未验证 提交 4b3da222 编写于 作者: Y yiicy 提交者: GitHub

[DEMO] add mask detection demo, test=develop (#2862)

* [DEMO] add mask detection demo, test=develop

* [DEMO] fix ssd detection demo bug, test=develop
上级 1337bd19
......@@ -232,6 +232,8 @@ if (LITE_WITH_LIGHT_WEIGHT_FRAMEWORK AND LITE_WITH_ARM)
COMMAND cp "${CMAKE_SOURCE_DIR}/lite/demo/cxx/makefiles/mobile_classify/Makefile.${ARM_TARGET_OS}.${ARM_TARGET_ARCH_ABI}" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/mobile_classify/Makefile"
COMMAND cp -r "${CMAKE_SOURCE_DIR}/lite/demo/cxx/test_cv" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx"
COMMAND cp "${CMAKE_SOURCE_DIR}/lite/demo/cxx/makefiles/test_cv/Makefile.${ARM_TARGET_OS}.${ARM_TARGET_ARCH_ABI}" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/test_cv/Makefile"
COMMAND cp -r "${CMAKE_SOURCE_DIR}/lite/demo/cxx/mask_detection" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx"
COMMAND cp "${CMAKE_SOURCE_DIR}/lite/demo/cxx/makefiles/mask_detection/Makefile.${ARM_TARGET_OS}.${ARM_TARGET_ARCH_ABI}" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/mask_detection/Makefile"
)
add_dependencies(publish_inference_android_cxx_demos logging gflags)
add_dependencies(publish_inference_cxx_lib publish_inference_android_cxx_demos)
......@@ -251,6 +253,8 @@ if (LITE_WITH_LIGHT_WEIGHT_FRAMEWORK AND LITE_WITH_ARM)
COMMAND cp "${CMAKE_SOURCE_DIR}/lite/demo/cxx/makefiles/mobile_classify/Makefile.${ARM_TARGET_OS}.${ARM_TARGET_ARCH_ABI}" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/mobile_classify/Makefile"
COMMAND cp -r "${CMAKE_SOURCE_DIR}/lite/demo/cxx/test_cv" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx"
COMMAND cp "${CMAKE_SOURCE_DIR}/lite/demo/cxx/makefiles/test_cv/Makefile.${ARM_TARGET_OS}.${ARM_TARGET_ARCH_ABI}" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/test_cv/Makefile"
COMMAND cp -r "${CMAKE_SOURCE_DIR}/lite/demo/cxx/mask_detection" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx"
COMMAND cp "${CMAKE_SOURCE_DIR}/lite/demo/cxx/makefiles/mask_detection/Makefile.${ARM_TARGET_OS}.${ARM_TARGET_ARCH_ABI}" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/mask_detection/Makefile"
)
add_dependencies(tiny_publish_cxx_lib publish_inference_android_cxx_demos)
endif()
......
......@@ -71,25 +71,25 @@ tar zxvf mobilenet_v1.tar.gz
./model_optimize_tool optimize model
make
adb -s emulator-5554 push mobile_classify /data/local/tmp/
adb -s emulator-5554 push test.jpg /data/local/tmp/
adb -s emulator-5554 push labels.txt /data/local/tmp/
adb -s emulator-5554 push ../../../cxx/lib/libpaddle_light_api_shared.so /data/local/tmp/
adb -s emulator-5554 shell chmod +x /data/local/tmp/mobile_classify
adb -s emulator-5554 shell "export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH &&
adb push mobile_classify /data/local/tmp/
adb push test.jpg /data/local/tmp/
adb push labels.txt /data/local/tmp/
adb push ../../../cxx/lib/libpaddle_light_api_shared.so /data/local/tmp/
adb shell chmod +x /data/local/tmp/mobile_classify
adb shell "export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH &&
/data/local/tmp/mobile_classify /data/local/tmp/mobilenetv1opt2 /data/local/tmp/test.jpg /data/local/tmp/labels.txt"
```
运行成功将在控制台输出预测结果的前5个类别的预测概率
- 如若想看前10个类别的预测概率,在运行命令输入topk的值即可
eg:
```shell
adb -s emulator-5554 shell "export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH &&
adb shell "export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH &&
/data/local/tmp/mobile_classify /data/local/tmp/mobilenetv1opt2/ /data/local/tmp/test.jpg /data/local/tmp/labels.txt 10"
```
- 如若想看其他模型的分类结果, 在运行命令输入model_dir 及其model的输入大小即可
eg:
```shell
