Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4355a5eb
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4355a5eb
编写于
8月 14, 2018
作者:
S
smilejames
提交者:
GitHub
8月 14, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #749 from smilejames/develop
add openmp macro in depthwise_conv_3x3
上级
425766ba
9c0c0df1
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
234 addition
and
245 deletion
+234
-245
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+234
-245
未找到文件。
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
4355a5eb
...
@@ -699,7 +699,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -699,7 +699,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
:
output_data
[(
output_height
-
1
)
*
output_width
+
j
];
:
output_data
[(
output_height
-
1
)
*
output_width
+
j
];
}
}
}
}
#pragma omp parallel for
#pragma omp parallel for
for
(
int
i
=
1
;
i
<
output_height
-
1
;
i
++
)
{
for
(
int
i
=
1
;
i
<
output_height
-
1
;
i
++
)
{
for
(
int
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
for
(
int
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
float
*
output_ptr
=
output_data
+
i
*
output_width
+
m
;
float
*
output_ptr
=
output_data
+
i
*
output_width
+
m
;
...
@@ -1466,6 +1466,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
...
@@ -1466,6 +1466,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
Tensor
*
output
,
const
Tensor
*
new_scale
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
const
Tensor
*
new_bias
,
bool
if_relu
)
{
#if __ARM_NEON
#if __ARM_NEON
#ifdef _OPENMP
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
...
@@ -1642,251 +1643,239 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
...
@@ -1642,251 +1643,239 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
}
}
}
}
// const float *input_data = input->data<float>();
#else
// const float *filter_data = filter->data<float>();
// float *output_data = output->data<float>();
const
float
*
input_data
=
input
->
data
<
float
>
();
// const float *newscale_data = new_scale->data<float>();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
// const float *newbias_data = new_bias->data<float>();
float
*
output_data
=
output
->
data
<
float
>
();
//
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
// float32x4_t vnewbias = vdupq_n_f32(0.0);
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
// float32x4_t vnewscale = vdupq_n_f32(1.0);
//
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
// const int in_h = static_cast<int>(input->dims()[2]);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
// const int in_w = static_cast<int>(input->dims()[3]);
// const int out_h = static_cast<int>(output->dims()[2]);
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
// const int out_w = static_cast<int>(output->dims()[3]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
// const int out_l = out_h;
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
// const int in_l = in_h;
const
int
out_w
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
// const int inhxw = in_h * in_w;
const
int
out_l
=
out_h
;
// const int outhxw = out_h * out_w;
const
int
in_l
=
in_h
;
// const int if_pad = in_l - 1 == (out_l - 1) * 2 ? 1 : 0;
const
int
inhxw
=
in_h
*
in_w
;
// const int batch_size = static_cast<int>(input->dims()[0]);
const
int
outhxw
=
out_h
*
out_w
;
// const int c = static_cast<int>(input->dims()[1]);
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
// const float *input_row_ptr;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
// float *output_row_ptr;
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
//
const
float
*
input_row_ptr
;
// const int w_times = (out_w - 2) / 3;
float
*
output_row_ptr
;
//
// float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
const
int
w_times
=
(
out_w
-
2
)
/
3
;
// float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
// int out2in_mid;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
];
// float32x4_t zero = vdupq_n_f32(0.0);
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
// for (int b = batch_size; b > 0; --b) {
int
out2in_mid
;
// const float *filter_data_tmp = filter_data;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
// for (int j = 0; j < c; ++j) {
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
// auto output_data_tmp = output_data + j * out_h * out_w;
const
float
*
filter_data_tmp
=
filter_data
;
// auto input_data_tmp = input_data + j * in_h * in_w;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
// auto input_const = input_data_tmp;
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
//
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
// vnewbias = vdupq_n_f32(newbias_data[j]);
auto
input_const
=
input_data_tmp
;
// vnewscale = vdupq_n_f32(newscale_data[j]);
//
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
// float w00 = filter_data_tmp[0];
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
// float w01 = filter_data_tmp[1];
// float w02 = filter_data_tmp[2];
float
w00
=
filter_data_tmp
[
0
];
