Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4b0a4230
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4b0a4230
编写于
8月 05, 2020
作者:
开心的小妮
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle-Lite
into fix-opencl-concat
上级
2d8fcc46
4bdeabb8
变更
23
显示空白变更内容
内联
并排
Showing
23 changed file
with
505 addition
and
89 deletion
+505
-89
docs/demo_guides/mediatek_apu.md
docs/demo_guides/mediatek_apu.md
+9
-3
docs/demo_guides/rockchip_npu.md
docs/demo_guides/rockchip_npu.md
+13
-7
lite/api/model_test.cc
lite/api/model_test.cc
+2
-0
lite/kernels/arm/elementwise_compute.cc
lite/kernels/arm/elementwise_compute.cc
+18
-20
lite/kernels/host/CMakeLists.txt
lite/kernels/host/CMakeLists.txt
+1
-0
lite/kernels/host/expand_as_compute.cc
lite/kernels/host/expand_as_compute.cc
+86
-0
lite/kernels/host/expand_as_compute.h
lite/kernels/host/expand_as_compute.h
+36
-0
lite/kernels/rknpu/bridges/batch_norm_op.cc
lite/kernels/rknpu/bridges/batch_norm_op.cc
+4
-14
lite/kernels/rknpu/bridges/concat_op.cc
lite/kernels/rknpu/bridges/concat_op.cc
+5
-6
lite/kernels/rknpu/bridges/conv_op.cc
lite/kernels/rknpu/bridges/conv_op.cc
+6
-3
lite/kernels/rknpu/bridges/elementwise_ops.cc
lite/kernels/rknpu/bridges/elementwise_ops.cc
+7
-8
lite/kernels/rknpu/bridges/fc_op.cc
lite/kernels/rknpu/bridges/fc_op.cc
+13
-13
lite/kernels/rknpu/bridges/pool_op.cc
lite/kernels/rknpu/bridges/pool_op.cc
+6
-6
lite/kernels/rknpu/bridges/softmax_op.cc
lite/kernels/rknpu/bridges/softmax_op.cc
+4
-6
lite/operators/CMakeLists.txt
lite/operators/CMakeLists.txt
+1
-0
lite/operators/expand_as_op.cc
lite/operators/expand_as_op.cc
+60
-0
lite/operators/expand_as_op.h
lite/operators/expand_as_op.h
+44
-0
lite/operators/fusion_elementwise_activation_ops.cc
lite/operators/fusion_elementwise_activation_ops.cc
+7
-2
lite/operators/op_params.h
lite/operators/op_params.h
+7
-0
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+1
-0
lite/tests/kernels/expand_as_compute_test.cc
lite/tests/kernels/expand_as_compute_test.cc
+149
-0
lite/tools/build_android.sh
lite/tools/build_android.sh
+23
-0
lite/tools/build_linux.sh
lite/tools/build_linux.sh
+3
-1
未找到文件。
docs/demo_guides/mediatek_apu.md
浏览文件 @
4b0a4230
...
...
@@ -159,12 +159,18 @@ $ git checkout <release-version-tag>
$
wget https://paddlelite-demo.bj.bcebos.com/devices/mediatek/apu_ddk.tar.gz
$
tar
-xvf
apu_ddk.tar.gz
```
-
编译tiny_publish for MT8168-P2V1 Tablet
-
编译tiny_publish for MT8168-P2V1 Tablet
and Smart TVs(S900)
```
shell
$
./lite/tools/build.sh
--arm_os
=
android
--arm_abi
=
armv8
--arm_lang
=
gcc
--android_stl
=
c++_shared
--build_extra
=
ON
--with_log
=
ON
--build_apu
=
ON
--apu_ddk_root
=
./apu_ddk tiny_publish
For MT8168-P2V1 Tablet
$
./lite/tools/build_android.sh
--android_stl
=
c++_shared
--with_extra
=
ON
--with_log
=
ON
--with_mediatek_apu
=
ON
--mediatek_apu_sdk_root
=
./apu_ddk
For Smart TVs
(
S900
)
$
./lite/tools/build_android.sh
--arch
=
armv7
--android_stl
=
c++_shared
--with_extra
=
ON
--with_log
=
ON
--with_mediatek_apu
=
ON
--mediatek_apu_sdk_root
=
./apu_ddk
```
-
将编译生成的build.lite.android.armv8.gcc/inference_lite_lib.android.armv8.apu/cxx/include替换PaddleLite-android-demo/libs/PaddleLite/arm64-v8a/include目录;
-
将编译生成的build.lite.android.armv8.gcc/inference_lite_lib.android.armv8.apu/cxx/lib/libpaddle_light_api_shared.so替换PaddleLite-android-demo/libs/PaddleLite/arm64-v8a/lib/libpaddle_light_api_shared.so文件。
-
将编译生成的build.lite.android.armv8.gcc/inference_lite_lib.android.armv8.apu/cxx/lib/libpaddle_light_api_shared.so替换PaddleLite-android-demo/libs/PaddleLite/arm64-v8a/lib/libpaddle_light_api_shared.so文件;
-
将编译生成的build.lite.android.armv7.gcc/inference_lite_lib.android.armv7.apu/cxx/include替换PaddleLite-android-demo/libs/PaddleLite/armeabi-v7a/include目录;
-
将编译生成的build.lite.android.armv7.gcc/inference_lite_lib.android.armv7.apu/cxx/lib/libpaddle_light_api_shared.so替换PaddleLite-android-demo/libs/PaddleLite/armeabi-v7a/lib/libpaddle_light_api_shared.so文件。
## 其它说明
...
...
docs/demo_guides/rockchip_npu.md
浏览文件 @
4b0a4230
...
...
