Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4116aeba
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4116aeba
编写于
7月 01, 2018
作者:
W
WangLiu
提交者:
GitHub
7月 01, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #492 from Eclipsess/develop
fix
#491
modify kernel.cpp to arm_func.h
上级
0c05b1f1
31cb40e5
变更
23
显示空白变更内容
内联
并排
Showing
23 changed file
with
1150 addition
and
808 deletion
+1150
-808
src/operators/kernel/arm/box_coder_kernel.cpp
src/operators/kernel/arm/box_coder_kernel.cpp
+5
-114
src/operators/kernel/arm/concat_kernel.cpp
src/operators/kernel/arm/concat_kernel.cpp
+2
-60
src/operators/kernel/arm/elementwise_add_kernel.cpp
src/operators/kernel/arm/elementwise_add_kernel.cpp
+2
-16
src/operators/kernel/arm/fusion_fc_kernel.cpp
src/operators/kernel/arm/fusion_fc_kernel.cpp
+2
-42
src/operators/kernel/arm/lrn_kernel.cpp
src/operators/kernel/arm/lrn_kernel.cpp
+2
-20
src/operators/kernel/arm/mul_kernel.cpp
src/operators/kernel/arm/mul_kernel.cpp
+2
-25
src/operators/kernel/arm/multiclass_nms_kernel.cpp
src/operators/kernel/arm/multiclass_nms_kernel.cpp
+5
-250
src/operators/kernel/arm/prior_box_kernel.cpp
src/operators/kernel/arm/prior_box_kernel.cpp
+2
-118
src/operators/kernel/arm/relu_kernel.cpp
src/operators/kernel/arm/relu_kernel.cpp
+3
-80
src/operators/kernel/arm/reshape_kernel.cpp
src/operators/kernel/arm/reshape_kernel.cpp
+2
-24
src/operators/kernel/arm/transpose_kernel.cpp
src/operators/kernel/arm/transpose_kernel.cpp
+5
-58
src/operators/kernel/central-arm-func/box_coder_arm_func.h
src/operators/kernel/central-arm-func/box_coder_arm_func.h
+140
-0
src/operators/kernel/central-arm-func/concat_arm_func.h
src/operators/kernel/central-arm-func/concat_arm_func.h
+90
-0
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
...operators/kernel/central-arm-func/conv_add_bn_relu_func.h
+0
-1
src/operators/kernel/central-arm-func/elementwise_add_arm_func.h
...rators/kernel/central-arm-func/elementwise_add_arm_func.h
+43
-0
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
+69
-0
src/operators/kernel/central-arm-func/lrn_arm_func.h
src/operators/kernel/central-arm-func/lrn_arm_func.h
+47
-0
src/operators/kernel/central-arm-func/mul_arm_func.h
src/operators/kernel/central-arm-func/mul_arm_func.h
+52
-0
src/operators/kernel/central-arm-func/multiclass_nms_arm_func.h
...erators/kernel/central-arm-func/multiclass_nms_arm_func.h
+280
-0
src/operators/kernel/central-arm-func/prior_box_arm_func.h
src/operators/kernel/central-arm-func/prior_box_arm_func.h
+149
-0
src/operators/kernel/central-arm-func/relu_arm_func.h
src/operators/kernel/central-arm-func/relu_arm_func.h
+108
-0
src/operators/kernel/central-arm-func/reshape_arm_func.h
src/operators/kernel/central-arm-func/reshape_arm_func.h
+54
-0
src/operators/kernel/central-arm-func/transpose_arm_func.h
src/operators/kernel/central-arm-func/transpose_arm_func.h
+86
-0
未找到文件。
src/operators/kernel/arm/box_coder_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -15,130 +15,21 @@ limitations under the License. */
#ifdef BOXCODER_OP
#include "operators/kernel/box_coder_kernel.h"
#include
<cmath>
#include
"operators/kernel/central-arm-func/box_coder_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
void
EncodeCenterSize
(
const
framework
::
Tensor
&
target_box
,
const
framework
::
Tensor
&
prior_box
,
const
framework
::
Tensor
&
prior_box_var
,
T
*
output
)
{
int64_t
row
=
target_box
.
dims
()[
0
];
int64_t
col
=
prior_box
.
dims
()[
0
];
int64_t
len
=
prior_box
.
dims
()[
1
];
auto
*
target_box_data
=
target_box
.
data
<
T
>
();
auto
*
prior_box_data
=
prior_box
.
data
<
T
>
();
auto
*
prior_box_var_data
=
prior_box_var
.
