(...) \
__android_log_print(ANDROID_LOG_INFO, ANDROID_LOG_TAG, __VA_ARGS__); \
......
......@@ -531,20 +531,6 @@ void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
}
}
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
auto input_size = v.size();
int index = 0;
auto vars = program_.scope->VarContain("feed", &index);
PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
"input data number not correct");
for (int i = 0; i < input_size; i++) {
auto var = program_.scope->Var("feed", i + index);
auto feed_tensor = var->template GetMutable<LoDTensor>();
feed_tensor->ShareDataWith(v[i]);
}
}
template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
auto output_size = v->size();
......
......@@ -53,7 +53,6 @@ class Executor {
void InjectVariable(const Tensor &t, std::string var_name);
void FeedData(const Tensor &t);
void FeedData(const std::vector<void *> &v);
void FeedTensorData(const std::vector<framework::Tensor> &v);
void GetResults(std::vector<void *> *v);
void GetTensorResults(std::vector<framework::Tensor *> *v);
......
......@@ -146,7 +146,7 @@ void PaddleMobilePredictor<Device, T>::FeedPaddleTensors(
tensors[i].init(typeid(float));
ConvertPaddleTensors(inputs[i], &tensors[i]);
}
paddle_mobile_->FeedTensorData(tensors);
// paddle_mobile_->FeedTensorData(tensors);
}
template <typename Device, typename T>
......
......@@ -39,8 +39,6 @@ using framework::Tensor;
using paddle_mobile::CPU;
using std::string;
const char *ANDROID_LOG_TAG =
"paddle_mobile LOG built on " __DATE__ " " __TIME__;
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
static std::mutex shared_mutex;
......
......@@ -91,7 +91,6 @@ class PaddleMobile {
void InjectVariable(const framework::Tensor &t, std::string var_name);
void FeedData(const framework::Tensor &t);
void FeedData(const std::vector<void *> &v);
void FeedTensorData(const std::vector<framework::Tensor> &v);
void GetResults(std::vector<void *> *v);
void GetTensorResults(std::vector<framework::Tensor *> *v);
......
......@@ -57,7 +57,7 @@ class FusionDeconvAddBNOp : public framework::OperatorWithKernel<
FusionDeconvAddBNOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
framework::Scope *scope)
: framework::OperatorWithKernel<
DeviceType, FusionDeconvAddBNParam<DeviceType>,
operators::DeconvAddBNKernel<DeviceType, T>>(type, inputs, outputs,
......
......@@ -59,7 +59,7 @@ class FusionDeconvAddBNReluOp
FusionDeconvAddBNReluOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
framework::Scope *scope)
: framework::OperatorWithKernel<
DeviceType, FusionDeconvAddBNReluParam<DeviceType>,
operators::DeconvAddBNReluKernel<DeviceType, T>>(
......
......@@ -56,7 +56,7 @@ class FusionDeconvBNReluOp
FusionDeconvBNReluOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
framework::Scope *scope)
: framework::OperatorWithKernel<
DeviceType, FusionDeconvBNReluParam<DeviceType>,
operators::DeconvBNReluKernel<DeviceType, T>>(type, inputs, outputs,
......
......@@ -47,6 +47,7 @@ bool IsExpand(const std::vector<int64_t> &filter_dim,
return !(filter_1 && strides_1 && padding_0 && dilation_1);
}
#ifdef PADDLE_MOBILE_CPU
template <typename Itype, typename Otype>
void GemmConv(const ConvParam<CPU> &param) {
const Tensor *input = param.Input();
......@@ -241,6 +242,7 @@ template void GemmConv<int8_t, int32_t>(const ConvParam<CPU> &param);
template void DepthwiseConv3x3<int8_t, int32_t>(const ConvParam<CPU> &param);
template void DepthwiseConv5x5<int8_t, int32_t>(const ConvParam<CPU> &param);
#endif
#endif
} // namespace operators
} // namespace paddle_mobile
......@@ -24,8 +24,8 @@ bool ConvKernel<FPGA, float>::Init(ConvParam<FPGA> *param) {
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::NONE;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
auto filter = const_cast<Tensor *>(param->Filter());
auto input = const_cast<LoDTensor *>(param->Input());
auto filter = const_cast<LoDTensor *>(param->Filter());
auto out = param->Output();
int channel = out->dims()[1];
auto bs_ptr =
......
