未验证 提交 4ac51a6b 编写于 作者: J juncaipeng 提交者: GitHub

add bilinear_interp_cuda_op, test=develop (#2197)

上级 2667a153
......@@ -16,6 +16,7 @@ add_kernel(elementwise_add_compute_cuda CUDA basic SRCS elementwise_add_compute.
add_kernel(calib_compute_cuda CUDA basic SRCS calib_compute.cu DEPS ${lite_kernel_deps})
add_kernel(layout_compute_cuda CUDA basic SRCS layout_compute.cc DEPS ${lite_kernel_deps} cuda_transpose)
add_kernel(feed_compute_cuda CUDA basic SRCS feed_compute.cc DEPS ${lite_kernel_deps})
add_kernel(bilinear_interp_compute_cuda CUDA basic SRCS bilinear_interp_compute.cu DEPS ${lite_kernel_deps})
lite_cc_test(calib_compute_cuda_test SRCS calib_compute_cuda_test.cc DEPS calib_compute_cuda)
nv_test(conv2d_cuda_test SRCS conv_compute_test.cc DEPS conv2d_cuda)
......@@ -26,3 +27,4 @@ nv_test(transpose_compute_cuda_test SRCS transpose_compute_test.cc DEPS transpos
nv_test(concat_compute_cuda_test SRCS concat_compute_test.cc DEPS concat_compute_cuda)
nv_test(elementwise_add_compute_cuda_test SRCS elementwise_add_compute_test.cc DEPS elementwise_add_compute_cuda)
#nv_test(layout_cuda_test SRCS layout_compute_test.cc DEPS layout_compute_cuda)
nv_test(bilinear_interp_compute_cuda_test SRCS bilinear_interp_compute_test.cc DEPS bilinear_interp_compute_cuda)
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/bilinear_interp_compute.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
using Tensor = lite::Tensor;
template <typename T>
__global__ void BilinearInterp(const T* in,
const size_t in_img_h,
const size_t in_img_w,
const size_t input_h,
const size_t input_w,
T* out,
const size_t out_img_h,
const size_t out_img_w,
const size_t output_h,
const size_t output_w,
const size_t num_channels,
const float ratio_h,
const float ratio_w,
const bool align_corners,
const int align_mode) {
int nthreads = output_h * output_w;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
bool align_flag = (align_mode == 0 && !align_corners);
for (; tid < nthreads; tid += stride) {
int out_id_h = tid / output_w;
int out_id_w = tid % output_w;
int in_img_size = input_w / num_channels;
int out_img_size = output_w / num_channels;
int channel_id = out_id_w / out_img_size;
int out_img_idy = (out_id_w % out_img_size) / out_img_w;
int out_img_idx = tid % out_img_w;
int in_img_idy = align_flag
? static_cast<int>(ratio_h * (out_img_idy + 0.5) - 0.5)
: static_cast<int>(ratio_h * out_img_idy);
in_img_idy = (in_img_idy > 0) ? in_img_idy : 0;
int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
T src_h = ratio_h * (out_img_idy + 0.5) - 0.5;
src_h = (src_h > 0) ? src_h : 0;
T h1lambda =
align_flag ? src_h - in_img_idy : ratio_h * out_img_idy - in_img_idy;
T h2lambda = 1.f - h1lambda;
int in_img_idx = align_flag
? static_cast<int>(ratio_w * (out_img_idx + 0.5) - 0.5)
: static_cast<int>(ratio_w * out_img_idx);
in_img_idx = (in_img_idx > 0) ? in_img_idx : 0;
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
T src_w = ratio_w * (out_img_idx + 0.5) - 0.5;
src_w = (src_w > 0) ? src_w : 0;
T w1lambda =
align_flag ? src_w - in_img_idx : ratio_w * out_img_idx - in_img_idx;
T w2lambda = 1.f - w1lambda;
const T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
in_img_idy * in_img_w + in_img_idx];
// bilinear interpolation
out[out_id_h * output_w + out_id_w] =
h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[w_id]) +
h1lambda * (w2lambda * in_pos[h_id * in_img_w] +
w1lambda * in_pos[h_id * in_img_w + w_id]);
}
}
void BilinearInterpCompute::Run() {
auto& param = this->Param<param_t>();
auto& ctx = this->ctx_->template As<CUDAContext>();
auto stream = ctx.exec_stream();
Tensor* input = param.X;
Tensor* output = param.Out;
Tensor* out_size = param.OutSize;
auto* input_data = input->data<float>();
const int n = input->dims()[0];
const int c = input->dims()[1];
const int in_h = input->dims()[2];
const int in_w = input->dims()[3];
int out_h = param.out_h;
int out_w = param.out_w;
float scale = param.scale;
bool align_corners = param.align_corners;
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
if (out_size != nullptr) {
Tensor sizes;
float* size_data = sizes.mutable_data<float>();
float* outsize_data = out_size->mutable_data<float>(TARGET(kCUDA));
cudaMemcpy(
size_data, outsize_data, sizeof(float) * 2, cudaMemcpyDeviceToHost);
out_h = static_cast<int>(size_data[0]);
out_w = static_cast<int>(size_data[1]);