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
];
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
];
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
j
*
len
+
3
]
+
prior_box_data
[
j
*
len
+
1
])
/
2
;
T
target_box_center_x
=
(
target_box_data
[
i
*
len
+
2
]
+
target_box_data
[
i
*
len
])
/
2
;
T
target_box_center_y
=
(
target_box_data
[
i
*
len
+
3
]
+
target_box_data
[
i
*
len
+
1
])
/
2
;
T
target_box_width
=
target_box_data
[
i
*
len
+
2
]
-
target_box_data
[
i
*
len
];
T
target_box_height
=
target_box_data
[
i
*
len
+
3
]
-
target_box_data
[
i
*
len
+
1
];
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
output
[
offset
]
=
(
target_box_center_x
-
prior_box_center_x
)
/
prior_box_width
/
prior_box_var_data
[
j
*
len
];
output
[
offset
+
1
]
=
(
target_box_center_y
-
prior_box_center_y
)
/
prior_box_height
/
prior_box_var_data
[
j
*
len
+
1
];
output
[
offset
+
2
]
=
std
::
log
(
std
::
fabs
(
target_box_width
/
prior_box_width
))
/
prior_box_var_data
[
j
*
len
+
2
];
output
[
offset
+
3
]
=
std
::
log
(
std
::
fabs
(
target_box_height
/
prior_box_height
))
/
prior_box_var_data
[
j
*
len
+
3
];
}
}
}
template
<
typename
T
>
void
DecodeCenterSize
(
const
framework
::
Tensor
&
target_box
,
const
framework
::
Tensor
&
prior_box
,
const
framework
::
Tensor
&
prior_box_var
,
T
*
output
)
{
int64_t
row
=
target_box
.
dims
()[
0
];
int64_t
col
=
prior_box
.
dims
()[
0
];
int64_t
len
=
prior_box
.
dims
()[
1
];
auto
*
target_box_data
=
target_box
.
data
<
T
>
();
auto
*
prior_box_data
=
prior_box
.
data
<
T
>
();
auto
*
prior_box_var_data
=
prior_box_var
.
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
];
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
];
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
j
*
len
+
3
]
+
prior_box_data
[
j
*
len
+
1
])
/
2
;
T
target_box_center_x
=
prior_box_var_data
[
j
*
len
]
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
T
target_box_center_y
=
prior_box_var_data
[
j
*
len
+
1
]
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
T
target_box_width
=
std
::
exp
(
prior_box_var_data
[
j
*
len
+
2
]
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
T
target_box_height
=
std
::
exp
(
prior_box_var_data
[
j
*
len
+
3
]
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
output
[
offset
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
offset
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
output
[
offset
+
2
]
=
target_box_center_x
+
target_box_width
/
2
;
output
[
offset
+
3
]
=
target_box_center_y
+
target_box_height
/
2
;
}
}
}
template
<
>
bool
BoxCoderKernel
<
CPU
,
float
>::
Init
(
BoxCoderParam
*
param
)
{
bool
BoxCoderKernel
<
CPU
,
float
>::
Init
(
BoxCoderParam
*
param
)
{
return
true
;
}
template
<
>
void
BoxCoderKernel
<
CPU
,
float
>::
Compute
(
const
BoxCoderParam
&
param
)
const
{
const
auto
*
input_priorbox
=
param
.
InputPriorBox
();
const
auto
*
input_priorboxvar
=
param
.
InputPriorBoxVar
();
const
auto
*
input_targetbox
=
param
.
InputTargetBox
();
const
auto
&
code_type
=
param
.
CodeType
();
auto
row
=
input_targetbox
->
dims
()[
0
];
auto
col
=
input_priorbox
->
dims
()[
0
];
auto
len
=
input_priorbox
->
dims
()[
1
];
Tensor
*
output_box
=
param
.
OutputBox
();
auto
*
output_box_dataptr
=
output_box
->
mutable_data
<
float
>
({
row
,
col
,
len
});
if
(
code_type
==
"encode_center_size"
)
{
EncodeCenterSize
<
float
>
(
*
input_targetbox
,
*
input_priorbox
,
*
input_priorboxvar
,
output_box_dataptr
);
}
if
(
code_type
==
"decode_center_size"
)
{
DecodeCenterSize
<
float
>
(
*
input_targetbox
,
*
input_priorbox
,
*
input_priorboxvar
,
output_box_dataptr
);
}
void
BoxCoderKernel
<
CPU
,
float
>::
Compute
(
const
BoxCoderParam
&
param
)
const
{
BoxCoderCompute
<
float
>
(
param
);
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/arm/concat_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -15,42 +15,10 @@ limitations under the License. */
#ifdef CONCAT_OP
#include "operators/kernel/concat_kernel.h"
#include "operators/kernel/central-arm-func/concat_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
class
ConcatFunctor
{
public:
void
operator
()(
const
std
::
vector
<
framework
::
Tensor
>
&
input
,
const
int
axis
,
framework
::
Tensor
*
output
)
{
size_t
num
=
input
.
size
();
int
rows
=
1
;
auto
dim_0
=
input
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
dim_0
[
i
];
}
int
out_rows
=
rows
,
out_cols
=
0
;
std
::
vector
<
int64_t
>
input_cols
(
input
.
size
());
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
input
[
i
].
numel
()
/
rows
;
out_cols
+=
t_cols
;
input_cols
[
i
]
=
t_cols
;
}
// computation
for
(
int
k
=
0
;
k
<
out_rows
;
++
k
)
{
T
*
dst_ptr
=
output
->
data
<
T
>
()
+
k
*
out_cols
;
int
col_idx
=
0
;
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
input_cols
[
j
];
const
T
*
src_prt
=
input
[
j
].
data
<
T
>
()
+
k
*
col_len
;
memory
::
Copy
(
dst_ptr
+
col_idx
,
src_prt
,
sizeof
(
T
)
*
col_len
);
col_idx
+=
col_len
;
}
}
}
};
template
<
>
bool
ConcatKernel
<
CPU
,
float
>::
Init
(
ConcatParam
*
param
)
{
...