@@ -137,20 +137,26 @@ $ cd Paddle-Lite
$
git checkout <release-version-tag>
$
git clone https://github.com/airockchip/rknpu_ddk.git
```
-
编译
full_publish and tiny
_publish for RK1808 and RK1806 EVB
-
编译
tiny_publish and full
_publish for RK1808 and RK1806 EVB
```
shell
For RK1808 EVB
$
./lite/tools/build.sh
--arm_os
=
armlinux
--arm_abi
=
armv8
--arm_lang
=
gcc
--build_extra
=
ON
--with_log
=
ON
--build_rknpu
=
ON
--rknpu_ddk_root
=
./rknpu_ddk full_publish
$
./lite/tools/build.sh
--arm_os
=
armlinux
--arm_abi
=
armv8
--arm_lang
=
gcc
--build_extra
=
ON
--with_log
=
ON
--build_rknpu
=
ON
--rknpu_ddk_root
=
./rknpu_ddk tiny_publish
tiny_publish
$
./lite/tools/build_linux.sh
--with_extra
=
ON
--with_log
=
ON
--with_rockchip_npu
=
ON
--rockchip_npu_sdk_root
=
./rknpu_ddk
full_publish
$
./lite/tools/build_linux.sh
--with_extra
=
ON
--with_log
=
ON
--with_rockchip_npu
=
ON
--rockchip_npu_sdk_root
=
./rknpu_ddk full_publish
For RK1806 EVB
$
./lite/tools/build.sh
--arm_os
=
armlinux
--arm_abi
=
armv7
--arm_lang
=
gcc
--build_extra
=
ON
--with_log
=
ON
--build_rknpu
=
ON
--rknpu_ddk_root
=
./rknpu_ddk full_publish
$
./lite/tools/build.sh
--arm_os
=
armlinux
--arm_abi
=
armv7
--arm_lang
=
gcc
--build_extra
=
ON
--with_log
=
ON
--build_rknpu
=
ON
--rknpu_ddk_root
=
./rknpu_ddk tiny_publish
tiny_publish
$
./lite/tools/build_linux.sh
--arch
=
armv7
--with_extra
=
ON
--with_log
=
ON
--with_rockchip_npu
=
ON
--rockchip_npu_sdk_root
=
./rknpu_ddk
full_publish
$
./lite/tools/build_linux.sh
--arch
=
armv7
--with_extra
=
ON
--with_log
=
ON
--with_rockchip_npu
=
ON
--rockchip_npu_sdk_root
=
./rknpu_ddk full_publish
```
-
将编译生成的build.lite.armlinux.armv8.gcc/inference_lite_lib.armlinux.armv8.rknpu/cxx/include替换PaddleLite-linux-demo/libs/PaddleLite/arm64/include目录;
-
将编译生成的build.lite.armlinux.armv8.gcc/inference_lite_lib.armlinux.armv8.rknpu/cxx/lib/libpaddle_light_api_shared.so替换PaddleLite-linux-demo/libs/PaddleLite/arm64/lib/libpaddle_light_api_shared.so文件;
-
将tiny_publish模式下编译生成的build.lite.armlinux.armv8.gcc/inference_lite_lib.armlinux.armv8.rknpu/cxx/lib/libpaddle_light_api_shared.so替换PaddleLite-linux-demo/libs/PaddleLite/arm64/lib/libpaddle_light_api_shared.so文件;
-
将full_publish模式下编译生成的build.lite.armlinux.armv8.gcc/inference_lite_lib.armlinux.armv8.rknpu/cxx/lib/libpaddle_full_api_shared.so替换PaddleLite-linux-demo/libs/PaddleLite/arm64/lib/libpaddle_full_api_shared.so文件;
-
将编译生成的build.lite.armlinux.armv7.gcc/inference_lite_lib.armlinux.armv7.rknpu/cxx/include替换PaddleLite-linux-demo/libs/PaddleLite/armhf/include目录;
-
将编译生成的build.lite.armlinux.armv7.gcc/inference_lite_lib.armlinux.armv7.rknpu/cxx/lib/libpaddle_light_api_shared.so替换PaddleLite-linux-demo/libs/PaddleLite/armhf/lib/libpaddle_light_api_shared.so文件。
-
将tiny_publish模式下编译生成的build.lite.armlinux.armv7.gcc/inference_lite_lib.armlinux.armv7.rknpu/cxx/lib/libpaddle_light_api_shared.so替换PaddleLite-linux-demo/libs/PaddleLite/armhf/lib/libpaddle_light_api_shared.so文件;
-
将full_publish模式下编译生成的build.lite.armlinux.armv7.gcc/inference_lite_lib.armlinux.armv7.rknpu/cxx/lib/libpaddle_full_api_shared.so替换PaddleLite-linux-demo/libs/PaddleLite/armhf/lib/libpaddle_full_api_shared.so文件。
## 其它说明
...
...
lite/api/model_test.cc
浏览文件 @
4b0a4230
...
...
@@ -25,6 +25,8 @@
#include "lite/core/profile/basic_profiler.h"
#endif // LITE_WITH_PROFILE
#include <gflags/gflags.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
using
paddle
::
lite
::
profile
::
Timer
;
...
...
lite/kernels/arm/elementwise_compute.cc
浏览文件 @
4b0a4230
...
...
@@ -137,10 +137,11 @@ void ElementwiseSubCompute::Run() {
auto
x_dims
=
param
.
X
->
dims
();
auto
y_dims
=
param
.
Y
->
dims
();
int
pre
,
n
,
post
;
if
(
x_dims
.
size
()
<
y_dims
.
size
())
{
LOG
(
FATAL
)
<<
"elewise div don't support x_dims size < y_dims size"
;
}
if
(
is_broadcast
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
))
{
if
(
x_dims
.
size
()
<
y_dims
.
size
()
&&
is_broadcast
(
y_dims
,
x_dims
,
axis
,
&
pre
,
&
n
,
&
post
))
{
lite
::
arm
::
math
::
elementwise_sub_broadcast
(
y_data
,
x_data
,
out_data
,
pre
,
n
,
post
);
}
else
if
(
is_broadcast
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
))
{
lite
::
arm
::
math
::
elementwise_sub_broadcast
(
x_data
,
y_data
,
out_data
,
pre
,
n
,
post
);
}
else
{
...
...
@@ -158,24 +159,21 @@ void ElementwiseSubActivationCompute::Run() {
std
::
string
act_type
=
param
.
act_type
;
auto
x_dims
=
param
.
X
->
dims
();
auto
y_dims
=
param
.