adb -s emulator-5554 shell "export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH &&
adb shell "export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH &&
/data/local/tmp/mobile_classify /data/local/tmp/mobilenetv2opt2/ /data/local/tmp/test.jpg /data/local/tmp/labels.txt 10 224 224"
```
......@@ -100,12 +100,34 @@ wget http://paddle-inference-dist.bj.bcebos.com/mobilenet_v1.tar.gz
tar zxvf mobilenet_v1.tar.gz
./model_optimize_tool optimize model
make
adb -s emulator-5554 push test_model_cv /data/local/tmp/
adb -s emulator-5554 push test.jpg /data/local/tmp/
adb -s emulator-5554 push labels.txt /data/local/tmp/
adb -s emulator-5554 push ../../../cxx/lib/libpaddle_full_api_shared.so /data/local/tmp/
adb -s emulator-5554 shell chmod +x /data/local/tmp/test_model_cv
adb -s emulator-5554 shell "export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH &&
adb push test_model_cv /data/local/tmp/
adb push test.jpg /data/local/tmp/
adb push labels.txt /data/local/tmp/
adb push ../../../cxx/lib/libpaddle_full_api_shared.so /data/local/tmp/
adb shell chmod +x /data/local/tmp/test_model_cv
adb shell "export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH &&
/data/local/tmp/test_model_cv /data/local/tmp/mobilenetv1opt2 /data/local/tmp/test.jpg /data/local/tmp/labels.txt"
```
运行成功将在控制台输出预测结果的前10个类别的预测概率
10. 编译并运行mask_detection口罩检测的demo
注:运行该demo所需的libpaddle_light_api_shared.so,编译选项需使用build_extra=ON
```shell
cd ../mask_detection
wget https://paddle-inference-dist.bj.bcebos.com/mask_detection.tar.gz
tar zxvf mask_detection.tar.gz
make
adb push mask_detection /data/local/tmp/
adb push test.jpg /data/local/tmp/
adb push face_detection /data/local/tmp
adb push mask_classification /data/local/tmp
adb push ../../../cxx/lib/libpaddle_light_api_shared.so /data/local/tmp/
adb shell chmod +x /data/local/tmp/mask_detection
adb shell "export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH &&
/data/local/tmp/mask_detection /data/local/tmp/face_detection \
/data/local/tmp/mask_classification /data/local/tmp/test.jpg"
adb pull /data/local/tmp/test_mask_detection_result.jpg ./
```
运行成功将在mask_detection目录下看到生成的口罩检测结果图像: test_mask_detection_result.jpg
ARM_ABI = arm7
export ARM_ABI
include ../Makefile.def
LITE_ROOT=../../../
THIRD_PARTY_DIR=${LITE_ROOT}/third_party
OPENCV_VERSION=opencv4.1.0
OPENCV_LIBS = ../../../third_party/${OPENCV_VERSION}/armeabi-v7a/libs/libopencv_imgcodecs.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/libs/libopencv_imgproc.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/libs/libopencv_core.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/3rdparty/libs/libtegra_hal.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/3rdparty/libs/liblibjpeg-turbo.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/3rdparty/libs/liblibwebp.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/3rdparty/libs/liblibpng.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/3rdparty/libs/liblibjasper.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/3rdparty/libs/liblibtiff.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/3rdparty/libs/libIlmImf.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/3rdparty/libs/libtbb.a \
../../../third_party/${OPENCV_VERSION}/armeabi-v7a/3rdparty/libs/libcpufeatures.a
OPENCV_INCLUDE = -I../../../third_party/${OPENCV_VERSION}/armeabi-v7a/include
CXX_INCLUDES = $(INCLUDES) ${OPENCV_INCLUDE} -I$(LITE_ROOT)/cxx/include
CXX_LIBS = ${OPENCV_LIBS} -L$(LITE_ROOT)/cxx/lib/ -lpaddle_light_api_shared $(SYSTEM_LIBS)
###############################################################