}
auto output_data = output->mutable_data<float>(TARGET(kCUDA));
if (in_h == out_h && in_w == out_w) {
cudaMemcpy(output_data,
input_data,
sizeof(float) * n * c * in_h * in_w,
cudaMemcpyHostToDevice);
return;
}
float ratio_h = 0.f;
float ratio_w = 0.f;
if (out_h > 1) {
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
: static_cast<float>(in_h) / out_h;
}
if (out_w > 1) {
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
: static_cast<float>(in_w) / out_w;
}
int in_hw = in_h * in_w;
int out_hw = out_h * out_w;
int in_chw = c * in_hw;
int out_chw = c * out_hw;
int pixel_num = n * out_chw;
int threads = 512;
int blocks = (pixel_num + threads - 1) / threads;
blocks = blocks > 8 ? 8 : blocks;
int align_mode = param.align_mode;
BilinearInterp<<<blocks, threads, 0, stream>>>(input_data,
in_h,
in_w,
n,
in_chw,
output_data,
out_h,
out_w,
n,
out_chw,
c,
ratio_h,
ratio_w,
align_corners,
align_mode);
cudaError_t error = cudaGetLastError();
if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}
} // namespace cuda
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(bilinear_interp,
kCUDA,
kFloat,
kNCHW,
paddle::lite::kernels::cuda::BilinearInterpCompute,
def)
.BindInput("X",
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.BindInput("OutSize",
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
class BilinearInterpCompute
: public KernelLite<TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
public:
using param_t = operators::InterpolateParam;
void Run() override;
virtual ~BilinearInterpCompute() = default;
};
} // namespace cuda
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/cuda/bilinear_interp_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
using Tensor = lite::Tensor;
TEST(bilinear_interp, normal) {
BilinearInterpCompute bilinear_interp_kernel;
std::unique_ptr<KernelContext> ctx(new KernelContext);
auto& context = ctx->As<CUDAContext>();
operators::InterpolateParam param;
Tensor x, osz, out;
Tensor x_cpu, osz_cpu, out_cpu;
Tensor x_ref, osz_ref, out_ref;
int n = 1, c = 1, in_h = 3, in_w = 3;
int out_h = 6, out_w = 6;
float scale = 2.0;
param.out_h = out_h;
param.out_w = out_w;
param.scale = scale;
param.align_corners = false;
param.align_mode = 0;
x.Resize({n, c, in_h, in_w});
osz.Resize({2});
out.Resize({n, c, out_h, out_w});
x_cpu.Resize({n, c, in_h, in_w});
osz_cpu.Resize({2});
out_cpu.Resize({n, c, out_h, out_w});
x_ref.Resize({n, c, in_h, in_w});
osz_ref.Resize({2});
out_ref.Resize({n, c, out_h, out_w});
auto* out_data = out.mutable_data<float>(TARGET(kCUDA));
float* x_cpu_data = x_cpu.mutable_data<float>();
float* osz_cpu_data = osz_cpu.mutable_data<float>();
float* out_cpu_data = out_cpu.mutable_data<float>();
float* x_ref_data = x_ref.mutable_data<float>();
float* osz_ref_data = osz_ref.mutable_data<float>();
for (int i = 0; i < x_cpu.numel(); ++i) {
x_cpu_data[i] = i + 5.0;
x_ref_data[i] = i + 5.0;
}
osz_cpu_data[0] = out_h;
osz_cpu_data[1] = out_w;
osz_ref_data[0] = out_h;
osz_ref_data[1] = out_w;
x.Assign<float, lite::DDim, TARGET(kCUDA)>(x_cpu_data, x_cpu.dims());
osz.Assign<float, lite::DDim, TARGET(kCUDA)>(osz_cpu_data, osz_cpu.dims());
param.X = &x;
param.OutSize = &osz;
param.Out = &out;
bilinear_interp_kernel.SetParam(param);
cudaStream_t stream;
cudaStreamCreate(&stream);
context.SetExecStream(stream);
bilinear_interp_kernel.SetContext(std::move(ctx));
bilinear_interp_kernel.Launch();
cudaDeviceSynchronize();
CopySync<TARGET(kCUDA)>(
out_cpu_data, out_data, sizeof(float) * out.numel(), IoDirection::DtoH);
for (int i = 0; i < out.numel(); i++) {
LOG(INFO) << out_cpu_data[i];
}
}
} // namespace cuda
} // namespace kernels
} // namespace lite
} // namespace paddle
......@@ -88,6 +88,9 @@ bool InterpolateOp::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) {
if (op_desc.HasAttr("out_h")) {
param_.out_h = op_desc.GetAttr<int>("out_h");
}
if (op_desc.HasAttr("align_mode")) {
param_.align_mode = op_desc.GetAttr<int>("align_mode");
}
param_.align_corners = op_desc.GetAttr<bool>("align_corners");
param_.interp_method = op_desc.GetAttr<std::string>("interp_method");
return true;
......
......@@ -97,6 +97,7 @@ struct InterpolateParam {
int out_h{-1};
int out_w{-1};
bool align_corners{true};
int align_mode{1};
std::string interp_method{"Nearest"};
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册