Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4ac51a6b
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4ac51a6b
编写于
10月 17, 2019
作者:
J
juncaipeng
提交者:
GitHub
10月 17, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add bilinear_interp_cuda_op, test=develop (#2197)
上级
2667a153
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
340 addition
and
0 deletion
+340
-0
lite/kernels/cuda/CMakeLists.txt
lite/kernels/cuda/CMakeLists.txt
+2
-0
lite/kernels/cuda/bilinear_interp_compute.cu
lite/kernels/cuda/bilinear_interp_compute.cu
+195
-0
lite/kernels/cuda/bilinear_interp_compute.h
lite/kernels/cuda/bilinear_interp_compute.h
+35
-0
lite/kernels/cuda/bilinear_interp_compute_test.cc
lite/kernels/cuda/bilinear_interp_compute_test.cc
+104
-0
lite/operators/interpolate_op.cc
lite/operators/interpolate_op.cc
+3
-0
lite/operators/op_params.h
lite/operators/op_params.h
+1
-0
未找到文件。
lite/kernels/cuda/CMakeLists.txt
浏览文件 @
4ac51a6b
...
...
@@ -16,6 +16,7 @@ add_kernel(elementwise_add_compute_cuda CUDA basic SRCS elementwise_add_compute.
add_kernel
(
calib_compute_cuda CUDA basic SRCS calib_compute.cu DEPS
${
lite_kernel_deps
}
)
add_kernel
(
layout_compute_cuda CUDA basic SRCS layout_compute.cc DEPS
${
lite_kernel_deps
}
cuda_transpose
)
add_kernel
(
feed_compute_cuda CUDA basic SRCS feed_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
bilinear_interp_compute_cuda CUDA basic SRCS bilinear_interp_compute.cu DEPS
${
lite_kernel_deps
}
)
lite_cc_test
(
calib_compute_cuda_test SRCS calib_compute_cuda_test.cc DEPS calib_compute_cuda
)
nv_test
(
conv2d_cuda_test SRCS conv_compute_test.cc DEPS conv2d_cuda
)
...
...
@@ -26,3 +27,4 @@ nv_test(transpose_compute_cuda_test SRCS transpose_compute_test.cc DEPS transpos
nv_test
(
concat_compute_cuda_test SRCS concat_compute_test.cc DEPS concat_compute_cuda
)
nv_test
(
elementwise_add_compute_cuda_test SRCS elementwise_add_compute_test.cc DEPS elementwise_add_compute_cuda
)
#nv_test(layout_cuda_test SRCS layout_compute_test.cc DEPS layout_compute_cuda)
nv_test
(
bilinear_interp_compute_cuda_test SRCS bilinear_interp_compute_test.cc DEPS bilinear_interp_compute_cuda
)
lite/kernels/cuda/bilinear_interp_compute.cu
0 → 100644
浏览文件 @
4ac51a6b
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/bilinear_interp_compute.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
cuda
{
using
Tensor
=
lite
::
Tensor
;
template
<
typename
T
>
__global__
void
BilinearInterp
(
const
T
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
size_t
input_h
,
const
size_t
input_w
,
T
*
out
,
const
size_t
out_img_h
,
const
size_t
out_img_w
,
const
size_t
output_h
,
const
size_t
output_w
,
const
size_t
num_channels
,
const
float
ratio_h
,
const
float
ratio_w
,
const
bool
align_corners
,
const
int
align_mode
)
{
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
bool
align_flag
=
(
align_mode
==
0
&&
!
align_corners
);
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
output_w
;
int
out_id_w
=
tid
%
output_w
;
int
in_img_size
=
input_w
/
num_channels
;
int
out_img_size
=
output_w
/
num_channels
;
int
channel_id
=
out_id_w
/
out_img_size
;
int
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_img_w
;
int
out_img_idx
=
tid
%
out_img_w
;
int
in_img_idy
=
align_flag
?
static_cast
<
int
>
(
ratio_h
*
(
out_img_idy
+
0.5
)
-
0.5
)
:
static_cast
<
int
>
(
ratio_h
*
out_img_idy
);
in_img_idy
=
(
in_img_idy
>
0
)
?
in_img_idy
:
0
;
int
h_id
=
(
in_img_idy
<
in_img_h
-
1
)
?