...
@@ -59,33 +27,7 @@ bool ConcatKernel<CPU, float>::Init(ConcatParam *param) {
template
<
>
void
ConcatKernel
<
CPU
,
float
>::
Compute
(
const
ConcatParam
&
param
)
const
{
auto
inputs
=
param
.
Inputs
();
auto
*
out
=
param
.
Out
();
int64_t
axis
=
param
.
Axis
();
out
->
mutable_data
<
float
>
();
/// Sometimes direct copies will be faster, this maybe need deeply analysis.
if
(
axis
==
0
&&
inputs
.
size
()
<
10
)
{
size_t
output_offset
=
0
;
for
(
auto
*
in
:
inputs
)
{
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
auto
dst
=
out
->
data
<
float
>
()
+
output_offset
;
auto
src
=
in
->
data
<
float
>
();
PADDLE_MOBILE_ENFORCE
(
in_stride
.
size
()
==
out_stride
.
size
(),
"src and dst tensor should have the same dims size."
);
memory
::
Copy
(
dst
,
src
,
sizeof
(
float
)
*
in_stride
[
0
]);
output_offset
+=
in_stride
[
0
];
}
}
else
{
std
::
vector
<
framework
::
Tensor
>
inputs_concat
(
inputs
.
size
());
for
(
int
j
=
0
;
j
<
inputs
.
size
();
++
j
)
{
inputs_concat
[
j
]
=
*
inputs
[
j
];
}
ConcatFunctor
<
float
>
concat_functor
;
concat_functor
(
inputs_concat
,
static_cast
<
int
>
(
axis
),
out
);
}
ConcatCompute
<
float
>
(
param
);
}
}
// namespace operators
...
...
src/operators/kernel/arm/elementwise_add_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -14,18 +14,12 @@ limitations under the License. */
#ifdef ELEMENTWISEADD_OP
#pragma once
#include "operators/kernel/elementwise_add_kernel.h"
#include "operators/kernel/central-arm-func/elementwise_add_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
AddFunctor
{
inline
T
operator
()(
T
a
,
T
b
)
const
{
return
a
+
b
;
}
};
template
<
>
bool
ElementwiseAddKernel
<
CPU
,
float
>::
Init
(
ElementwiseAddParam
*
param
)
{
return
true
;
...
...
@@ -34,17 +28,9 @@ bool ElementwiseAddKernel<CPU, float>::Init(ElementwiseAddParam *param) {
template
<
>
void
ElementwiseAddKernel
<
CPU
,
float
>::
Compute
(
const
ElementwiseAddParam
&
param
)
const
{
const
Tensor
*
input_x
=
param
.
InputX
();
const
Tensor
*
input_y
=
param
.
InputY
();
Tensor
*
Out
=
param
.
Out
();
Out
->
mutable_data
<
float
>
();
int
axis
=
param
.
Axis
();
ElementwiseComputeEx
<
AddFunctor
<
float
>
,
float
>
(
input_x
,
input_y
,
axis
,
AddFunctor
<
float
>
(),
Out
);
ElementwiseAddCompute
<
float
>
(
param
);
}
template
class
ElementwiseAddKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/arm/fusion_fc_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -14,9 +14,8 @@ limitations under the License. */
#ifdef FUSION_FC_OP
#pragma once
#include "operators/kernel/fusion_fc_kernel.h"
#include "operators/kernel/central-arm-func/fusion_fc_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -28,46 +27,7 @@ bool FusionFcKernel<CPU, float>::Init(FusionFcParam *param) {
template
<
>
void
FusionFcKernel
<
CPU
,
float
>::
Compute
(
const
FusionFcParam
&
param
)
const
{
const
Tensor
*
input_x
=
param
.
InputX
();
const
Tensor
*
input_y
=
param
.
InputY
();
const
Tensor
*
input_z
=
param
.
InputZ
();
auto
*
input_z_data
=
input_z
->
data
<
float
>
();
int
axis
=
param
.
Axis
();
Tensor
*
out
=
param
.
Out
();
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
:
*
input_x
;
const
Tensor
y_matrix
=
input_y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_y
,
param
.