......@@ -27,10 +27,10 @@ bool ConvTransposeKernel<FPGA, float>::Init(ConvTransposeParam<FPGA> *param) {
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::NONE;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
auto input = const_cast<LoDTensor *>(param->Input());
// const Tensor *bias = param->Bias();
// auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto filter = const_cast<LoDTensor *>(param->Filter());
auto out = param->Output();
// PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
......
......@@ -27,10 +27,10 @@ bool DeconvAddBNKernel<FPGA, float>::Init(FusionDeconvAddBNParam<FPGA> *param) {
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::NONE;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
auto input = const_cast<LoDTensor *>(param->Input());
const Tensor *bias = param->InputBias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto filter = const_cast<LoDTensor *>(param->Filter());
auto out = param->Output();
PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
......
......@@ -28,10 +28,10 @@ bool DeconvAddBNReluKernel<FPGA, float>::Init(
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::LEAKYRELU;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
auto input = const_cast<LoDTensor *>(param->Input());
const Tensor *bias = param->InputBias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto filter = const_cast<LoDTensor *>(param->Filter());
auto out = param->Output();
PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
......
......@@ -29,10 +29,10 @@ bool DeconvBNReluKernel<FPGA, float>::Init(
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::LEAKYRELU;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
auto input = const_cast<LoDTensor *>(param->Input());
const Tensor *bias = param->InputBias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto filter = const_cast<LoDTensor *>(param->Filter());
auto out = param->Output();
auto bn_mean_ptr = param->InputMean()->data<float>();
auto bn_var_ptr = param->InputVariance()->data<float>();
......
......@@ -57,13 +57,9 @@ void dealign(float *src, float *dst, int input_c, int input_h, int input_w) {
}
template <>
void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> &param) {
auto input = const_cast<Tensor *>(param.InputX());
if (input->type() == typeid(float)) {
auto input = const_cast<LoDTensor *>(param.InputX());
int col = param.Col();
auto output = &(param.Out()->at(col));
output->ShareDataWith(*input);
return;
}
LoDTensor *out = &param.Out()->at(col);
fpga::BypassArgs args = param.fpga_bypass_args;
auto input_address = (input->data<half>());
......@@ -71,7 +67,7 @@ void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> &param) {
float *outdata_ptr =
reinterpret_cast<float *>(param.fpga_bypass_args.output.address);
const int num_th = 32;
if ((param.Out()->fpga_data_num) < num_th) {
if ((out->fpga_data_num) < num_th) {
fpga::fpga_invalidate(input_address, (input->fpga_data_num) * sizeof(half));
for (int idx = 0; idx < product(input->dims()); ++idx) {
......@@ -81,14 +77,14 @@ void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> &param) {
}
fpga::PerformBypass(args);
auto outC = param.Out()->dims()[1];
auto outH = param.Out()->dims()[2];
auto outW = param.Out()->dims()[3];
auto outC = out->dims()[1];
auto outH = out->dims()[2];
auto outW = out->dims()[3];
fpga::fpga_invalidate(param.fpga_bypass_args.output.address,
param.Out()->fpga_data_num * sizeof(float));
out->fpga_data_num * sizeof(float));
if (param.Out()->fpga_data_num != product(input->dims())) {
if (out->fpga_data_num != product(input->dims())) {
float *data_tmp =
reinterpret_cast<float *>(malloc(outC * outH * outW * sizeof(float)));
dealign(outdata_ptr, data_tmp, outC, outH, outW);
......
......@@ -25,7 +25,7 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
paddle_mobile::fpga::LEAKYRELU;
int16_t leaky_relu_negative_slope = 0;
auto input_x = const_cast<LoDTensor *>(param->InputX());
auto filter = const_cast<Tensor *>(param->InputY());
auto filter = const_cast<LoDTensor *>(param->InputY());
const Tensor *input_z = param->InputZ();
auto input_z_ptr = input_z->data<float>();
auto out = param->Out();
......
......@@ -16,8 +16,8 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
template <>
bool Pad2dKernel<FPGA, float>::Init(Pad2dParam<FPGA> *param) {
Tensor *output = param->Out();
bool Pad2DKernel<FPGA, float>::Init(Pad2DParam<FPGA> *param) {
Tensor *output = param->output_;
fpga::format_fp16_ofm(output);
return true;
}
......@@ -39,9 +39,9 @@ void pad2dFunc(const framework::Tensor *input, framework::Tensor *output) {
}
}
template <>
void Pad2dKernel<FPGA, float>::Compute(const Pad2dParam<FPGA> &param) {
auto in_x = param.InputX();
auto out = param.Out();
void Pad2DKernel<FPGA, float>::Compute(const Pad2DParam<FPGA> &param) {
auto in_x = param.input_;
auto out = param.output_;
fpga::fpga_invalidate((void *)in_x->data<half>(), // NOLINT
in_x->numel() * sizeof(half));
pad2dFunc(in_x, out);
......