Y
->
dims
();
if
(
x_dims
.
size
()
<
y_dims
.
size
())
{
LOG
(
FATAL
)
<<
"elewise div don't support x_dims size < y_dims size"
;
}
int
pre
,
n
,
post
;
if
(
is_broadcast
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
))
{
if
(
act_type
==
"relu"
)
{
lite
::
arm
::
math
::
elementwise_sub_relu_broadcast
(
x_data
,
y_data
,
out_data
,
pre
,
n
,
post
);
}
else
{
if
(
act_type
!=
"relu"
)
{
LOG
(
FATAL
)
<<
"unsupported Activation type: "
<<
act_type
;
}
if
(
x_dims
.
size
()
<
y_dims
.
size
()
&&
is_broadcast
(
y_dims
,
x_dims
,
axis
,
&
pre
,
&
n
,
&
post
))
{
lite
::
arm
::
math
::
elementwise_sub_relu_broadcast
(
y_data
,
x_data
,
out_data
,
pre
,
n
,
post
);
}
else
if
(
is_broadcast
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
))
{
lite
::
arm
::
math
::
elementwise_sub_relu_broadcast
(
x_data
,
y_data
,
out_data
,
pre
,
n
,
post
);
}
else
{
if
(
act_type
==
"relu"
)
{
lite
::
arm
::
math
::
elementwise_sub_relu
(
x_data
,
y_data
,
out_data
,
x_dims
.
production
());
}
else
{
LOG
(
FATAL
)
<<
"unsupported Activation type: "
<<
act_type
;
}
}
}
...
...
lite/kernels/host/CMakeLists.txt
浏览文件 @
4b0a4230
...
...
@@ -7,6 +7,7 @@ add_kernel(squeeze_compute_host Host basic SRCS squeeze_compute.cc DEPS ${lite_k
add_kernel
(
unsqueeze_compute_host Host basic SRCS unsqueeze_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
multiclass_nms_compute_host Host basic SRCS multiclass_nms_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
expand_compute_host Host basic SRCS expand_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
expand_as_compute_host Host basic SRCS expand_as_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
shape_compute_host Host extra SRCS shape_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
is_empty_compute_host Host extra SRCS is_empty_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
crf_decoding_compute_host Host extra SRCS crf_decoding_compute.cc DEPS
${
lite_kernel_deps
}
)
...
...
lite/kernels/host/expand_as_compute.cc
0 → 100644
浏览文件 @
4b0a4230
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/host/expand_as_compute.h"
#include <vector>
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
host
{
template
<
typename
T
,
PrecisionType
PType
>
void
ExpandAsCompute
<
T
,
PType
>::
Run
()
{
auto
&
param
=
this
->
template
Param
<
operators
::
ExpandAsParam
>();
const
auto
*
x
=
param
.
X
;
auto
*
out
=
param
.
Out
;
const
auto
*
target
=
param
.
Target
;
std
::
vector
<
int
>
expand_times
;
const
T
*
src
=
x
->
template
data
<
T
>();
T
*
dst
=
out
->
template
mutable_data
<
T
>();
// int dims = expand_times.size();
for
(
int
i
=
0
;
i
<
target
->
dims
().
size
();
++
i
)
{
int
times
=
target
->
dims
()[
i
]
/
x
->
dims
()[
i
];
expand_times
.
push_back
(
times
);
}
int
dims
=
target
->
dims
().
size
();
DDim
in_shape
=
x
->
dims
();
int
inner_num
=
1
;
int
pos
=
dims
-
1
;
int
outer_num
=
in_shape
.
count
(
0
,
pos
);
inner_num
*=
in_shape
[
pos
];
for
(
int
j
=
0
;
j
<
outer_num
;
++
j
)
{
for
(
int
k
=
0
;
k
<
expand_times
[
pos
];
++
k
)
{
memcpy
(
dst
+
(
j
*
expand_times
[
pos
]
+
k
)
*
inner_num
,
src
+
j
*
inner_num
,
sizeof
(
T
)
*
inner_num
);
}
}
inner_num
*=
expand_times
[
pos
];
for
(
int
i
=
dims
-
2
;
i
>=
0
;
--
i
)
{
int
outer_num
=
in_shape
.
count
(
0
,
i
);
inner_num
*=
in_shape
[
i
];
for
(
int
j
=
outer_num
-
1
;
j
>=
0
;
--
j
)
{
for
(
int
k
=
expand_times
[
i
]
-
1
;
k
>=
0
;
--
k
)
{
memcpy
(
dst
+
(
j
*
expand_times
[
i
]
+
k
)
*
inner_num
,
dst
+
j
*
inner_num
,
sizeof
(
T
)
*
inner_num
);
}
}
inner_num
*=
expand_times
[
i
];
}
}
}
// namespace host
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
using
expand_as_float
=
paddle
::
lite
::
kernels
::
host
::
ExpandAsCompute
<
float
,
PRECISION
(
kFloat
)
>
;
REGISTER_LITE_KERNEL
(
expand_as
,
kHost
,
kFloat
,
kAny
,
expand_as_float
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kAny
))})
.
BindInput
(
"Target"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kAny
))})
.
Finalize
();
lite/kernels/host/expand_as_compute.h
0 → 100644
浏览文件 @
4b0a4230
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
host
{
template
<
typename
T
,
PrecisionType
PType
>
class
ExpandAsCompute
:
public
KernelLite
<
TARGET
(
kHost
),
PType
,
DATALAYOUT
(
kAny
)
>
{
public:
void
Run
()
override
;
virtual
~
ExpandAsCompute
()
=
default
;
};
}
// namespace host
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/rknpu/bridges/batch_norm_op.cc
浏览文件 @
4b0a4230
...
...
@@ -32,30 +32,18 @@ int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// Get input and output vars and op attributes
auto
x_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
x
=
scope
->
FindMutableTensor
(
x_name
);
auto
x_dims
=
x
->
dims
();
auto
scale_name
=
op_info
->
Input
(
"Scale"
).
front
();
auto
scale_type
=
kernel
->
GetInputDeclType
(
"Scale"
);
CHECK
(
scale_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
scale
=
scope
->
FindMutableTensor
(
scale_name
);
auto
bias_name
=
op_info
->
Input
(
"Bias"
).
front
();
auto
bias_type
=
kernel
->
GetInputDeclType
(
"Bias"
);
CHECK
(
bias_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
bias
=
scope
->
FindMutableTensor
(
bias_name
);
auto
mean_name
=
op_info
->
Input
(
"Mean"
).
front
();
auto
mean_type
=
kernel
->
GetInputDeclType
(
"Mean"
);
CHECK
(
mean_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
mean
=
scope
->
FindMutableTensor
(
mean_name
);
auto
variance_name
=
op_info
->
Input
(
"Variance"
).
front
();
auto
variance_type
=
kernel
->
GetInputDeclType
(
"Variance"
);
CHECK
(
variance_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
variance
=
scope
->
FindMutableTensor
(
variance_name
);
auto
y_name
=
op_info
->
Output
(
"Y"
).
front
();
auto
y_type
=
kernel
->
GetOutputDeclType
(
"Y"
);
auto
y
=
scope
->
FindMutableTensor
(
y_name
);
CHECK
(
y_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
float
momentum
=
op_info
->
GetAttr
<
float
>
(
"momentum"
);
float
epsilon
=
op_info
->
GetAttr
<
float
>
(
"epsilon"
);
int
mode
=
1
;
// bnScale, bnBias tensor dims are 1xCx1x1
...