YNumColDims
())
:
*
input_y
;
auto
out_dim
=
out
->
dims
();
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
PADDLE_MOBILE_ENFORCE
(
input_z
->
dims
().
size
()
==
1
,
"inpu_z size must be 1"
);
PADDLE_MOBILE_ENFORCE
(
out_dim
[
1
]
==
input_z
->
dims
()[
0
],
" out_dim.size must be 2."
);
axis
=
(
axis
==
-
1
?
out_dim
.
size
()
-
input_z
->
dims
().
size
()
:
axis
);
PADDLE_MOBILE_ENFORCE
(
axis
==
1
,
" to fit broadcast, axis = 1. "
)
int64_t
classes
=
input_z
->
numel
();
for
(
int
i
=
0
;
i
<
out_dim
[
0
];
i
++
)
{
memory
::
Copy
(
out_data
+
i
*
classes
,
input_z_data
,
sizeof
(
float
)
*
classes
);
}
for
(
int
i
=
0
;
i
<
out
->
numel
();
i
++
)
{
DLOG
<<
out_data
[
i
];
}
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
1
));
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
// if (out_dim.size() != 2) {
// out->Resize(out_dim);
// }
FusionFcCompute
<
float
>
(
param
);
}
}
// namespace operators
...
...
src/operators/kernel/arm/lrn_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -14,9 +14,8 @@ limitations under the License. */
#ifdef LRN_OP
#pragma once
#include "operators/kernel/lrn_kernel.h"
#include "operators/kernel/central-arm-func/lrn_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -28,26 +27,9 @@ bool LrnKernel<CPU, float>::Init(LrnParam *param) {
template
<
>
void
LrnKernel
<
CPU
,
float
>::
Compute
(
const
LrnParam
&
param
)
const
{
const
Tensor
*
input_x
=
param
.
InputX
();
auto
x_dims
=
input_x
->
dims
();
Tensor
*
out
=
param
.
Out
();
out
->
mutable_data
<
float
>
();
/// data_format = NCHW
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
H
=
x_dims
[
2
];
const
int
W
=
x_dims
[
3
];
const
int
n
=
param
.
N
();
const
float
alpha
=
param
.
Alpha
();
const
float
beta
=
param
.
Beta
();
const
float
k
=
param
.
K
();
LRNFunctor
<
float
>
lrnFunctor
;
lrnFunctor
(
*
input_x
,
out
,
N
,
C
,
H
,
W
,
n
,
k
,
alpha
,
beta
);
LrnCompute
<
float
>
(
param
);
}
template
class
LrnKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/arm/mul_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -14,9 +14,8 @@ limitations under the License. */
#ifdef MUL_OP
#pragma once
#include "operators/kernel/mul_kernel.h"
#include "operators/kernel/central-arm-func/mul_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -28,31 +27,9 @@ bool MulKernel<CPU, float>::Init(MulParam *param) {
template
<
>
void
MulKernel
<
CPU
,
float
>::
Compute
(
const
MulParam
&
param
)
const
{
const
Tensor
*
input_x
=
param
.
InputX
();
const
Tensor
*
input_y
=
param
.
InputY
();
Tensor
*
out
=
param
.
Out
();
out
->
mutable_data
<
float
>
();
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
:
*
input_x
;
const
Tensor
y_matrix
=
input_y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_y
,
param
.
YNumColDims
())
:
*
input_y
;
auto
out_dim
=
out
->
dims
();
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
0
));
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
(
out_dim
);
}
MulCompute
<
float
>
(
param
);
}
template
class
MulKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/arm/multiclass_nms_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -15,265 +15,20 @@ limitations under the License. */
#ifdef MULTICLASSNMS_OP
#include "operators/kernel/multiclass_nms_kernel.h"
#include <algorithm>
#include "operators/kernel/central-arm-func/multiclass_nms_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
constexpr
int
kOutputDim
=
6
;
constexpr
int
kBBoxSize
=
4
;
template
<
class
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
static
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>&
scores
,
const
T
threshold
,
int
top_k
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
if
(
scores
[
i
]
>
threshold
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
static_cast
<
int
>
(
sorted_indices
->
size
()))
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
class
T
>
static
inline
T
BBoxArea
(
const
T
*
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
inline
T
JaccardOverlap
(
const
T
*
box1
,
const
T
*
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
const
T
inter_w
=
inter_xmax
-
inter_xmin
;
const
T
inter_h
=
inter_ymax
-
inter_ymin
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
typename
T
>
static
inline
void
NMSFast
(
const
Tensor
&
bbox
,
const
Tensor
&
scores
,
const
T
score_threshold
,
const
T
nms_threshold
,
const
T
eta
,
const
int64_t
top_k
,
std
::
vector
<
int
>*
selected_indices
)
{
// The total boxes for each instance.
int64_t
num_boxes
=
bbox
.
