diff --git a/src/operators/kernel/central-arm-func/conv_bn_relu_arm_func.h b/src/operators/kernel/central-arm-func/conv_bn_relu_arm_func.h index 6e8aec99e5f595381efa98e7fb04501c13ddf4de..7eeb7f76670aa5c5a39544484ac92e611ff9066a 100644 --- a/src/operators/kernel/central-arm-func/conv_bn_relu_arm_func.h +++ b/src/operators/kernel/central-arm-func/conv_bn_relu_arm_func.h @@ -32,6 +32,7 @@ void ConvBNReluBasic(const FusionConvBNReluParam ¶m) { Tensor new_scale = *param.NewScale(); Tensor *output = param.Output(); + output->mutable_data(); int groups = param.Groups(); std::vector strides = param.Strides(); diff --git a/src/operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h b/src/operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h index cef297daad3c83253105ccf2c44d195e01d074ae..e0299d00ae09de62c133676449f0148a49beae5e 100644 --- a/src/operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h +++ b/src/operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h @@ -32,6 +32,7 @@ void DWConvBNReluBasic(const FusionDWConvBNReluParam ¶m) { Tensor new_scale = *param.NewScale(); Tensor *output = param.Output(); + output->mutable_data(); int groups = param.Groups(); std::vector strides = param.Strides(); diff --git a/src/operators/math/depthwise_conv3x3.cpp b/src/operators/math/depthwise_conv3x3.cpp index ab47126329d5f5c9b8607250dff086a31466fcec..8220e20429ef3b26acb1f0f130ecd41f2954a3c2 100644 --- a/src/operators/math/depthwise_conv3x3.cpp +++ b/src/operators/math/depthwise_conv3x3.cpp @@ -564,7 +564,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const framework::Tensor *input, #if __ARM_NEON const float *input_data = input->data(); const float *filter_data = filter->data(); - float *output_data = output->data(); + float *output_data = output->mutable_data(); const float *newscale_data = new_scale->data(); const float *newbias_data = new_bias->data(); @@ -1309,7 +1309,7 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input, #if __ARM_NEON const float *input_data = input->data(); const float *filter_data = filter->data(); - float *output_data = output->data(); + float *output_data = output->mutable_data(); const float *bias_data; if (if_bias) { bias_data = bias->data(); @@ -1729,7 +1729,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input, const float *input_data = input->data(); const float *filter_data = filter->data(); - float *output_data = output->data(); + float *output_data = output->mutable_data(); const float *newscale_data = new_scale->data(); const float *newbias_data = new_bias->data(); @@ -1978,6 +1978,7 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input, const int output_width = static_cast(output->dims()[3]); const int inhxw = input_height * input_width; const int outhxw = output_height * output_width; + output->mutable_data(); float32x4_t zero = vdupq_n_f32(0.0); for (int b = 0; b < batch_size; b++) { diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt index aa47f270a1a0292626575ba526d5b9b901d7abab..8b52faf184bf79211b39ce46ae21e0668d1dafc2 100644 --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -437,4 +437,9 @@ if (NOT FOUND_MATCH) ADD_EXECUTABLE(test-logical-xor-op operators/test_logical_xor_op.cpp test_helper.h test_include.h) target_link_libraries(test-logical-xor-op paddle-mobile) + ADD_EXECUTABLE(test-conv-bn-relu-op operators/test_conv_bn_relu_op.cpp test_helper.h test_include.h) + target_link_libraries(test-conv-bn-relu-op paddle-mobile) + + ADD_EXECUTABLE(test-dwconv-bn-relu-op operators/test_dwconv_bn_relu_op.cpp test_helper.h test_include.h) + target_link_libraries(test-dwconv-bn-relu-op paddle-mobile) endif () diff --git a/test/operators/test_conv_bn_relu_op.cpp b/test/operators/test_conv_bn_relu_op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..6a09d838e0a30486569448726c255b1a6ba7f617 --- /dev/null +++ b/test/operators/test_conv_bn_relu_op.cpp @@ -0,0 +1,172 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "../test_helper.h" +#include "../test_include.h" +#include "operators/fusion_conv_bn_relu_op.h" + +namespace paddle_mobile { + +// Reference convolution from Caffe for checking results. +// accumulate through explicit loops over input, output, and filters. +template +int TestConvBnReluOp(int in_channels, int