...
@@ -71,9 +59,11 @@ int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
op_info
->
HasAttr
(
"enable_int8"
))
{
enable_int8
=
op_info
->
GetAttr
<
bool
>
(
"enable_int8"
);
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
CHECK
(
op_info
->
HasInputScale
(
x_name
));
input_scale
=
op_info
->
GetInputScale
(
x_name
)[
0
];
bit_length
=
op_info
->
GetAttr
<
int
>
(
"bit_length"
);
output_scale
=
op_info
->
GetAttr
<
float
>
(
"output_scale"
);
CHECK
(
op_info
->
HasOutputScale
(
y_name
));
output_scale
=
op_info
->
GetOutputScale
(
y_name
)[
0
];
if
(
enable_int8
)
{
precision
=
PRECISION
(
kInt8
);
...
...
lite/kernels/rknpu/bridges/concat_op.cc
浏览文件 @
4b0a4230
...
...
@@ -32,9 +32,7 @@ int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// Get input and output vars and op attributes
auto
x_names
=
op_info
->
Input
(
"X"
);
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
auto
out_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
out_type
=
kernel
->
GetOutputDeclType
(
"Out"
);
auto
output
=
scope
->
FindMutableTensor
(
out_name
);
auto
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
...
...
@@ -50,9 +48,9 @@ int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
op_info
->
HasAttr
(
"enable_int8"
))
{
enable_int8
=
op_info
->
GetAttr
<
bool
>
(
"enable_int8"
);
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
bit_length
=
op_info
->
GetAttr
<
int
>
(
"bit_length"
);
output_scale
=
op_info
->
GetAttr
<
float
>
(
"output_scale"
);
CHECK
(
op_info
->
HasOutputScale
(
out_name
));
output_scale
=
op_info
->
GetOutputScale
(
out_name
)[
0
];
if
(
enable_int8
)
{
precision
=
PRECISION
(
kInt8
);
...
...
@@ -77,12 +75,13 @@ int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) {
qnt
.
enable_int8
=
enable_int8
;
if
(
enable_int8
)
{
CHECK
(
op_info
->
HasInputScale
(
x_name
));
input_scale
=
op_info
->
GetInputScale
(
x_name
)[
0
];
qnt
.
quant_bits
=
bit_length
;
qnt
.
scale
.
push_back
(
input_scale
);
x
->
mutable_data
<
int8_t
>
();
}
x_node
=
graph
->
Add
(
x_name
,
*
x
,
x_type
->
precision
(),
x_type
->
layout
(),
qnt
);
x_node
=
graph
->
Add
(
x_name
,
*
x
,
precision
,
layout
,
qnt
);
}
inputs
.
push_back
(
x_node
->
data
());
...
...
lite/kernels/rknpu/bridges/conv_op.cc
浏览文件 @
4b0a4230
...
...
@@ -59,7 +59,8 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK_EQ
(
dilations
.
size
(),
2L
);
// Check depthwise mode
bool
is_depthwise_mode
=
(
ic
==
groups
&&
oc
==
groups
&&
groups
!=
1
);
auto
weight_scale
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"weight_scale"
);
CHECK
(
op_info
->
HasInputScale
(
filter_name
));
auto
weight_scale
=
op_info
->
GetInputScale
(
filter_name
);
// for quantization
bool
enable_int8
=
false
;
...
...
@@ -71,9 +72,11 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
op_info
->
HasAttr
(
"enable_int8"
))
{
enable_int8
=
op_info
->
GetAttr
<
bool
>
(
"enable_int8"
);
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
CHECK
(
op_info
->
HasInputScale
(
input_name
));
input_scale
=
op_info
->
GetInputScale
(
input_name
)[
0
];
bit_length
=
op_info
->
GetAttr
<
int
>
(
"bit_length"
);
output_scale
=
op_info
->
GetAttr
<
float
>
(
"output_scale"
);
CHECK
(
op_info
->
HasOutputScale
(
output_name
));
output_scale
=
op_info
->
GetOutputScale
(
output_name
)[
0
];
if
(
enable_int8
)
{
precision
=
PRECISION
(
kInt8
);
...
...
lite/kernels/rknpu/bridges/elementwise_ops.cc
浏览文件 @
4b0a4230
...
...
@@ -56,11 +56,9 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// Get input and output vars and op attributes
auto
x_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
auto
x
=
scope
->
FindMutableTensor
(
x_name
);
auto
x_dims
=
x
->
dims
();
auto
y_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
y_type
=
kernel
->
GetInputDeclType
(
"Y"
);
auto
y
=
scope
->
FindMutableTensor
(
y_name
);
auto
y_dims
=
y
->
dims
();
auto
out_name
=
op_info
->
Output
(
"Out"
).
front
();
...
...
@@ -78,9 +76,11 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
op_info
->
HasAttr
(
"enable_int8"
))
{
enable_int8
=
op_info
->
GetAttr
<
bool
>
(
"enable_int8"
);
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
CHECK
(
op_info
->
HasInputScale
(
x_name
));
input_scale
=
op_info
->
GetInputScale
(
x_name
)[
0
];
bit_length
=
op_info
->
GetAttr
<
int
>
(
"bit_length"
);
output_scale
=
op_info
->
GetAttr
<
float
>
(
"output_scale"
);
CHECK
(
op_info
->
HasOutputScale
(
out_name
));
output_scale
=
op_info
->
GetOutputScale
(
out_name
)[
0
];
if
(
enable_int8
)
{
precision
=
PRECISION
(
kInt8
);
...
...
@@ -100,7 +100,7 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
qnt
.
scale
.
push_back
(
input_scale
);
qnt
.
quant_bits
=
op_info
->
GetAttr
<
int
>
(
"bit_length"
);
}
x_node
=
graph
->
Add
(
x_name
,
*
x
,
x_type
->
precision
(),
x_type
->
layout
()
,
qnt
);
x_node
=
graph
->
Add
(
x_name
,
*
x
,
precision
,
layout
,
qnt
);
}
// Y node
...
...