......@@ -68,7 +68,7 @@ bool PoolKernel<FPGA, float>::Init(PoolParam<FPGA> *param) {
template <>
void PoolKernel<FPGA, float>::Compute(const PoolParam<FPGA> &param) {
auto *input = const_cast<Tensor *>(param.Input());
auto *input = const_cast<LoDTensor *>(param.Input());
if (input->type() == typeid(float)) {
auto *output = param.Output();
......
......@@ -24,7 +24,7 @@ bool SigmoidKernel<FPGA, float>::Init(SigmoidParam<FPGA> *param) {
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::SIGMOID;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->InputX());
auto input = const_cast<LoDTensor *>(param->InputX());
auto input_ptr = input->data<half>();
auto out = param->Out();
fpga::format_fp16_ofm(out);
......
......@@ -33,7 +33,7 @@ void AddChannelWise(const framework::Tensor *input,
// maybe check shape
int batch_size = input->dims()[0];
int channels = input->dims()[1];
size_t spatial_size = input->dims()[2] * input->dims()[3];
int spatial_size = input->dims()[2] * input->dims()[3];
for (int batch = 0; batch < batch_size; ++batch) {
for (int channel = 0; channel < channels; ++channel) {
......@@ -88,7 +88,7 @@ void ScaleAddChannelWise(const framework::Tensor *input,
// maybe check shape
int batch_size = input->dims()[0];
int channels = input->dims()[1];
size_t spatial_size = input->dims()[2] * input->dims()[3];
int spatial_size = input->dims()[2] * input->dims()[3];
for (int batch = 0; batch < batch_size; ++batch) {
for (int channel = 0; channel < channels; ++channel) {
......
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#pragma once
#include "operators/math/gemm/cblas.h"
......@@ -47,3 +49,5 @@ void cblas_sgemv(const bool trans, const int M, const int N, const float alpha,
} // namespace math
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -37,5 +37,8 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(pad2d, ops::Pad2DOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(pad2d, ops::Pad2DOp);
#endif
#endif // PAD2D_OP
......@@ -12,16 +12,18 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <fstream>
#include <iostream>
#include "io/paddle_inference_api.h"
#include "../test_helper.h"
#include "../test_include.h"
#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif
#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
#endif
static const char *g_image = "../models/rfcn/data.bin";
static const char *g_model = "../models/rfcn/model";
static const char *g_param = "../models/rfcn/params";
#include <string>
void readStream(std::string filename, char *buf) {
std::ifstream in;
......@@ -35,137 +37,116 @@ void readStream(std::string filename, char *buf) {
auto length = in.tellg(); // report location (this is the length)
in.seekg(0, std::ios::beg); // go back to the beginning
in.read(buf, length);
DLOG << length;
in.close();
}
PaddleMobileConfig GetConfig() {
PaddleMobileConfig config;
config.precision = PaddleMobileConfig::FP32;
config.device = PaddleMobileConfig::kFPGA;
config.prog_file = g_model;
config.param_file = g_param;
config.thread_num = 1;
config.batch_size = 1;
config.optimize = true;
config.lod_mode = true;
config.quantification = false;
return config;
}
PaddleMobileConfig GetConfig1() {
PaddleMobileConfig config;
config.precision = PaddleMobileConfig::FP32;
config.device = PaddleMobileConfig::kFPGA;
config.model_dir = "../models/resnet50";
config.thread_num = 1;
config.batch_size = 1;
config.optimize = true;
config.quantification = false;
return config;
}
int main() {
open_device();
PaddleMobileConfig config = GetConfig();
auto predictor =
CreatePaddlePredictor<PaddleMobileConfig,
PaddleEngineKind::kPaddleMobile>(config);
std::cout << "Finishing loading model" << std::endl;
float img_info[3] = {432, 1280, 1.0f};
int img_length = 432 * 1280 * 3;
auto img = reinterpret_cast<float *>(fpga_malloc(img_length * sizeof(float)));