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
int64_t
box_size
=
bbox
.
dims
()[
1
];
std
::
vector
<
T
>
scores_data
(
num_boxes
);
std
::
copy_n
(
scores
.
data
<
T
>
(),
num_boxes
,
scores_data
.
begin
());
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
GetMaxScoreIndex
(
scores_data
,
score_threshold
,
top_k
,
&
sorted_indices
);
selected_indices
->
clear
();
T
adaptive_threshold
=
nms_threshold
;
const
T
*
bbox_data
=
bbox
.
data
<
T
>
();
while
(
sorted_indices
.
size
()
!=
0
)
{
const
int
idx
=
sorted_indices
.
front
().
second
;
bool
keep
=
true
;
for
(
size_t
k
=
0
;
k
<
selected_indices
->
size
();
++
k
)
{
if
(
keep
)
{
const
int
kept_idx
=
(
*
selected_indices
)[
k
];
T
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
true
);
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
break
;
}
}
if
(
keep
)
{
selected_indices
->
push_back
(
idx
);
}
sorted_indices
.
erase
(
sorted_indices
.
begin
());
if
(
keep
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
}
}
}
template
<
typename
T
>
void
MultiClassNMS
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
std
::
map
<
int
,
std
::
vector
<
int
>>*
indices
,
int
*
num_nmsed_out
,
const
int
&
background_label
,
const
int
&
nms_top_k
,
const
int
&
keep_top_k
,
const
T
&
nms_threshold
,
const
T
&
nms_eta
,
const
T
&
score_threshold
)
{
int64_t
class_num
=
scores
.
dims
()[
0
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int
num_det
=
0
;
for
(
int64_t
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
c
==
background_label
)
continue
;
Tensor
score
=
scores
.
Slice
(
c
,
c
+
1
);
/// [c] is key
NMSFast
<
float
>
(
bboxes
,
score
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
((
*
indices
)[
c
]));
num_det
+=
(
*
indices
)[
c
].
size
();
}
*
num_nmsed_out
=
num_det
;
const
T
*
scores_data
=
scores
.
data
<
T
>
();
if
(
keep_top_k
>
-
1
&&
num_det
>
keep_top_k
)
{
std
::
vector
<
std
::
pair
<
float
,
std
::
pair
<
int
,
int
>>>
score_index_pairs
;
for
(
const
auto
&
it
:
*
indices
)
{
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
label_indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
label_indices
.
size
();
++
j
)
{
int
idx
=
label_indices
[
j
];
// PADDLE_ENFORCE_LT(idx, predict_dim);
score_index_pairs
.
push_back
(
std
::
make_pair
(
sdata
[
idx
],
std
::
make_pair
(
label
,
idx
)));
}
}
// Keep top k results per image.
std
::
stable_sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
SortScorePairDescend
<
std
::
pair
<
int
,
int
>>
);
score_index_pairs
.
resize
(
keep_top_k
);
// Store the new indices.
std
::
map
<
int
,
std
::
vector
<
int
>>
new_indices
;
for
(
size_t
j
=
0
;
j
<
score_index_pairs
.
size
();
++
j
)
{
int
label
=
score_index_pairs
[
j
].
second
.
first
;
int
idx
=
score_index_pairs
[
j
].
second
.
second
;
new_indices
[
label
].
push_back
(
idx
);
}
new_indices
.
swap
(
*
indices
);
*
num_nmsed_out
=
keep_top_k
;
}
}
template
<
typename
T
>
void
MultiClassOutput
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
const
std
::
map
<
int
,
std
::
vector
<
int
>>&
selected_indices
,
Tensor
*
outs
)
{
int
predict_dim
=
scores
.
dims
()[
1
];
auto
*
scores_data
=
scores
.
data
<
T
>
();
auto
*
bboxes_data
=
bboxes
.
data
<
T
>
();
auto
*
odata
=
outs
->
data
<
T
>
();
int
count
=
0
;
for
(
const
auto
&
it
:
selected_indices
)
{
/// one batch
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
indices
.
size
();
++
j
)
{
int
idx
=
indices
[
j
];
const
T
*
bdata
=
bboxes_data
+
idx
*
kBBoxSize
;
odata
[
count
*
kOutputDim
]
=
label
;
// label
odata
[
count
*
kOutputDim
+
1
]
=
sdata
[
idx
];
// score
// xmin, ymin, xmax, ymax
std
::
memcpy
(
odata
+
count
*
kOutputDim
+
2
,
bdata
,
4
*
sizeof
(
T
));
count
++
;
}
}
}
template
<
>
bool
MultiClassNMSKernel
<
CPU
,
float
>::
Init
(
MultiClassNMSParam
*
param
)
{
bool
MultiClassNMSKernel
<
CPU
,
float
>::
Init
(
MultiClassNMSParam
*
param
)
{
return
true
;
}
template
<
>
void
MultiClassNMSKernel
<
CPU
,
float
>::
Compute
(
const
MultiClassNMSParam
&
param
)
const
{
const
auto
*
input_bboxes
=
param
.
InputBBoxes
();
const
auto
&
input_bboxes_dims
=
input_bboxes
->
dims
();
const
auto
*
input_scores
=
param
.