@@ -118,7 +118,7 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
qnt
.
scale
.
clear
();
qnt
.
scale
.
push_back
(
input_scale
);
}
y_node
=
graph
->
Add
(
y_name
,
*
y
,
y_type
->
precision
(),
y_type
->
layout
()
,
qnt
);
y_node
=
graph
->
Add
(
y_name
,
*
y
,
precision
,
layout
,
qnt
);
}
std
::
shared_ptr
<
Node
>
output_node
=
nullptr
;
...
...
@@ -133,8 +133,7 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
output
->
mutable_data
<
int8_t
>
();
}
output_node
=
graph
->
Add
(
out_name
,
*
output
,
x_type
->
precision
(),
x_type
->
layout
(),
output_qnt
);
output_node
=
graph
->
Add
(
out_name
,
*
output
,
precision
,
layout
,
output_qnt
);
std
::
vector
<
std
::
shared_ptr
<
rk
::
nn
::
Tensor
>>
inputs
;
std
::
vector
<
std
::
shared_ptr
<
rk
::
nn
::
Tensor
>>
outputs
;
...
...
lite/kernels/rknpu/bridges/fc_op.cc
浏览文件 @
4b0a4230
...
...
@@ -31,17 +31,14 @@ int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) {
VLOG
(
3
)
<<
"[RKNPU] Converting "
+
op_type
+
"..."
;
auto
input_name
=
op_info
->
Input
(
"Input"
).
front
();
auto
input_type
=
kernel
->
GetInputDeclType
(
"Input"
);
auto
input
=
scope
->
FindMutableTensor
(
input_name
);
auto
input_dims
=
input
->
dims
();
CHECK_GE
(
input_dims
.
size
(),
2UL
);
auto
w_name
=
op_info
->
Input
(
"W"
).
front
();
auto
w_type
=
kernel
->
GetInputDeclType
(
"W"
);
auto
w
=
scope
->
FindMutableTensor
(
w_name
);
auto
w_dims
=
w
->
dims
();
CHECK_EQ
(
w_dims
.
size
(),
2UL
);
auto
out_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
out_type
=
kernel
->
GetOutputDeclType
(
"Out"
);
auto
output
=
scope
->
FindMutableTensor
(
out_name
);
int
in_num_col_dims
=
op_info
->
GetAttr
<
int
>
(
"in_num_col_dims"
);
int
m
=
input_dims
.
Slice
(
0
,
in_num_col_dims
).
production
();
...
...
@@ -61,9 +58,11 @@ int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
op_info
->
HasAttr
(
"enable_int8"
))
{
enable_int8
=
op_info
->
GetAttr
<
bool
>
(
"enable_int8"
);
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
CHECK
(
op_info
->
HasInputScale
(
input_name
));
input_scale
=
op_info
->
GetInputScale
(
input_name
)[
0
];
bit_length
=
op_info
->
GetAttr
<
int
>
(
"bit_length"
);
output_scale
=
op_info
->
GetAttr
<
float
>
(
"output_scale"
);
CHECK
(
op_info
->
HasOutputScale
(
out_name
));
output_scale
=
op_info
->
GetOutputScale
(
out_name
)[
0
];
if
(
enable_int8
)
{
precision
=
PRECISION
(
kInt8
);
}
...
...
@@ -86,7 +85,8 @@ int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
enable_int8
)
{
QuantizationInfo
filter_qnt
;
auto
weight_scale
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"weight_scale"
);
CHECK
(
op_info
->
HasInputScale
(
w_name
));
auto
weight_scale
=
op_info
->
GetInputScale
(
w_name
);
filter_qnt
.
enable_int8
=
enable_int8
;
filter_qnt
.
scale
=
weight_scale
;
filter_qnt
.
quant_bits
=
bit_length
;
...
...
@@ -99,8 +99,8 @@ int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) {
transpose_w_data
[
j
*
k
+
i
]
=
w_data
[
i
*
n
+
j
];
}
}
trans_w_node
=
graph
->
Add
(
w_name
,
*
transpose_w
,
precision
,
w_type
->
layout
()
,
filter_qnt
);
trans_w_node
=
graph
->
Add
(
w_name
,
*
transpose_w
,
precision
,
layout
,
filter_qnt
);
}
else
{
auto
transpose_w_data
=
transpose_w
->
mutable_data
<
float
>
();
auto
w_data
=
w
->
mutable_data
<
float
>
();
...
...
@@ -110,8 +110,7 @@ int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) {
transpose_w_data
[
j
*
k
+
i
]
=
w_data
[
i
*
n
+
j
];
}
}
trans_w_node
=
graph
->
Add
(
w_name
,
*
transpose_w
,
precision
,
w_type
->
layout
());
trans_w_node
=
graph
->
Add
(
w_name
,
*
transpose_w
,
precision
,
layout
);
}
// Add bias node if bias tensor exists
...
...
@@ -132,8 +131,8 @@ int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
enable_int8
)
{
auto
bias_name_qnt
=
bias_name
+
"/qnt"
;
auto
*
bias_qnt
=
scope
->
NewTensor
(
bias_name_qnt
);
auto
weight_scale
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"weight_scale"
);
CHECK
(
op_info
->
HasInputScale
(
w_name
));
auto
weight_scale
=
op_info
->
GetInputScale
(
w_name
);
bias_qnt
->
Resize
(
bias_shape
);
bias_qnt
->
set_persistable
(
true
);
...
...
@@ -176,7 +175,8 @@ int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) {
bias
->
set_persistable
(
true
);
if
(
enable_int8
)
{
auto
weight_scale
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"weight_scale"
);
CHECK
(
op_info
->
HasInputScale
(
w_name
));
auto
weight_scale
=
op_info
->
GetInputScale
(
w_name
);
bias
->
set_precision
(
PrecisionType
::
kInt32
);
auto
*
bias_data
=
bias
->
mutable_data
<
int32_t
>
();
...
...
lite/kernels/rknpu/bridges/pool_op.cc
浏览文件 @
4b0a4230
...
...
@@ -55,9 +55,11 @@ int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
x
->
precision
()
==
PRECISION
(
kInt8
))
{
// enable_int8 = op_info->GetAttr<bool>("enable_int8");
enable_int8
=
true
;
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
CHECK
(
op_info
->
HasInputScale
(
x_name
));
input_scale
=
op_info
->
GetInputScale
(
x_name
)[
0
];
bit_length
=
op_info
->
GetAttr
<
int
>
(
"bit_length"
);
output_scale
=
op_info
->
GetAttr
<
float
>
(
"output_scale"
);
CHECK
(
op_info
->
HasOutputScale
(
out_name
));
output_scale
=
op_info
->
GetOutputScale
(
out_name
)[
0
];
if
(
enable_int8
)
{
precision
=
PRECISION
(
kInt8
);
...