# How to use one of static libaray: #
# `libpaddle_api_full_bundled.a` #
# `libpaddle_api_light_bundled.a` #
###############################################################
# Note: default use lite's shared library. #
###############################################################
# 1. Comment above line using `libpaddle_light_api_shared.so`
# 2. Undo comment below line using `libpaddle_api_light_bundled.a`
#CXX_LIBS = $(LITE_ROOT)/cxx/lib/libpaddle_api_light_bundled.a $(SYSTEM_LIBS)
mask_detection: fetch_opencv mask_detection.o
$(CC) $(SYSROOT_LINK) $(CXXFLAGS_LINK) mask_detection.o -o mask_detection $(CXX_LIBS) $(LDFLAGS)
mask_detection.o: mask_detection.cc
$(CC) $(SYSROOT_COMPLILE) $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -o mask_detection.o -c mask_detection.cc
fetch_opencv:
@ test -d ${THIRD_PARTY_DIR} || mkdir ${THIRD_PARTY_DIR}
@ test -e ${THIRD_PARTY_DIR}/${OPENCV_VERSION}.tar.gz || \
(echo "fetch opencv libs" && \
wget -P ${THIRD_PARTY_DIR} https://paddle-inference-dist.bj.bcebos.com/${OPENCV_VERSION}.tar.gz)
@ test -d ${THIRD_PARTY_DIR}/${OPENCV_VERSION} || \
tar -zxvf ${THIRD_PARTY_DIR}/${OPENCV_VERSION}.tar.gz -C ${THIRD_PARTY_DIR}
.PHONY: clean
clean:
rm -f mask_detection.o
rm -f mask_detection
ARM_ABI = arm8
export ARM_ABI
include ../Makefile.def
LITE_ROOT=../../../
THIRD_PARTY_DIR=${LITE_ROOT}/third_party
OPENCV_VERSION=opencv4.1.0
OPENCV_LIBS = ../../../third_party/${OPENCV_VERSION}/arm64-v8a/libs/libopencv_imgcodecs.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/libs/libopencv_imgproc.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/libs/libopencv_core.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/libtegra_hal.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibjpeg-turbo.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibwebp.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibpng.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibjasper.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibtiff.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/libIlmImf.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/libtbb.a \
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/libcpufeatures.a
OPENCV_INCLUDE = -I../../../third_party/${OPENCV_VERSION}/arm64-v8a/include
CXX_INCLUDES = $(INCLUDES) ${OPENCV_INCLUDE} -I$(LITE_ROOT)/cxx/include
CXX_LIBS = ${OPENCV_LIBS} -L$(LITE_ROOT)/cxx/lib/ -lpaddle_light_api_shared $(SYSTEM_LIBS)
###############################################################
# How to use one of static libaray: #
# `libpaddle_api_full_bundled.a` #
# `libpaddle_api_light_bundled.a` #
###############################################################
# Note: default use lite's shared library. #
###############################################################
# 1. Comment above line using `libpaddle_light_api_shared.so`
# 2. Undo comment below line using `libpaddle_api_light_bundled.a`
#CXX_LIBS = $(LITE_ROOT)/cxx/lib/libpaddle_api_light_bundled.a $(SYSTEM_LIBS)
mask_detection: fetch_opencv mask_detection.o
$(CC) $(SYSROOT_LINK) $(CXXFLAGS_LINK) mask_detection.o -o mask_detection $(CXX_LIBS) $(LDFLAGS)
mask_detection.o: mask_detection.cc
$(CC) $(SYSROOT_COMPLILE) $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -o mask_detection.o -c mask_detection.cc
fetch_opencv:
@ test -d ${THIRD_PARTY_DIR} || mkdir ${THIRD_PARTY_DIR}
@ test -e ${THIRD_PARTY_DIR}/${OPENCV_VERSION}.tar.gz || \
(echo "fetch opencv libs" && \
wget -P ${THIRD_PARTY_DIR} https://paddle-inference-dist.bj.bcebos.com/${OPENCV_VERSION}.tar.gz)
@ test -d ${THIRD_PARTY_DIR}/${OPENCV_VERSION} || \
tar -zxvf ${THIRD_PARTY_DIR}/${OPENCV_VERSION}.tar.gz -C ${THIRD_PARTY_DIR}
.PHONY: clean
clean:
rm -f mask_detection.o
rm -f mask_detection