InputScores
();
const
auto
&
input_scores_dims
=
input_scores
->
dims
();
auto
*
outs
=
param
.
Out
();
auto
background_label
=
param
.
BackGroundLabel
();
auto
nms_top_k
=
param
.
NMSTopK
();
auto
keep_top_k
=
param
.
KeepTopK
();
auto
nms_threshold
=
param
.
NMSThreshold
();
auto
nms_eta
=
param
.
NMSEta
();
auto
score_threshold
=
param
.
ScoreThreshold
();
int64_t
batch_size
=
input_scores_dims
[
0
];
int64_t
class_num
=
input_scores_dims
[
1
];
int64_t
predict_dim
=
input_scores_dims
[
2
];
int64_t
box_dim
=
input_bboxes_dims
[
2
];
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
input_scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
input_bboxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
int
num_nmsed_out
=
0
;
MultiClassNMS
<
float
>
(
ins_score
,
ins_boxes
,
&
indices
,
&
num_nmsed_out
,
background_label
,
nms_top_k
,
keep_top_k
,
nms_threshold
,
nms_eta
,
score_threshold
);
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
int
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
float
*
od
=
outs
->
mutable_data
<
float
>
({
1
});
od
[
0
]
=
-
1
;
}
else
{
outs
->
mutable_data
<
float
>
({
num_kept
,
kOutputDim
});
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
input_scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
input_bboxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
int64_t
s
=
batch_starts
[
i
];
int64_t
e
=
batch_starts
[
i
+
1
];
if
(
e
>
s
)
{
Tensor
out
=
outs
->
Slice
(
s
,
e
);
MultiClassOutput
<
float
>
(
ins_score
,
ins_boxes
,
all_indices
[
i
],
&
out
);
}
}
}
// framework::LoD lod;
// lod.emplace_back(batch_starts);
//
// outs->set_lod(lod);
const
MultiClassNMSParam
&
param
)
const
{
MultiClassNMSCompute
<
float
>
(
param
);
}
}
// namespace operators
...
...
src/operators/kernel/arm/prior_box_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -15,17 +15,11 @@ limitations under the License. */
#ifdef PRIORBOX_OP
#include "operators/kernel/prior_box_kernel.h"
#include "operators/kernel/central-arm-func/prior_box_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
ClipFunctor
{
inline
T
operator
()(
T
in
)
const
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
in
,
0.
),
1.
);
}
};
template
<
>
bool
PriorBoxKernel
<
CPU
,
float
>::
Init
(
PriorBoxParam
*
param
)
{
return
true
;
...
...
@@ -33,117 +27,7 @@ bool PriorBoxKernel<CPU, float>::Init(PriorBoxParam *param) {
template
<
>
void
PriorBoxKernel
<
CPU
,
float
>::
Compute
(
const
PriorBoxParam
&
param
)
const
{
const
auto
*
input_
=
param
.
Input
();
const
auto
&
input_dims
=
input_
->
dims
();
const
auto
*
input_image
=
param
.
InputImage
();
const
auto
&
input_image_dims
=
input_image
->
dims
();
const
auto
&
min_sizes
=
param
.
MinSizes
();
const
auto
&
max_sizes
=
param
.
MaxSizes
();
const
auto
&
variances
=
param
.
Variances
();
const
auto
&
input_aspect_ratio
=
param
.
AspectRatios
();
const
bool
&
flip
=
param
.
Flip
();
const
bool
&
clip
=
param
.
Clip
();
const
float
&
step_w
=
param
.
StepW
();
const
float
&
step_h
=
param
.
StepH
();
const
float
&
offset
=
param
.
Offset
();
Tensor
*
output_boxes
=
param
.
OutputBoxes
();
auto
output_boxes_dataptr
=
output_boxes
->
mutable_data
<
float
>
();
Tensor
*
output_variances
=
param
.
OutputVariances
();
auto
output_variances_dataptr
=
output_variances
->
mutable_data
<
float
>
();
std
::
vector
<
float
>
aspect_ratios
;
ExpandAspectRatios
(
input_aspect_ratio
,
flip
,
&
aspect_ratios
);
auto
img_width
=
input_image_dims
[
3
];
auto
img_height
=
input_image_dims
[
2
];
auto
feature_width
=
input_dims
[
3
];
auto
feature_height
=
input_dims
[
2
];
auto
stride0
=
output_boxes
->
dims
()[
1
]
*
output_boxes
->
dims
()[
2
]
*
output_boxes
->
dims
()[
3
];
auto
stride1
=
output_boxes
->
dims
()[
2
]
*
output_boxes
->
dims
()[
3
];
auto
stride2
=
output_boxes
->
dims
()[
3
];
float
step_width
,
step_height
;
/// 300 / 19
if
(
step_w
==
0
||
step_h
==
0
)
{
step_width
=
static_cast
<
float
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
float
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
step_w
;
step_height
=
step_h
;
}
int
num_priors
=
aspect_ratios
.