in_height, int in_width, + int out_channels, int groups, std::string opname) { + int kernel_h = Kernel; + int kernel_w = Kernel; + int pad_h = Pad; + int pad_w = Pad; + int stride_h = Stride; + int stride_w = Stride; + int dilation_h = 1; + int dilation_w = 1; + + int batch_size = 1; + int input_c = in_channels; + int input_h = in_height; + int input_w = in_width; + int output_c = out_channels; + framework::DDim input_shape = + framework::make_ddim({batch_size, input_c, input_h, input_w}); + framework::DDim filter_shape = + framework::make_ddim({output_c, input_c / groups, kernel_h, kernel_w}); + framework::DDim shape = framework::make_ddim({output_c}); + + VariableNameMap inputs; + VariableNameMap outputs; + auto scope = std::make_shared(); + inputs["Input"] = std::vector({"input"}); + inputs["Filter"] = std::vector({"filter"}); + outputs["Out"] = std::vector({"output"}); + inputs["Mean"] = std::vector({"input_mean"}); + inputs["Variance"] = std::vector({"input_variance"}); + inputs["Scale"] = std::vector({"input_scale"}); + inputs["Bias"] = std::vector({"input_bias"}); + auto input_var = scope.get()->Var("input"); + auto input = input_var->template GetMutable(); + SetupTensor(input, input_shape, -20.0, 20.0); + + auto filter_var = scope.get()->Var("filter"); + auto filter = filter_var->template GetMutable(); + SetupTensor(filter, filter_shape, -20, 20); + + auto input_mean_var = scope.get()->Var("input_mean"); + auto input_mean = input_mean_var->template GetMutable(); + SetupTensor(input_mean, shape, -10.0, 10.0); + auto vari_var = scope.get()->Var("input_variance"); + auto vari = vari_var->template GetMutable(); + SetupTensor(vari, shape, -10.0, 10.0); + auto scale_var = scope.get()->Var("input_scale"); + auto scale = scale_var->template GetMutable(); + SetupTensor(scale, shape, -10.0, 10.0); + auto input_bias_var = scope.get()->Var("input_bias"); + auto input_bias = input_bias_var->template GetMutable(); + SetupTensor(input_bias, shape, -10.0, 10.0); + + auto output_var = scope.get()->Var("output"); + framework::AttributeMap attrs; + attrs["strides"].Set>(std::vector({stride_h, stride_w})); + attrs["paddings"].Set>(std::vector({pad_h, pad_w})); + attrs["dilations"].Set>( + std::vector({dilation_h, dilation_w})); + attrs["groups"].Set(groups); + attrs["epsilon"].Set(1e-6); + attrs["momentum"].Set(0.f); + auto *op = new operators::FusionConvBNReluOp( + "fusion_conv_bn_relu", inputs, outputs, attrs, scope); + op->InferShape(); + op->Init(); + for (int i = 0; i < 10; ++i) { + op->Run(); + } + auto time1 = time(); + for (int i = 0; i < 10; ++i) { + op->Run(); + } + auto time2 = time(); + std::ofstream out_file("./out_conv.txt", std::ios::app); + out_file << opname << " cost :" << time_diff(time1, time2) / 10.0 << "ms" + << std::endl; + out_file.close(); + + delete op; + return 0; +} + +} // namespace paddle_mobile + +int main(int argc, char *argv[]) { + // kernel = 3, pad = 1, stride = 2 + paddle_mobile::TestConvBnReluOp(3, 48, 48, 16, 1, + "conv_bn_relu"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp(16, 24, 24, 8, 1, + "depthwise_seperable"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp(8, 24, 24, 24, 1, + "MBConv_3x3_conv1"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp(24, 24, 24, 8, 1, + "MBConv_3x3_pw1"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp(8, 24, 24, 24, 1, + "MBConv_3x3_conv2"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp(24, 24, 24, 8, 1, + "MBConv_3x3_pw2"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp(8, 24, 24, 24, 1, + "MBConv_3x3_conv3"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp(24, 12, 12, 16, 1, + "MBConv_3x3_pw3"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 16, 12, 12, 48, 1, "MBConv_5x5_stage1_conv1"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 48, 12, 12, 16, 1, "MBConv_5x5_stage1_pw1"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 16, 12, 12, 48, 1, "MBConv_5x5_stage1_conv2"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 48, 12, 12, 16, 1, "MBConv_5x5_stage1_pw2"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 16, 12, 12, 48, 1, "MBConv_5x5_stage1_conv3"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 48, 6, 6, 32, 1, "MBConv_5x5_stage1_pw3"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 