// float w10 = filter_data_tmp[3];
float
w01
=
filter_data_tmp
[
1
];
// float w11 = filter_data_tmp[4];
float
w02
=
filter_data_tmp
[
2
];
// float w12 = filter_data_tmp[5];
float
w10
=
filter_data_tmp
[
3
];
// float w20 = filter_data_tmp[6];
float
w11
=
filter_data_tmp
[
4
];
// float w21 = filter_data_tmp[7];
float
w12
=
filter_data_tmp
[
5
];
// float w22 = filter_data_tmp[8];
float
w20
=
filter_data_tmp
[
6
];
//
float
w21
=
filter_data_tmp
[
7
];
// int h_mid = 0;
float
w22
=
filter_data_tmp
[
8
];
//
// for (; h_mid < out_h - 1; h_mid++) {
int
h_mid
=
0
;
// input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
// output_row_ptr = output_data_tmp + 1 + h_mid * out_w;
for
(;
h_mid
<
out_h
-
1
;
h_mid
++
)
{
//
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
// for (int w4 = 0; w4 < w_times + 1; w4++) {
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
// if (h_mid == 0) {
// elewise_res1 = zero;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
// elewise_res0 = zero;
if
(
h_mid
==
0
)
{
// elewise_res2 = zero;
elewise_res1
=
zero
;
// } else {
elewise_res0
=
zero
;
// elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
elewise_res2
=
zero
;
// elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
}
else
{
// elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
// }
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
// input_buff_mid = vld2q_f32(input_row_ptr);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
// input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);
}
//
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
// elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1],
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
// w11); elewise_res0 = vmlaq_n_f32(elewise_res0,
// input_buff_mid.val[0], w10); elewise_res2 =
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
// vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
//
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
// elewise_res1 =
// vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1],
elewise_res1
=
// w21);
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
// elewise_res0 =
elewise_res0
=
// vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0],
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
// w20);
elewise_res2
=
// elewise_res2 =
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
// vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0],
// w22);
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
//
vaddq_f32
(
elewise_res0
,
elewise_res1
));
// res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
// vaddq_f32(elewise_res0, elewise_res1));
// res3 = vmlaq_f32(vnewbias, vnewscale, res3);
if
(
if_relu
)
{
//
res3
=
vmaxq_f32
(
res3
,
zero
);
// if (if_relu) {
}
// res3 = vmaxq_f32(res3, zero);
vst1q_f32
(
output_row_ptr
,
res3
);
// }
// vst1q_f32(output_row_ptr, res3);
input_row_ptr
+=
6
;
//
output_row_ptr
+=
3
;
// input_row_ptr += 6;
}
// output_row_ptr += 3;
}
// }
clock
();
// }
// clock();
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
//
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
// input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
// output_row_ptr = output_data_tmp + 1 + h_mid * out_w;
//
// for (int w4 = 0; w4 < w_times + 1; w4++) {
// elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
// elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
// elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
//
// input_buff_mid = vld2q_f32(input_row_ptr);
// input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);
//
// elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1],
// w11); elewise_res0 = vmlaq_n_f32(elewise_res0,
// input_buff_mid.val[0], w10); elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);
//
// if (!if_pad) {
// elewise_res1 =
// vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1],
// w21);
// elewise_res0 =
// vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0],
// w20);
// elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0],
// w22);
// }
// res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
// vaddq_f32(elewise_res0, elewise_res1));
// res3 = vmlaq_f32(vnewbias, vnewscale, res3);
//
// if (if_relu) {
// res3 = vmaxq_f32(res3, zero);
// }
// if ((w4 != w_times)) {
// vst1q_f32(output_row_ptr, res3);
// } else {
// if (out_l - 2 - w_times * 3 == 1) {
// vst1q_lane_f32(output_row_ptr, res3, 0);
// } else if (out_l - 2 - w_times * 3 == 2) {
// vst1q_lane_f32(output_row_ptr, res3, 0);
// vst1q_lane_f32(output_row_ptr + 1, res3, 1);
// }
// }
// input_row_ptr += 6;
// output_row_ptr += 3;
// }
//
// output_data_tmp[0] = input_const[0] * w11 + input_const[1] * w12 +
// input_const[in_l] * w21 +
// input_const[in_l + 1] * w22;
//
// out2in_mid = (out_l - 1) * 2;
// output_data_tmp[out_l - 1] =
// w10 * input_const[out2in_mid - 1] + w11 *
// input_const[out2in_mid] + w20 * input_const[out2in_mid + in_w -
// 1] + w21 * input_const[out2in_mid + in_w] + (1 - if_pad) * (w12