size
()
*
min_sizes
.
size
();
if
(
!
max_sizes
.
empty
())
{
num_priors
+=
max_sizes
.
size
();
}
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
/// map origin image
float
center_x
=
(
w
+
offset
)
*
step_width
;
float
center_y
=
(
h
+
offset
)
*
step_height
;
float
box_width
,
box_height
;
int
idx
=
0
;
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
auto
min_size
=
min_sizes
[
s
];
// priors with different aspect ratios
for
(
float
ar
:
aspect_ratios
)
{
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
/// box_width/2 , / img_width 为了得到feature map 相对于
/// 原图的归一化位置的比例。
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
0
]
=
(
center_x
-
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
1
]
=
(
center_y
-
box_height
)
/
img_height
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
2
]
=
(
center_x
+
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
}
if
(
!
max_sizes
.
empty
())
{
auto
max_size
=
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
0
]
=
(
center_x
-
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
1
]
=
(
center_y
-
box_height
)
/
img_height
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
2
]
=
(
center_x
+
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
}
}
}
}
if
(
clip
)
{
math
::
Transform
trans
;
ClipFunctor
<
float
>
clip_func
;
trans
(
output_boxes_dataptr
,
output_boxes_dataptr
+
output_boxes
->
numel
(),
output_boxes_dataptr
,
clip_func
);
}
if
((
variances
.
size
()
!=
4
))
{
LOG
(
kLOG_ERROR
)
<<
" variances.size() must be 4."
;
}
int64_t
box_num
=
feature_height
*
feature_width
*
num_priors
;
for
(
int
i
=
0
;
i
<
box_num
;
i
++
)
{
output_variances_dataptr
[
4
*
i
]
=
variances
[
0
];
output_variances_dataptr
[
4
*
i
+
1
]
=
variances
[
1
];
output_variances_dataptr
[
4
*
i
+
2
]
=
variances
[
2
];
output_variances_dataptr
[
4
*
i
+
3
]
=
variances
[
3
];
}
PriorBoxCompute
<
float
>
(
param
);
}
}
// namespace operators
...
...
src/operators/kernel/arm/relu_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -15,98 +15,21 @@ limitations under the License. */
#ifdef RELU_OP
#include "operators/kernel/relu_kernel.h"
#include
<operators/math/transform.h>
#include
"operators/kernel/central-arm-func/relu_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
ReluFunctor
{
inline
T
operator
()(
T
in
)
const
{
return
in
>
0
?
in
:
0
;
}
};
template
<
>
bool
ReluKernel
<
CPU
,
float
>::
Init
(
ReluParam
*
param
)
{
return
true
;
}
/*
* @b 特化到具体平台的实现, param 从 op 层传入
* */
template
<
>
void
ReluKernel
<
CPU
,
float
>::
Compute
(
const
ReluParam
&
param
)
const
{
const
auto
*
input_x
=
param
.
InputX
();
auto
*
input_x_ptr
=
input_x
->
data
<
float
>
();
auto
*
out
=
param
.
Out
();
auto
*
out_ptr
=
out
->
mutable_data
<
float
>
();
int
numel
=
input_x
->
numel
();
// if (numel > 64) {
// asm volatile(
// "pld [%[input_x_ptr], #0] \n\t"
// "vmov.f32 q8, #0.0 \n\t"
// "subs %[num], %[num], #32 \n\t"
// "blt end_num_%= \n\t"
// "loop_num_%=: \n\t"
// "pld [%[input_x_ptr], #1024] \n\t"
//
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
//
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
//
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
//
// "subs %[num], %[num], #32 \n\t"
// "bge loop_num_%= \n\t"
// "end_num_%=: \n\t"
// "cmp %[num], #0 \n\t"
// "bge end_%= \n\t"
// "mov r6, #4 \n\t"
// "mul r5, %[num], r6 \n\t"
// "add %[input_x_ptr], %[input_x_ptr], r5 \n\t"
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
// "add %[out_ptr], %[out_ptr], r5 \n\t"
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
// "end_%=: \n\t"
// :
// :
// [out_ptr] "r"(out_ptr), [input_x_ptr] "r"(input_x_ptr), [num]
// "r"(numel) : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6",
// "q7", "q8", "r5",
// "r6");
// } else {
ReluFunctor
<
float
>
func_
;
math
::
Transform
trans
;
trans
(
input_x_ptr
,
input_x_ptr
+
numel
,
out_ptr
,
func_
);
// }
ReluCompute
<
float
>
(
param
);
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/arm/reshape_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef RESHAPE_OP
#include "operators/kernel/reshape_kernel.h"
#include "operators/kernel/central-arm-func/reshape_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -26,30 +27,7 @@ bool ReshapeKernel<CPU, float>::Init(ReshapeParam *param) {
template
<
>
void
ReshapeKernel
<
CPU
,
float
>::
Compute
(
const
ReshapeParam
&
param
)
const
{
const
auto
*
input_x
=
param
.