readStream(g_image, reinterpret_cast<char *>(img));
std::cout << "Finishing initializing data" << std::endl;
struct PaddleTensor t_img_info, t_img;
t_img.dtypeid = typeid(float);
t_img_info.layout = LAYOUT_HWC;
t_img_info.shape = std::vector<int>({1, 3});
t_img_info.name = "Image information";
t_img_info.data.Reset(img_info, 3 * sizeof(float));
t_img.dtypeid = typeid(float);
t_img.layout = LAYOUT_HWC;
t_img.shape = std::vector<int>({1, 432, 1280, 3});
t_img.name = "Image information";
t_img.data.Reset(img, img_length * sizeof(float));
predictor->FeedPaddleTensors({t_img_info, t_img});
std::cout << "Finishing feeding data " << std::endl;
predictor->Predict_From_To(0, -1);
std::cout << "Finishing predicting " << std::endl;
std::vector<PaddleTensor> v; // No need to initialize v
predictor->FetchPaddleTensors(&v); // Old data in v will be cleared
std::cout << "Output number is " << v.size() << std::endl;
std::cout << "out[0] length " << v[0].data.length() << std::endl;
std::cout << "out[1] length " << v[1].data.length() << std::endl;
std::cout << "out[2] length " << v[2].data.length() << std::endl;
auto post_nms = v[0].data.length() / sizeof(float) / 8;
for (int num = 0; num < post_nms; num++) {
for (int i = 0; i < 8; i++) {
auto p = reinterpret_cast<float *>(v[0].data.data());
std::cout << p[num * 8 + i] << std::endl;
void convert_to_chw(int16_t **data_in, int channel, int height, int width,
int num, int16_t *data_tmp) {
int64_t amount_per_side = width * height;
for (int n = 0; n < num; n++) {
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
for (int c = 0; c < channel; c++) {
*(data_tmp + n * amount_per_side * channel + c * amount_per_side +
width * h + w) = *((*data_in)++);
}
}
for (int num = 0; num < post_nms; num++) {
for (int i = 0; i < 8; i++) {
auto p = reinterpret_cast<float *>(v[1].data.data());
std::cout << p[num * 8 + i] << std::endl;
}
}
for (int num = 0; num < post_nms; num++) {
for (int i = 0; i < 4; i++) {
auto p = reinterpret_cast<float *>(v[2].data.data());
std::cout << p[num * 4 + i] << std::endl;
}
void dump_stride_half(std::string filename, Tensor input_tensor,
const int dumpnum, bool use_chw) {
// bool use_chw = true;
if (input_tensor.dims().size() != 4) return;
int c = (input_tensor.dims())[1];
int h = (input_tensor.dims())[2];
int w = (input_tensor.dims())[3];
int n = (input_tensor.dims())[0];
auto data_ptr = input_tensor.get_data();
auto *data_ptr_16 = reinterpret_cast<half *>(data_ptr);
auto data_tmp = data_ptr_16;
if (use_chw) {
data_tmp =
reinterpret_cast<half *>(malloc(n * c * h * w * sizeof(int16_t)));
convert_to_chw(&data_ptr_16, c, h, w, n, data_tmp);
}
std::ofstream out(filename.c_str());
float result = 0;
int stride = input_tensor.numel() / dumpnum;
stride = stride > 0 ? stride : 1;
for (int i = 0; i < input_tensor.numel(); i += stride) {
result = paddle_mobile::fpga::fp16_2_fp32(data_tmp[i]);
out << result << std::endl;
}
std::cout << "Finish getting vector values" << std::endl;
////////////////////////////////////////////////////
PaddleTensor tensor;
predictor->GetPaddleTensor("fetch2", &tensor);
for (int i = 0; i < post_nms; i++) {
auto p = reinterpret_cast<float *>(tensor.data.data());
std::cout << p[+i] << std::endl;
out.close();
if (data_tmp != data_ptr_16) {
free(data_tmp);
}
}
//////////////////////////////////////////////////////
PaddleMobileConfig config1 = GetConfig1();
auto predictor1 =
CreatePaddlePredictor<PaddleMobileConfig,
PaddleEngineKind::kPaddleMobile>(config1);
std::cout << "Finishing loading model" << std::endl;
int img_length1 = 224 * 224 * 3;
auto img1 =
reinterpret_cast<float *>(fpga_malloc(img_length1 * sizeof(float)));
void dump_stride_float(std::string filename, Tensor input_tensor,
const int dumpnum) {
auto data_ptr = reinterpret_cast<float *>(input_tensor.get_data());
std::ofstream out(filename.c_str());