...
@@ -132,18 +134,16 @@ int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
ceil_mode
=
op_info
->
GetAttr
<
bool
>
(
"ceil_mode"
)
?
1
:
0
;
}
std
::
shared_ptr
<
Node
>
output_node
=
nullptr
;
QuantizationInfo
output_qnt
;
output_qnt
.
enable_int8
=
enable_int8
;
if
(
enable_int8
)
{
output_qnt
.
quant_bits
=
bit_length
;
output_qnt
.
scale
.
push_back
(
output_scale
);
output
->
mutable_data
<
int8_t
>
();
}
output_node
=
graph
->
Add
(
out_name
,
*
output
,
precision
,
layout
,
output_qnt
);
auto
output_node
=
graph
->
Add
(
out_name
,
*
output
,
precision
,
layout
,
output_qnt
);
std
::
vector
<
std
::
shared_ptr
<
rk
::
nn
::
Tensor
>>
inputs
;
std
::
vector
<
std
::
shared_ptr
<
rk
::
nn
::
Tensor
>>
outputs
;
...
...
lite/kernels/rknpu/bridges/softmax_op.cc
浏览文件 @
4b0a4230
...
...
@@ -32,14 +32,10 @@ int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// Get input and output vars and op attributes
auto
x_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
x
=
scope
->
FindMutableTensor
(
x_name
);
auto
x_dims
=
x
->
dims
();
auto
x_rank
=
x_dims
.
size
();
auto
out_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
out_type
=
kernel
->
GetOutputDeclType
(
"Out"
);
CHECK
(
out_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
output
=
scope
->
FindMutableTensor
(
out_name
);
auto
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
{
...
...
@@ -56,9 +52,11 @@ int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
op_info
->
HasAttr
(
"enable_int8"
))
{
enable_int8
=
op_info
->
GetAttr
<
bool
>
(
"enable_int8"
);
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
CHECK
(
op_info
->
HasInputScale
(
x_name
));
input_scale
=
op_info
->
GetInputScale
(
x_name
)[
0
];
bit_length
=
op_info
->
GetAttr
<
int
>
(
"bit_length"
);
output_scale
=
op_info
->
GetAttr
<
float
>
(
"output_scale"
);
CHECK
(
op_info
->
HasOutputScale
(
out_name
));
output_scale
=
op_info
->
GetOutputScale
(
out_name
)[
0
];
if
(
enable_int8
)
{
precision
=
PRECISION
(
kInt8
);
...
...
lite/operators/CMakeLists.txt
浏览文件 @
4b0a4230
...
...
@@ -34,6 +34,7 @@ add_operator(fake_quant extra SRCS fake_quantize_moving_avg_max_abs.cc DEPS ${op
add_operator
(
fake_dequant extra SRCS fake_dequantize_max_abs.cc DEPS
${
op_DEPS
}
)
add_operator
(
conv_transpose_op basic SRCS conv_transpose_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
expand_op_lite basic SRCS expand_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
expand_as_op_lite basic SRCS expand_as_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
squeeze_op_lite basic SRCS squeeze_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
unsqueeze_op_lite basic SRCS unsqueeze_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
stack_op basic SRCS stack_op.cc DEPS
${
op_DEPS
}
)
...
...
lite/operators/expand_as_op.cc
0 → 100644
浏览文件 @
4b0a4230
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/expand_as_op.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
ExpandAsOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
X
);
CHECK_OR_FALSE
(
param_
.
Target
);
CHECK_OR_FALSE
(
param_
.
Out
);
int
target_size
=
param_
.
Target
->
dims
().
size
();
int
x_dims_size
=
param_
.
X
->
dims
().
size
();
CHECK_EQ
(
target_size
,
x_dims_size
)
<<
"The number of expand_times size must be qual to the rank of "
"Input(X)."
;
CHECK_LE
(
param_
.
X
->
dims
().
size
(),
6u
)
<<
"The rank of Input(X) must not be greater than 6."
;
return
true
;
}
bool
ExpandAsOpLite
::
InferShapeImpl
()
const
{
DDim
out_dims
(
param_
.
X
->
dims
());
for
(
size_t
i
=
0
;
i
<
param_
.
Target
->
dims
().
size
();
++
i
)
{
// out_dims[i] *= param_.expand_times[i];
out_dims
[
i
]
=
param_
.
Target
->
dims
()[
i
];
}
param_
.
Out
->
Resize
(
out_dims
);
return
true
;
}
bool
ExpandAsOpLite
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
auto
X_name
=
opdesc
.
Input
(
"X"
).
front
();
auto
Out_name
=
opdesc
.
Output
(
"Out"
).
front
();
param_
.
X
=
GetVar
<
lite
::
Tensor
>
(
scope
,
X_name
);
param_
.
Out
=
GetMutableVar
<
lite
::
Tensor
>
(
scope
,
Out_name
);
auto
Target_name
=
opdesc
.
Input
(
"Target"
).
front
();
param_
.
Target
=
GetVar
<
lite
::
Tensor
>
(
scope
,
Target_name
);
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
expand_as
,
paddle
::
lite
::
operators
::
ExpandAsOpLite
);
lite/operators/expand_as_op.h
0 → 100644
浏览文件 @
4b0a4230
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "lite/core/op_lite.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
ExpandAsOpLite
:
public
OpLite
{
public:
ExpandAsOpLite
()
{}
explicit
ExpandAsOpLite
(
const
std
::
string
&
op_type
)
:
OpLite
(
op_type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShapeImpl
()
const
override
;
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"expand_as"
;
}
private:
mutable
ExpandAsParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
lite/operators/fusion_elementwise_activation_ops.cc
浏览文件 @
4b0a4230
...
...
@@ -28,8 +28,13 @@ bool FusionElementwiseActivationOp::CheckShape() const {
}
bool
FusionElementwiseActivationOp
::
InferShapeImpl
()
const
{
CHECK_OR_FALSE
(
param_
.
X
->
dims
().
size
()
>=
param_
.
Y
->
dims
().
size
());
size_t
x_size
=
param_
.
X
->
dims
().
size
();
size_t
y_size
=
param_
.
Y
->
dims
().
size
();
if
(
x_size
>=
y_size
)
{
param_
.