32, 6, 6, 192, 1, "MBConv_5x5_stage2_conv1"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 192, 6, 6, 32, 1, "MBConv_5x5_stage2_pw1"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 32, 6, 6, 192, 1, "MBConv_5x5_stage2_conv2"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 192, 6, 6, 32, 1, "MBConv_5x5_stage2_pw2"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 32, 6, 6, 192, 1, "MBConv_5x5_stage2_conv3"); + // kernel = 1, pad = 0, stride = 1 + paddle_mobile::TestConvBnReluOp( + 192, 6, 6, 64, 1, "MBConv_5x5_stage2_pw3"); + + return 0; +} diff --git a/test/operators/test_dwconv_bn_relu_op.cpp b/test/operators/test_dwconv_bn_relu_op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7fcf10d903e571ac7b0f5fb0a4b1214bf55327d1 --- /dev/null +++ b/test/operators/test_dwconv_bn_relu_op.cpp @@ -0,0 +1,145 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "../test_helper.h" +#include "../test_include.h" +#include "operators/fusion_dwconv_bn_relu_op.h" + +namespace paddle_mobile { + +template +int TestDWConvAddBnReluOp(int in_channels, int in_height, int in_width, + int out_channels, int groups, std::string opname) { + int kernel_h = Kernel; + int kernel_w = Kernel; + int pad_h = Pad; + int pad_w = Pad; + int stride_h = Stride; + int stride_w = Stride; + int dilation_h = 1; + int dilation_w = 1; + + int batch_size = 1; + int input_c = in_channels; + int input_h = in_height; + int input_w = in_width; + int output_c = out_channels; + framework::DDim input_shape = + framework::make_ddim({batch_size, input_c, input_h, input_w}); + framework::DDim filter_shape = + framework::make_ddim({output_c, input_c / groups, kernel_h, kernel_w}); + framework::DDim shape = framework::make_ddim({output_c}); + + VariableNameMap inputs; + VariableNameMap outputs; + auto scope = std::make_shared(); + inputs["Input"] = std::vector({"input"}); + inputs["Filter"] = std::vector({"filter"}); + inputs["Mean"] = std::vector({"mean"}); + inputs["Variance"] = std::vector({"variance"}); + inputs["Scale"] = std::vector({"scale"}); + inputs["Bias"] = std::vector({"bias"}); + outputs["Out"] = std::vector({"output"}); + + auto input_var = scope.get()->Var("input"); + auto input = input_var->template GetMutable(); + SetupTensor(input, input_shape, -20.0, 20.0); + + auto filter_var = scope.get()->Var("filter"); + auto filter = filter_var->template GetMutable(); + SetupTensor(filter, filter_shape, -20, 20); + + auto mean_var = scope.get()->Var("mean"); + auto mean = mean_var->template GetMutable(); + SetupTensor(mean, shape, -10.0, 10.0); + + auto vari_var = scope.get()->Var("variance"); + auto vari = vari_var->template GetMutable(); + SetupTensor(vari, shape, -10.0, 10.0); + + auto scale_var = scope.get()->Var("scale"); + auto scale = scale_var->template GetMutable(); + SetupTensor(scale, shape, -10.0, 10.0); + + auto bias_var = scope.get()->Var("bias"); + auto bias = bias_var->template GetMutable(); + SetupTensor(bias, shape, -10.0, 10.0); + + auto output_var = scope.get()->Var("output"); + framework::AttributeMap attrs; + attrs["strides"].Set>(std::vector({stride_h, stride_w})); + attrs["paddings"].Set>(std::vector({pad_h, pad_w})); + attrs["dilations"].Set>( + std::vector({dilation_h, dilation_w})); + attrs["groups"].Set(groups); + attrs["epsilon"].Set(1e-6); + attrs["momentum"].Set(0.f); + + auto *op = new operators::FusionDWConvBNReluOp( + "fusion_dwconv_bn_relu", inputs, outputs, attrs, scope); + op->InferShape(); + op->Init(); + for (int i = 0; i < 10; ++i) { + op->Run(); + } + auto time1 = time(); + for (int i = 0; i < 10; ++i) { + op->Run(); + } + auto time2 = time(); + std::ofstream out_file("./out_dwconv.txt", std::ios::app); + out_file << opname << " cost :" << time_diff(time1, time2) / 10.0 << "ms" + << std::endl; + out_file.close(); + + delete op; + return 0; +} + +} // namespace paddle_mobile + +int main(int argc, char *argv[]) { + // kernel = 3, pad = 1, stride = 1 + paddle_mobile::TestDWConvAddBnReluOp( + 16, 24, 24, 16, 16, "depthwise_seperable"); + // kernel = 3, pad = 1, stride = 1 + paddle_mobile::TestDWConvAddBnReluOp( + 24, 24, 24, 24, 24, "MBConv_3x3_dw1"); + // kernel = 3, pad = 1, stride = 1 + paddle_mobile::TestDWConvAddBnReluOp( + 24, 24, 24, 24, 