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h" // NOLINT
using namespace paddle::lite_api; // NOLINT
struct Object {
int batch_id;
cv::Rect rec;
int class_id;
float prob;
};
int64_t ShapeProduction(const shape_t& shape) {
int64_t res = 1;
for (auto i : shape) res *= i;
return res;
}
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
float* dout,
int size,
const std::vector<float> mean,
const std::vector<float> scale) {
if (mean.size() != 3 || scale.size() != 3) {
std::cerr << "[ERROR] mean or scale size must equal to 3\n";
exit(1);
}
float32x4_t vmean0 = vdupq_n_f32(mean[0]);
float32x4_t vmean1 = vdupq_n_f32(mean[1]);
float32x4_t vmean2 = vdupq_n_f32(mean[2]);
float32x4_t vscale0 = vdupq_n_f32(scale[0]);
float32x4_t vscale1 = vdupq_n_f32(scale[1]);
float32x4_t vscale2 = vdupq_n_f32(scale[2]);
float* dout_c0 = dout;
float* dout_c1 = dout + size;
float* dout_c2 = dout + size * 2;
int i = 0;
for (; i < size - 3; i += 4) {
float32x4x3_t vin3 = vld3q_f32(din);
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
vst1q_f32(dout_c0, vs0);
vst1q_f32(dout_c1, vs1);
vst1q_f32(dout_c2, vs2);
din += 12;
dout_c0 += 4;
dout_c1 += 4;
dout_c2 += 4;
}
for (; i < size; i++) {
*(dout_c0++) = (*(din++) - mean[0]) * scale[0];
*(dout_c1++) = (*(din++) - mean[1]) * scale[1];
*(dout_c2++) = (*(din++) - mean[2]) * scale[2];
}
}
void pre_process(const cv::Mat& img,
int width,
int height,
const std::vector<float>& mean,
const std::vector<float>& scale,
float* data,
bool is_scale = false) {
cv::Mat resized_img;
cv::resize(
img, resized_img, cv::Size(width, height), 0.f, 0.f, cv::INTER_CUBIC);
cv::Mat imgf;
float scale_factor = is_scale ? 1.f / 256 : 1.f;
resized_img.convertTo(imgf, CV_32FC3, scale_factor);
const float* dimg = reinterpret_cast<const float*>(imgf.data);
neon_mean_scale(dimg, data, width * height, mean, scale);
}
void RunModel(std::string det_model_dir,
std::string class_model_dir,
std::string img_path) {
// Prepare
cv::Mat img = imread(img_path, cv::IMREAD_COLOR);
float shrink = 0.2;
int width = img.cols;
int height = img.rows;
int s_width = static_cast<int>(width * shrink);
int s_height = static_cast<int>(height * shrink);
// Detection
MobileConfig config;
config.set_model_dir(det_model_dir);
// Create Predictor For Detction Model
std::shared_ptr<PaddlePredictor> predictor =
CreatePaddlePredictor<MobileConfig>(config);
// Get Input Tensor
std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
input_tensor0->Resize({1, 3, s_height, s_width});
auto* data = input_tensor0->mutable_data<float>();
// Do PreProcess
std::vector<float> detect_mean = {104.f, 117.f, 123.f};
std::vector<float> detect_scale = {0.007843, 0.007843, 0.007843};
pre_process(img, s_width, s_height, detect_mean, detect_scale, data, false);
// Detection Model Run
predictor->Run();
// Get Output Tensor
std::unique_ptr<const Tensor> output_tensor0(
std::move(predictor->GetOutput(0)));
auto* outptr = output_tensor0->data<float>();
auto shape_out = output_tensor0->shape();
int64_t out_len = ShapeProduction(shape_out);
// Filter Out Detection Box
float detect_threshold = 0.3;
std::vector<Object> detect_result;
for (int i = 0; i < out_len / 6; ++i) {
if (outptr[1] >= detect_threshold) {
Object obj;
int xmin = static_cast<int>(width * outptr[2]);
int ymin = static_cast<int>(height * outptr[3]);
int xmax = static_cast<int>(width * outptr[4]);
int ymax = static_cast<int>(height * outptr[5]);
int w = xmax - xmin;
int h = ymax - ymin;
cv::Rect rec_clip =
cv::Rect(xmin, ymin, w, h) & cv::Rect(0, 0, width, height);
obj.rec = rec_clip;
detect_result.push_back(obj);
}
outptr += 6;
}
// Classification
config.set_model_dir(class_model_dir);