Out
->
Resize
(
param_
.
X
->
dims
());
}
else
{
param_
.
Out
->
Resize
(
param_
.
Y
->
dims
());
}
return
true
;
}
...
...
lite/operators/op_params.h
浏览文件 @
4b0a4230
...
...
@@ -1287,6 +1287,13 @@ struct ExpandParam : ParamBase {
std
::
vector
<
int
>
expand_times
{};
};
/// ----------------------- expand as operators ----------------------
struct
ExpandAsParam
:
ParamBase
{
const
lite
::
Tensor
*
X
{};
const
lite
::
Tensor
*
Target
{};
lite
::
Tensor
*
Out
{};
};
/// ----------------------- matmul operators ----------------------
struct
MatMulParam
:
ParamBase
{
const
lite
::
Tensor
*
X
{};
...
...
lite/tests/kernels/CMakeLists.txt
浏览文件 @
4b0a4230
...
...
@@ -86,6 +86,7 @@ endif()
lite_cc_test
(
test_kernel_squeeze_compute SRCS squeeze_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
huawei_ascend_npu_kernels
}
${
bm_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_slice_compute SRCS slice_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
huawei_ascend_npu_kernels
}
${
bm_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_expand_compute SRCS expand_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
huawei_ascend_npu_kernels
}
${
bm_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_expand_as_compute SRCS expand_as_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
bm_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_matmul_compute SRCS matmul_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
huawei_ascend_npu_kernels
}
${
bm_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
#lite_cc_test(test_kernel_crf_decoding_compute SRCS crf_decoding_compute_test.cc DEPS arena_framework ${xpu_kernels} ${npu_kernels} ${huawei_ascend_npu_kernels} ${bm_kernels} ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
endif
()
lite/tests/kernels/expand_as_compute_test.cc
0 → 100644
浏览文件 @
4b0a4230
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
namespace
paddle
{
namespace
lite
{
class
ExpandAsComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
x_
=
"X"
;
std
::
string
out_
=
"Out"
;
std
::
string
target_
=
"Target"
;
DDim
dims_
;
DDim
target_dims_
;
public:
ExpandAsComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
DDim
dims
,
DDim
target_dims
)
:
TestCase
(
place
,
alias
),
dims_
(
dims
),
target_dims_
(
target_dims
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
const
auto
*
input
=
scope
->
FindTensor
(
x_
);
CHECK
(
input
);
auto
*
out
=
scope
->
NewTensor
(
out_
);
CHECK
(
out
);
const
auto
*
target
=
scope
->
FindTensor
(
target_
);
DDim
out_shape
(
input
->
dims
());
DDim
in_shape
=
input
->
dims
();
std
::
vector
<
int
>
expand_times_
;
for
(
size_t
i
=
0
;
i
<
target
->
dims
().
size
();
++
i
)
{
int
times
=
target
->
dims
()[
i
]
/
input
->
dims
()[
i
];
expand_times_
.
push_back
(
times
);
}
for
(
size_t
i
=
0
;
i
<
expand_times_
.
size
();
++
i
)
{
out_shape
[
i
]
*=
expand_times_
[
i
];
}
out
->
Resize
(
out_shape
);
float
*
out_data
=
out
->
mutable_data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
std
::
vector
<
int
>
in_stride
(
in_shape
.
size
(),
1
),
out_stride
(
out_shape
.
size
(),
1
);
for
(
int
i
=
in_shape
.
size
()
-
2
;
i
>=
0
;
--
i
)
{
in_stride
[
i
]
=
in_shape
[
i
+
1
]
*
in_stride
[
i
+
1
];
}
for
(
int
i
=
out_shape
.
size
()
-
2
;
i
>=
0
;
--
i
)
{
out_stride
[
i
]
=
out_shape
[
i
+
1
]
*
out_stride
[
i
+
1
];
}
for
(
size_t
out_id
=
0
;
out_id
<
out_shape
.
production
();
++
out_id
)
{
int
in_id
=
0
;
for
(
int
i
=
expand_times_
.
size
()
-
1
;
i
>=
0
;
--
i
)
{
int
in_j
=
(
out_id
/
out_stride
[
i
])
%
in_shape
[
i
];
in_id
+=
in_j
*
in_stride
[
i
];
}
out_data
[
out_id
]
=
input_data
[
in_id
];
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"expand_as"
);
op_desc
->
SetInput
(
"X"
,
{
x_
});
op_desc
->
SetInput
(
"Target"
,
{
target_
});
op_desc
->
SetOutput
(
"Out"
,
{
out_
});
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
in_data
(
dims_
.
production
());
std
::
vector
<
float
>
target_data
(
target_dims_
.
production
());
for
(
int
i
=
0
;
i
<
dims_
.
production
();
++
i
)
{
in_data
[
i
]
=
i
;
}
for
(
int
i
=
0
;
i
<
target_dims_
.
production
();
++
i
)
{
target_data
[
i
]
=
i
;
}
SetCommonTensor
(
x_
,
dims_
,
in_data
.
data
());
SetCommonTensor
(
target_
,
target_dims_
,
target_data
.
data
());
}
};
void
test_expand_as_3dim
(
Place
place
,
float
abs_error
)
{
for
(
int
C
:
{
3
})
{
for
(
int
H
:
{
2
})
{
for
(
int
W
:
{
4
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
ExpandAsComputeTester
(
place
,
"def"
,
DDim
({
C
,
H
,
W
}),
DDim
({
C
*
2
,
H
*
3
,
W
*
1
})));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
}
void
test_expand_as_4dim
(
Place
place
,
float
abs_error
)
{
for
(
int
N
:
{
2
})
{
for
(
int
C
:
{
3
})
{
for
(
int
H
:
{
2
})
{
for
(
int
W
:
{
4
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
ExpandAsComputeTester
(
place
,
"def"
,
DDim
({
N
,
C
,
H
,
W
}),
DDim
({
N
*
2
,
C
*
3
,
H
*
1
,
W
*
4
})));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
}
}
TEST
(
ExpandAs
,
precision
)
{
float
abs_error
=
1e-5
;
Place
place
;
#if defined(LITE_WITH_NPU)
place
=
TARGET
(
kNPU
);
abs_error
=
1e-2
;
// Using fp16 in NPU
#elif defined(LITE_WITH_ARM)
place
=
TARGET
(
kHost
);
#elif defined(LITE_WITH_X86)
place
=
TARGET
(
kHost
);
#else
return
;
#endif
test_expand_as_3dim
(
place
,
abs_error
);
test_expand_as_4dim
(
place
,
abs_error
);
}
}
// namespace lite
}
// namespace paddle
lite/tools/build_android.sh
浏览文件 @
4b0a4230
...