24, "MBConv_3x3_dw2"); + // kernel = 3, pad = 1, stride = 2 + paddle_mobile::TestDWConvAddBnReluOp( + 24, 24, 24, 24, 24, "MBConv_3x3_dw3"); + // kernel = 5, pad = 2, stride = 1 + paddle_mobile::TestDWConvAddBnReluOp( + 48, 12, 12, 48, 48, "MBConv_5x5_stage1_dw1"); + // kernel = 5, pad = 2, stride = 1 + paddle_mobile::TestDWConvAddBnReluOp( + 48, 12, 12, 48, 48, "MBConv_5x5_stage1_dw2"); + // kernel = 5, pad = 2, stride = 2 + paddle_mobile::TestDWConvAddBnReluOp( + 48, 12, 12, 48, 48, "MBConv_5x5_stage1_dw3"); + // kernel = 5, pad = 2, stride = 1 + paddle_mobile::TestDWConvAddBnReluOp( + 192, 6, 6, 192, 192, "MBConv_5x5_stage2_dw1"); + // kernel = 5, pad = 2, stride = 1 + paddle_mobile::TestDWConvAddBnReluOp( + 192, 6, 6, 192, 192, "MBConv_5x5_stage2_dw2"); + // kernel = 5, pad = 2, stride = 1 + paddle_mobile::TestDWConvAddBnReluOp( + 192, 6, 6, 192, 192, "MBConv_5x5_stage2_dw3"); + + return 0; +} diff --git a/test/operators/test_gru_op.cpp b/test/operators/test_gru_op.cpp index f2ce833661bfd1b3d751a7ac2d54cfb70114a6c6..b11ec4f5f77aca2c4997153863e70b1a6b209c32 100644 --- a/test/operators/test_gru_op.cpp +++ b/test/operators/test_gru_op.cpp @@ -12,18 +12,89 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include "../test_helper.h" #include "../test_include.h" #include "operators/gru_op.h" -int main() { - paddle_mobile::framework::Loader loader; - auto program = loader.Load(g_nlp); - PADDLE_MOBILE_ENFORCE(program.originProgram != nullptr, - "program file read fail"); +namespace paddle_mobile { - Executor4Test> - executor(program, "gru"); +template +int TestGruOp(int in_channels, int out_channels, std::string opname) { + int input_c = in_channels; + int output_c = out_channels; + paddle_mobile::framework::LoD lod{{0, input_c}}; + int batch_size = lod.size(); + framework::DDim input_shape = framework::make_ddim({input_c, output_c * 3}); + framework::DDim weight_shape = framework::make_ddim({output_c, output_c * 3}); + framework::DDim h0_shape = framework::make_ddim({batch_size, output_c}); + framework::DDim bias_shape = framework::make_ddim({batch_size, output_c * 3}); + VariableNameMap inputs; + VariableNameMap outputs; + auto scope = std::make_shared(); + inputs["Input"] = std::vector({"input"}); + inputs["Weight"] = std::vector({"weight"}); + inputs["H0"] = std::vector({"h0"}); + inputs["Bias"] = std::vector({"bias"}); + + outputs["BatchGate"] = std::vector({"output_batch_gate"}); + outputs["BatchResetHiddenPrev"] = + std::vector({"output_batch_reset_hidden_prev"}); + outputs["BatchHidden"] = std::vector({"output_batch_hidden"}); + outputs["Hidden"] = std::vector({"output_hidden"}); + + auto input_var = scope.get()->Var("input"); + auto input = input_var->template GetMutable(); + SetupTensor(input, input_shape, -127, 127); + input->set_lod(lod); + + auto weight_var = scope.get()->Var("weight"); + auto weight = weight_var->template GetMutable(); + SetupTensor(weight, weight_shape, -127, 127); + + auto h0_var = scope.get()->Var("h0"); + auto h0 = h0_var->template GetMutable(); + SetupTensor(h0, h0_shape, -127, 127); + + auto bias_var = scope.get()->Var("bias"); + auto bias = bias_var->template GetMutable(); + SetupTensor(bias, bias_shape, -127, 127); + + auto batch_gate_var = scope.get()->Var("output_batch_gate"); + auto batch_reset_hidden_prev_var = + scope.get()->Var("output_batch_reset_hidden_prev"); + auto batch_hidden_var = scope.get()->Var("output_batch_hidden"); + auto hidden_var = scope.get()->Var("output_hidden"); + + framework::AttributeMap attrs; + attrs["activation"].SetString(std::string("relu")); + attrs["gate_activation"].SetString(std::string("sigmoid")); + attrs["is_reverse"].Set(false); + + auto *op = + new operators::GruOp("gru", inputs, outputs, attrs, scope); + op->InferShape(); + op->Init(); + for (int i = 0; i < 10; ++i) { + op->Run(); + } + auto time1 = time(); + for (int i = 0; i < 10; ++i) { + op->Run(); + } + auto time2 = time(); + std::ofstream out_file("./out_gru.txt", std::ios::app); + out_file << opname << " cost :" << time_diff(time1, time2) / 10.0 << "ms" + << std::endl; + out_file.close(); + + delete op; + return 0; +} + +} // namespace paddle_mobile + +int main(int argc, char *argv[]) { + paddle_mobile::TestGruOp(384, 120, "gru_forward"); return 0; }