1
:
0
;
T
src_h
=
ratio_h
*
(
out_img_idy
+
0.5
)
-
0.5
;
src_h
=
(
src_h
>
0
)
?
src_h
:
0
;
T
h1lambda
=
align_flag
?
src_h
-
in_img_idy
:
ratio_h
*
out_img_idy
-
in_img_idy
;
T
h2lambda
=
1.
f
-
h1lambda
;
int
in_img_idx
=
align_flag
?
static_cast
<
int
>
(
ratio_w
*
(
out_img_idx
+
0.5
)
-
0.5
)
:
static_cast
<
int
>
(
ratio_w
*
out_img_idx
);
in_img_idx
=
(
in_img_idx
>
0
)
?
in_img_idx
:
0
;
int
w_id
=
(
in_img_idx
<
in_img_w
-
1
)
?
1
:
0
;
T
src_w
=
ratio_w
*
(
out_img_idx
+
0.5
)
-
0.5
;
src_w
=
(
src_w
>
0
)
?
src_w
:
0
;
T
w1lambda
=
align_flag
?
src_w
-
in_img_idx
:
ratio_w
*
out_img_idx
-
in_img_idx
;
T
w2lambda
=
1.
f
-
w1lambda
;
const
T
*
in_pos
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
in_img_idy
*
in_img_w
+
in_img_idx
];
// bilinear interpolation
out
[
out_id_h
*
output_w
+
out_id_w
]
=
h2lambda
*
(
w2lambda
*
in_pos
[
0
]
+
w1lambda
*
in_pos
[
w_id
])
+
h1lambda
*
(
w2lambda
*
in_pos
[
h_id
*
in_img_w
]
+
w1lambda
*
in_pos
[
h_id
*
in_img_w
+
w_id
]);
}
}
void
BilinearInterpCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
CUDAContext
>();
auto
stream
=
ctx
.
exec_stream
();
Tensor
*
input
=
param
.
X
;
Tensor
*
output
=
param
.
Out
;
Tensor
*
out_size
=
param
.
OutSize
;
auto
*
input_data
=
input
->
data
<
float
>
();
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
int
out_h
=
param
.
out_h
;
int
out_w
=
param
.
out_w
;
float
scale
=
param
.
scale
;
bool
align_corners
=
param
.
align_corners
;
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
}
if
(
out_size
!=
nullptr
)
{
Tensor
sizes
;
float
*
size_data
=
sizes
.
mutable_data
<
float
>
();
float
*
outsize_data
=
out_size
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
cudaMemcpy
(
size_data
,
outsize_data
,
sizeof
(
float
)
*
2
,
cudaMemcpyDeviceToHost
);
out_h
=
static_cast
<
int
>
(
size_data
[
0
]);
out_w
=
static_cast
<
int
>
(
size_data
[
1
]);
}
auto
output_data
=
output
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
cudaMemcpy
(
output_data
,
input_data
,
sizeof
(
float
)
*
n
*
c
*
in_h
*
in_w
,
cudaMemcpyHostToDevice
);
return
;
}
float
ratio_h
=
0.
f
;
float
ratio_w
=
0.
f
;
if
(
out_h
>
1
)
{
ratio_h
=
(
align_corners
)
?
static_cast
<
float
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
static_cast
<
float
>
(
in_h
)
/
out_h
;
}
if
(
out_w
>
1
)
{
ratio_w
=
(
align_corners
)
?
static_cast
<
float
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
static_cast
<
float
>
(
in_w
)
/
out_w
;
}
int
in_hw
=
in_h
*
in_w
;
int
out_hw
=
out_h
*
out_w
;
int
in_chw
=
c
*
in_hw
;
int
out_chw
=
c
*
out_hw
;
int
pixel_num
=
n
*
out_chw
;
int
threads
=
512
;
int
blocks
=
(
pixel_num
+
threads
-
1
)
/
threads
;
blocks
=
blocks
>
8
?
8
:
blocks
;
int
align_mode
=
param
.
align_mode
;
BilinearInterp
<<<
blocks
,
threads
,
0
,
stream
>>>
(
input_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
,
align_mode
);
cudaError_t
error
=
cudaGetLastError
();
if
(
error
!=
cudaSuccess
)
LOG
(
INFO
)
<<
cudaGetErrorString
(
error
);
}
}
// namespace cuda
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
bilinear_interp
,
kCUDA
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
cuda
::
BilinearInterpCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindInput
(
"OutSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
Finalize
();
lite/kernels/cuda/bilinear_interp_compute.h
0 → 100644
浏览文件 @
4ac51a6b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
cuda
{
class
BilinearInterpCompute
:
public
KernelLite
<
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
)
>
{
public:
using
param_t
=
operators
::
InterpolateParam
;
void
Run
()
override
;
virtual
~
BilinearInterpCompute
()
=
default
;
};
}
// namespace cuda
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/cuda/bilinear_interp_compute_test.cc
0 → 100644
浏览文件 @
4ac51a6b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/cuda/bilinear_interp_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
cuda
{
using
Tensor
=
lite
::
Tensor
;
TEST
(
bilinear_interp
,
normal
)
{
BilinearInterpCompute
bilinear_interp_kernel
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
auto
&
context
=
ctx
->
As
<
CUDAContext
>
();
operators
::
InterpolateParam
param
;
Tensor
x
,
osz
,
out
;
Tensor
x_cpu
,
osz_cpu
,
out_cpu
;
Tensor
x_ref
,
osz_ref
,
out_ref
;
int
n
=
1
,
c
=
1
,
in_h
=
3
,
in_w
=
3
;
int
out_h
=
6
,
out_w
=
6
;
float
scale
=
2.0
;
param
.