// * input_const[out2in_mid + 1] +
// w22 * input_const[out2in_mid + in_w + 1]);
//
// out2in_mid = (out_l - 1) * 2 * in_w;
//
// output_data_tmp[out_l * (out_l - 1)] =
// w01 * input_const[out2in_mid - in_w] +
// w02 * input_const[out2in_mid - in_w + 1] +
// w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid +
// 1] + (1 - if_pad) * (w21 * input_const[out2in_mid + in_w] +
// w22 * input_const[out2in_mid + in_w + 1]);
// out2in_mid = (out_l - 1) * 2 * in_w + (out_l - 1) * 2;
//
// output_data_tmp[out_l * out_l - 1] =
// w00 * input_const[out2in_mid - in_w - 1] +
// w01 * input_const[out2in_mid - in_w] +
// w10 * input_const[out2in_mid - 1] + w11 *
// input_const[out2in_mid] + (1 - if_pad) * (w20 *
// input_const[out2in_mid + in_w - 1] +
// w21 * input_const[out2in_mid + in_w] +
// w02 * input_const[out2in_mid - in_w + 1] +
// w12 * input_const[out2in_mid + 1] +
// w22 * input_const[out2in_mid + in_w + 1]);
// output_data_tmp[0] =
// output_data_tmp[0] * newscale_data[j] + newbias_data[j];
// output_data_tmp[out_l - 1] =
// output_data_tmp[out_l - 1] * newscale_data[j] + newbias_data[j];
// output_data_tmp[out_l * (out_l - 1)] =
// output_data_tmp[out_l * (out_l - 1)] * newscale_data[j] +
// newbias_data[j];
// output_data_tmp[out_l * out_l - 1] =
// output_data_tmp[out_l * out_l - 1] * newscale_data[j] +
// newbias_data[j];
// if (if_relu) {
// output_data_tmp[0] = output_data_tmp[0] < 0 ? 0 :
// output_data_tmp[0]; output_data_tmp[out_l - 1] =
// output_data_tmp[out_l - 1] < 0 ? 0 : output_data_tmp[out_l -
// 1];
// output_data_tmp[out_l * (out_l - 1)] =
// output_data_tmp[out_l * (out_l - 1)] < 0
// ? 0
// : output_data_tmp[out_l * (out_l - 1)];
// output_data_tmp[out_l * out_l - 1] =
// output_data_tmp[out_l * out_l - 1] < 0
// ? 0
// : output_data_tmp[out_l * out_l - 1];
// }
// for (int i = 1; i < out_h - 1; i++) {
// out2in_mid = i * 2 * in_w;
// output_data_tmp[i * out_l] = w01 * input_const[out2in_mid - in_w]
// +
// w02 * input_const[out2in_mid - in_w +
// 1] + w11 * input_const[out2in_mid] +
// w12 * input_const[out2in_mid + 1] +
// w21 * input_const[out2in_mid + in_w]
// + w22 * input_const[out2in_mid + in_w
// + 1];
//
// out2in_mid = i * 2 * in_w + (out_l - 1) * 2;
// output_data_tmp[i * out_l + out_l - 1] =
// w00 * input_const[out2in_mid - in_w - 1] +
// w01 * input_const[out2in_mid - in_w] +
// w10 * input_const[out2in_mid - 1] + w11 *
// input_const[out2in_mid] + w20 * input_const[out2in_mid + in_w
// - 1] + w21 * input_const[out2in_mid + in_w] + (1 - if_pad) *
// (w02 * input_const[out2in_mid - in_w + 1] +
// w12 * input_const[out2in_mid + 1] +
// w22 * input_const[out2in_mid + in_w + 1]);
// output_data_tmp[i * out_l] =
// output_data_tmp[i * out_l] * newscale_data[j] +
// newbias_data[j];
// output_data_tmp[i * out_l + out_l - 1] =
// output_data_tmp[i * out_l + out_l - 1] * newscale_data[j] +
// newbias_data[j];
// if (if_relu) {
// output_data_tmp[i * out_l] =
// output_data_tmp[i * out_l] < 0 ? 0 : output_data_tmp[i *
// out_l];
// output_data_tmp[i * out_l + out_l - 1] =
// output_data_tmp[i * out_l + out_l - 1] < 0
// ? 0
// : output_data_tmp[i * out_l + out_l - 1];
// }
// }
// filter_data_tmp += 9;
// }
// input_data += inhxw * c;
// output_data += outhxw * c;
// }
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
if
(
!
if_pad
)
{
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
}
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
}
else
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
}
else
if
(
out_l
-
2
-
w_times
*
3
==
2
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
}
}
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
input_const
[
in_l
]
*
w21
+
input_const
[
in_l
+
1
]
*
w22
;
out2in_mid
=
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
-
1
]
=
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
;
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
(
1
-
if_pad
)
*
(
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
*
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
(
1
-
if_pad
)
*
(
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
-
1
]
=
output_data_tmp
[
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
<
0
?
0
:
output_data_tmp
[
0
];
output_data_tmp
[
out_l
-
1
]
=
output_data_tmp
[
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
-
1
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
<
0
?
0
:
output_data_tmp
[
out_l
*
(
out_l
-
1
)];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
*
out_l
-
1
];
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
out2in_mid
=
i
*
2
*
in_w
;
output_data_tmp
[
i
*
out_l
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
i
*
out_l
]
=
output_data_tmp
[
i
*
out_l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
i
*
out_l
]
=
output_data_tmp
[
i
*
out_l
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
+
out_l
-
1
];
}
}
filter_data_tmp
+=
9
;
}
input_data
+=
inhxw
*
c
;
output_data
+=
outhxw
*
c
;
}
#endif
#endif
#endif
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录