// Create Predictor For Classification Model
predictor = CreatePaddlePredictor<MobileConfig>(config);
// Get Input Tensor
std::unique_ptr<Tensor> input_tensor1(std::move(predictor->GetInput(0)));
int classify_w = 128;
int classify_h = 128;
input_tensor1->Resize({1, 3, classify_h, classify_w});
auto* input_data = input_tensor1->mutable_data<float>();
int detect_num = detect_result.size();
std::vector<float> classify_mean = {0.5f, 0.5f, 0.5f};
std::vector<float> classify_scale = {1.f, 1.f, 1.f};
float classify_threshold = 0.5;
for (int i = 0; i < detect_num; ++i) {
cv::Rect rec_clip = detect_result[i].rec;
cv::Mat roi = img(rec_clip);
// Do PreProcess
pre_process(roi,
classify_w,
classify_h,
classify_mean,
classify_scale,
input_data,
true);
// Classification Model Run
predictor->Run();
// Get Output Tensor
std::unique_ptr<const Tensor> output_tensor1(
std::move(predictor->GetOutput(1)));
auto* outptr = output_tensor1->data<float>();
// Draw Detection and Classification Results
cv::rectangle(img, rec_clip, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
std::string text = outptr[1] > classify_threshold ? "wear mask" : "no mask";
int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
double font_scale = 1.f;
int thickness = 1;
cv::Size text_size =
cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
float new_font_scale = rec_clip.width * 0.7 * font_scale / text_size.width;
text_size =
cv::getTextSize(text, font_face, new_font_scale, thickness, nullptr);
cv::Point origin;
origin.x = rec_clip.x + 5;
origin.y = rec_clip.y + text_size.height + 5;
cv::putText(img,
text,
origin,
font_face,
new_font_scale,
cv::Scalar(0, 255, 255),
thickness,
cv::LINE_AA);
std::cout << "detect face, location: x=" << rec_clip.x
<< ", y=" << rec_clip.y << ", width=" << rec_clip.width
<< ", height=" << rec_clip.height
<< ", wear mask: " << (outptr[1] > classify_threshold)
<< std::endl;
}
// Write Result to Image File
int start = img_path.find_last_of("/");
int end = img_path.find_last_of(".");
std::string img_name = img_path.substr(start + 1, end - start - 1);
std::string result_name = img_name + "_mask_detection_result.jpg";
cv::imwrite(result_name, img);
}
int main(int argc, char** argv) {
if (argc < 3) {
std::cerr << "[ERROR] usage: " << argv[0]
<< " detction_model_dir classification_model_dir image_path\n";
exit(1);
}
std::string detect_model_dir = argv[1];
std::string classify_model_dir = argv[2];
std::string img_path = argv[3];
RunModel(detect_model_dir, classify_model_dir, img_path);
return 0;
}
......@@ -82,8 +82,8 @@ void neon_mean_scale(const float* din,
}
for (; i < size; i++) {
*(dout_c0++) = (*(din++) - mean[0]) * scale[0];
*(dout_c0++) = (*(din++) - mean[1]) * scale[1];
*(dout_c0++) = (*(din++) - mean[2]) * scale[2];
*(dout_c1++) = (*(din++) - mean[1]) * scale[1];
*(dout_c2++) = (*(din++) - mean[2]) * scale[2];
}
}
......@@ -188,13 +188,12 @@ void RunModel(std::string model_dir, std::string img_path) {
std::move(predictor->GetOutput(0)));
auto* outptr = output_tensor->data<float>();
auto shape_out = output_tensor->shape();
int64_t cnt = 1;
for (auto& i : shape_out) {
cnt *= i;
}
int64_t cnt = ShapeProduction(shape_out);
auto rec_out = detect_object(outptr, static_cast<int>(cnt / 6), 0.6f, img);
std::string result_name =
img_path.substr(0, img_path.find(".")) + "_ssd_detection_result.jpg";
int start = img_path.find_last_of("/");
int end = img_path.find_last_of(".");
std::string img_name = img_path.substr(start + 1, end - start - 1);
std::string result_name = img_name + "_ssd_detection_result.jpg";
cv::imwrite(result_name, img);
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册