out_h
=
out_h
;
param
.
out_w
=
out_w
;
param
.
scale
=
scale
;
param
.
align_corners
=
false
;
param
.
align_mode
=
0
;
x
.
Resize
({
n
,
c
,
in_h
,
in_w
});
osz
.
Resize
({
2
});
out
.
Resize
({
n
,
c
,
out_h
,
out_w
});
x_cpu
.
Resize
({
n
,
c
,
in_h
,
in_w
});
osz_cpu
.
Resize
({
2
});
out_cpu
.
Resize
({
n
,
c
,
out_h
,
out_w
});
x_ref
.
Resize
({
n
,
c
,
in_h
,
in_w
});
osz_ref
.
Resize
({
2
});
out_ref
.
Resize
({
n
,
c
,
out_h
,
out_w
});
auto
*
out_data
=
out
.
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
float
*
x_cpu_data
=
x_cpu
.
mutable_data
<
float
>
();
float
*
osz_cpu_data
=
osz_cpu
.
mutable_data
<
float
>
();
float
*
out_cpu_data
=
out_cpu
.
mutable_data
<
float
>
();
float
*
x_ref_data
=
x_ref
.
mutable_data
<
float
>
();
float
*
osz_ref_data
=
osz_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x_cpu
.
numel
();
++
i
)
{
x_cpu_data
[
i
]
=
i
+
5.0
;
x_ref_data
[
i
]
=
i
+
5.0
;
}
osz_cpu_data
[
0
]
=
out_h
;
osz_cpu_data
[
1
]
=
out_w
;
osz_ref_data
[
0
]
=
out_h
;
osz_ref_data
[
1
]
=
out_w
;
x
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
x_cpu_data
,
x_cpu
.
dims
());
osz
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
osz_cpu_data
,
osz_cpu
.
dims
());
param
.
X
=
&
x
;
param
.
OutSize
=
&
osz
;
param
.
Out
=
&
out
;
bilinear_interp_kernel
.
SetParam
(
param
);
cudaStream_t
stream
;
cudaStreamCreate
(
&
stream
);
context
.
SetExecStream
(
stream
);
bilinear_interp_kernel
.
SetContext
(
std
::
move
(
ctx
));
bilinear_interp_kernel
.
Launch
();
cudaDeviceSynchronize
();
CopySync
<
TARGET
(
kCUDA
)
>
(
out_cpu_data
,
out_data
,
sizeof
(
float
)
*
out
.
numel
(),
IoDirection
::
DtoH
);
for
(
int
i
=
0
;
i
<
out
.
numel
();
i
++
)
{
LOG
(
INFO
)
<<
out_cpu_data
[
i
];
}
}
}
// namespace cuda
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/operators/interpolate_op.cc
浏览文件 @
4ac51a6b
...
...
@@ -88,6 +88,9 @@ bool InterpolateOp::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) {
if
(
op_desc
.
HasAttr
(
"out_h"
))
{
param_
.
out_h
=
op_desc
.
GetAttr
<
int
>
(
"out_h"
);
}
if
(
op_desc
.
HasAttr
(
"align_mode"
))
{
param_
.
align_mode
=
op_desc
.
GetAttr
<
int
>
(
"align_mode"
);
}
param_
.
align_corners
=
op_desc
.
GetAttr
<
bool
>
(
"align_corners"
);
param_
.
interp_method
=
op_desc
.
GetAttr
<
std
::
string
>
(
"interp_method"
);
return
true
;
...
...
lite/operators/op_params.h
浏览文件 @
4ac51a6b
...
...
@@ -97,6 +97,7 @@ struct InterpolateParam {
int
out_h
{
-
1
};
int
out_w
{
-
1
};
bool
align_corners
{
true
};
int
align_mode
{
1
};
std
::
string
interp_method
{
"Nearest"
};
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录