float result = 0;
int stride = input_tensor.numel() / dumpnum;
stride = stride > 0 ? stride : 1;
for (int i = 0; i < input_tensor.numel(); i += stride) {
result = data_ptr[i];
out << result << std::endl;
}
out.close();
}
std::cout << "Finishing initializing data" << std::endl;
void dump_stride(std::string filename, Tensor input_tensor, const int dumpnum,
bool use_chw) {
static int i = 0;
if (input_tensor.numel() == 0) {
return;
}
if (input_tensor.type() == typeid(float)) {
DLOG << "op: " << i++ << ", float data " << input_tensor.numel();
struct PaddleTensor t_img1;
dump_stride_float(filename, input_tensor, dumpnum);
} else {
DLOG << "op: " << i++ << ", half data " << input_tensor.numel();
t_img1.dtypeid = typeid(float);
t_img1.layout = LAYOUT_HWC;
t_img1.shape = std::vector<int>({1, 224, 224, 3});
t_img1.name = "Image information";
t_img1.data.Reset(img1, img_length1 * sizeof(float));
predictor1->FeedPaddleTensors({t_img1});
predictor1->Predict_From_To(0, -1);
std::cout << "Finishing predicting " << std::endl;
dump_stride_half(filename, input_tensor, dumpnum, use_chw);
}
DLOG << "dump input address: " << input_tensor.get_data();
}
std::vector<PaddleTensor> v1; // No need to initialize v
predictor1->FetchPaddleTensors(&v1); // Old data in v will be cleared
std::cout << "Output number is " << v1.size() << std::endl;
std::cout << "out[0] length " << v1[0].data.length() << std::endl;
static const char *g_rfcn_combine = "../models/rfcn";
static const char *g_image_src_float = "../models/rfcn/data.bin";
int main() {
paddle_mobile::fpga::open_device();
paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile;
if (paddle_mobile.Load(std::string(g_rfcn_combine) + "/model",
std::string(g_rfcn_combine) + "/params", true, false,
1, true)) {
float img_info[3] = {768, 1536, 768.0f / 960.0f};
auto img = reinterpret_cast<float *>(
fpga::fpga_malloc(768 * 1536 * 3 * sizeof(float)));
readStream(g_image_src_float, reinterpret_cast<char *>(img));
std::vector<void *> v(3, nullptr);
paddle_mobile.FeedData(std::vector<void *>({img_info, img}));
paddle_mobile.Predict_To(-1);
for (int i = 65; i < 69; i++) {
auto tensor_ptr = paddle_mobile.FetchResult(i);
std::string saveName = "rfcn_" + std::to_string(i);
paddle_mobile::fpga::fpga_invalidate((*tensor_ptr).get_data(),
tensor_ptr->numel() * sizeof(float));
dump_stride(saveName, (*tensor_ptr), tensor_ptr->numel(), true);
}
// paddle_mobile.GetResults(&v);
DLOG << "Computation done";
fpga::fpga_free(img);
}
return 0;
}
......@@ -36,7 +36,10 @@ int main(int argc, char* argv[]) {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
paddle_mobile.SetThreadNum(thread_num);
auto time1 = time();
if (paddle_mobile.Load(fluid_model, optimize)) {
// if (paddle_mobile.Load(fluid_model, optimize, false, 1, true)) {
if (paddle_mobile.Load(std::string(fluid_model) + "/model",
std::string(fluid_model) + "/params", optimize,
false, 1, true)) {
auto time2 = time();
std::cout << "load cost :" << time_diff(time1, time2) << "ms\n";
paddle_mobile::framework::Tensor input;
......@@ -51,14 +54,15 @@ int main(int argc, char* argv[]) {
paddle_mobile::framework::DDim in_shape =
paddle_mobile::framework::make_ddim(dims);
SetupTensor<float>(&input, in_shape, 0.f, 255.f);
// warmup
for (int i = 0; i < 10; ++i) {
// // warmup
for (int i = 0; i < 2; ++i) {
paddle_mobile.Predict(input);
}
auto time3 = time();
for (int i = 0; i < 10; ++i) {
paddle_mobile.Predict(input);
}
auto time4 = time();
std::cout << "predict cost :" << time_diff(time3, time4) / 10 << "ms\n";
std::ostringstream os("output tensor size: ");
......@@ -68,7 +72,7 @@ int main(int argc, char* argv[]) {
os << ", " << output->data<float>()[i];
}
std::string output_str = os.str();
std::cout << output_str << std::endl;
// std::cout << output_str << std::endl;
}
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册