...
@@ -25,6 +25,9 @@ WITH_STRIP=OFF
# options of compiling NPU lib.
WITH_HUAWEI_KIRIN_NPU
=
OFF
HUAWEI_KIRIN_NPU_SDK_ROOT
=
"
$(
pwd
)
/ai_ddk_lib/"
# Download HiAI DDK from https://developer.huawei.com/consumer/cn/hiai/
# options of compiling APU lib.
WITH_MEDIATEK_APU
=
OFF
MEDIATEK_APU_SDK_ROOT
=
"
$(
pwd
)
/apu_ddk"
# Download APU SDK from https://paddlelite-demo.bj.bcebos.com/devices/mediatek/apu_ddk.tar.gz
# options of compiling OPENCL lib.
WITH_OPENCL
=
OFF
# options of adding training ops
...
...
@@ -154,6 +157,8 @@ function make_tiny_publish_so {
-DLITE_WITH_CV=
$WITH_CV
\
-DLITE_WITH_NPU=
$WITH_HUAWEI_KIRIN_NPU
\
-DNPU_DDK_ROOT=
$HUAWEI_KIRIN_NPU_SDK_ROOT
\
-DLITE_WITH_APU=
$WITH_MEDIATEK_APU
\
-DAPU_DDK_ROOT=
$MEDIATEK_APU_SDK_ROOT
\
-DLITE_WITH_OPENCL=
$WITH_OPENCL
\
-DARM_TARGET_ARCH_ABI=
$ARCH
\
-DARM_TARGET_LANG=
$TOOLCHAIN
\
...
...
@@ -204,6 +209,8 @@ function make_full_publish_so {
-DLITE_WITH_CV=
$WITH_CV
\
-DLITE_WITH_NPU=
$WITH_HUAWEI_KIRIN_NPU
\
-DNPU_DDK_ROOT=
$HUAWEI_KIRIN_NPU_SDK_ROOT
\
-DLITE_WITH_APU=
$WITH_MEDIATEK_APU
\
-DAPU_DDK_ROOT=
$MEDIATEK_APU_SDK_ROOT
\
-DLITE_WITH_OPENCL=
$WITH_OPENCL
\
-DARM_TARGET_ARCH_ABI=
$ARCH
\
-DARM_TARGET_LANG=
$TOOLCHAIN
\
...
...
@@ -257,6 +264,13 @@ function print_usage {
echo
-e
"| you can download huawei HiAi DDK from: https://developer.huawei.com/consumer/cn/hiai/ |"
echo
-e
"| detailed information about Paddle-Lite NPU: https://paddle-lite.readthedocs.io/zh/latest/demo_guides/npu.html |"
echo
-e
"| |"
echo
-e
"| arguments of apu library compiling:(armv8, gcc, c++_static) |"
echo
-e
"| ./lite/tools/build_android.sh --with_mediatek_apu=ON --mediatek_apu_sdk_root=YourApuSdkPath |"
echo
-e
"| --with_mediatek_apu: (OFF|ON); controls whether to compile lib for mediatek_apu, default is OFF |"
echo
-e
"| --mediatek_apu_sdk_root: (path to mediatek APU SDK file) required when compiling apu library |"
echo
-e
"| you can download mediatek APU SDK from: https://paddlelite-demo.bj.bcebos.com/devices/mediatek/apu_ddk.tar.gz |"
echo
-e
"| detailed information about Paddle-Lite APU: https://paddle-lite.readthedocs.io/zh/latest/demo_guides/mediatek_apu.html |"
echo
-e
"| |"
echo
-e
"| arguments of opencl library compiling:(armv8, gcc, c++_static) |"
echo
-e
"| ./lite/tools/build_android.sh --with_opencl=ON |"
echo
-e
"| --with_opencl: (OFF|ON); controls whether to compile lib for opencl, default is OFF |"
...
...
@@ -351,6 +365,15 @@ function main {
HUAWEI_KIRIN_NPU_SDK_ROOT
=
"
${
i
#*=
}
"
shift
;;
# compiling lib which can operate on mediatek apu.
--with_mediatek_apu
=
*
)
WITH_MEDIATEK_APU
=
"
${
i
#*=
}
"
shift
;;
--mediatek_apu_sdk_root
=
*
)
MEDIATEK_APU_SDK_ROOT
=
"
${
i
#*=
}
"
shift
;;
# compiling result contains both light_api and cxx_api lib.
full_publish
)
make_full_publish_so
...
...
lite/tools/build_linux.sh
浏览文件 @
4b0a4230
...
...
@@ -26,7 +26,7 @@ OPTMODEL_DIR=""
WITH_OPENCL
=
OFF
# options of compiling rockchip NPU lib.
WITH_ROCKCHIP_NPU
=
OFF
ROCKCHIP_NPU_SDK_ROOT
=
"
"
ROCKCHIP_NPU_SDK_ROOT
=
"
$(
pwd
)
/rknpu_ddk"
# Download RKNPU SDK from https://github.com/airockchip/rknpu_ddk.git
# options of compiling baidu XPU lib.
WITH_BAIDU_XPU
=
OFF
BAIDU_XPU_SDK_ROOT
=
""
...
...
@@ -229,6 +229,8 @@ function print_usage {
echo
-e
"| ./lite/tools/build_linux.sh --with_rockchip_npu=ON --rockchip_npu_sdk_root=YourRockchipNpuSdkPath |"
echo
-e
"| --with_rockchip_npu: (OFF|ON); controls whether to compile lib for rockchip_npu, default is OFF |"
echo
-e
"| --rockchip_npu_sdk_root: (path to rockchip_npu DDK file) required when compiling rockchip_npu library |"
echo
-e
"| you can download rockchip NPU SDK from: https://github.com/airockchip/rknpu_ddk.git |"
echo
-e
"| detailed information about Paddle-Lite RKNPU: https://paddle-lite.readthedocs.io/zh/latest/demo_guides/rockchip_npu.html |"
echo
-e
"| |"
echo
-e
"| arguments of baidu xpu library compiling: |"
echo
-e
"| ./lite/tools/build_linux.sh --with_baidu_xpu=ON --baidu_xpu_sdk_root=YourBaiduXpuSdkPath |"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录