InputX
();
const
auto
&
input_x_dims
=
input_x
->
dims
();
auto
*
out
=
param
.
Out
();
framework
::
DDim
out_dims
=
out
->
dims
();
const
auto
*
input_shape
=
param
.
InputShape
();
if
(
input_shape
)
{
auto
*
shape_data
=
input_shape
->
data
<
int
>
();
framework
::
Tensor
cpu_shape_tensor
;
auto
shape
=
std
::
vector
<
int
>
(
shape_data
,
shape_data
+
input_shape
->
numel
());
out_dims
=
ValidateShape
(
shape
,
input_x
->
dims
());
}
bool
inplace
=
param
.
Inplace
();
out
->
Resize
(
out_dims
);
if
(
!
inplace
)
{
out
->
mutable_data
<
float
>
();
framework
::
TensorCopy
(
*
input_x
,
out
);
out
->
Resize
(
out_dims
);
}
else
{
out
->
ShareDataWith
(
*
input_x
);
out
->
Resize
(
out_dims
);
}
ReshapeCompute
<
float
>
(
param
);
}
}
// namespace operators
...
...
src/operators/kernel/arm/transpose_kernel.cpp
浏览文件 @
4116aeba
...
...
@@ -14,72 +14,19 @@ limitations under the License. */
#ifdef TRANSPOSE_OP
#include "operators/kernel/transpose_kernel.h"
#include "operators/kernel/central-arm-func/transpose_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
// vector<int> pos;
// template <typename T>
// void TransposeFunc(const int numel, const T* input, const vector<int> axis,
// const vector<int> old_strides, const vector<int>
// new_strides, T* output) {
// for (int i = 0; i < numel; ++i) {
// int old_idx = 0;
// int idx = i;
// for (int j = 0; j < axis.size(); ++j) {
// int order = axis[j];
// old_idx += (idx / new_strides[j]) * old_strides[order];
// idx %= new_strides[j];
// }
// output[i] = input[old_idx];
// }
// }
template
<
>
bool
TransposeKernel
<
CPU
,
float
>::
Init
(
TransposeParam
*
param
)
{
bool
TransposeKernel
<
CPU
,
float
>::
Init
(
TransposeParam
*
param
)
{
return
true
;
}
template
<
>
void
TransposeKernel
<
CPU
,
float
>::
Compute
(
const
TransposeParam
&
param
)
const
{
const
auto
*
input_x
=
param
.
InputX
();
const
auto
input_x_dims
=
input_x
->
dims
();
auto
*
out
=
param
.
Out
();
const
auto
axis
=
param
.
Axis
();
const
auto
*
input_x_data
=
input_x
->
data
<
float
>
();
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
size_t
ndim
=
axis
.
size
();
std
::
vector
<
int
>
xdim
(
ndim
);
std
::
vector
<
int
>
xstride
(
ndim
);
std
::
vector
<
int
>
xout
(
ndim
);
for
(
int
i
=
0
;
i
<
ndim
;
i
++
)
{
int
j
=
ndim
-
1
-
i
;
xdim
[
j
]
=
input_x_dims
[
axis
[
i
]];
xstride
[
j
]
=
1
;
for
(
int
k
=
axis
[
i
]
+
1
;
k
<
ndim
;
k
++
)
{
xstride
[
j
]
*=
input_x_dims
[
k
];
}
xout
[
j
]
=
xstride
[
j
]
*
xdim
[
j
];
}
auto
numel
=
input_x
->
numel
();
size_t
pind
=
0
;
std
::
vector
<
int
>
ind
(
ndim
);
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
out_data
[
i
]
=
input_x_data
[
pind
];
ind
[
0
]
++
;
pind
+=
xstride
[
0
];
for
(
int
j
=
0
;
j
<
ndim
-
1
;
j
++
)
{
if
(
ind
[
j
]
==
xdim
[
j
])
{
ind
[
j
+
1
]
++
;
ind
[
j
]
=
0
;
pind
+=
xstride
[
j
+
1
];
pind
-=
xout
[
j
];
}
else
{
break
;
}
}
}
void
TransposeKernel
<
CPU
,
float
>::
Compute
(
const
TransposeParam
&
param
)
const
{
TransposeCompute
<
float
>
(
param
);
}
}
// namespace operators
...
...
src/operators/kernel/central-arm-func/box_coder_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef BOXCODER_OP
#pragma once
#include <cmath>
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
void
EncodeCenterSize
(
const
framework
::
Tensor
&
target_box
,
const
framework
::
Tensor
&
prior_box
,
const
framework
::
Tensor
&
prior_box_var
,
T
*
output
)
{
int64_t
row
=
target_box
.
dims
()[
0
];
int64_t
col
=
prior_box
.
dims
()[
0
];
int64_t
len
=
prior_box
.
dims
()[
1
];
auto
*
target_box_data
=
target_box
.
data
<
T
>
();
auto
*
prior_box_data
=
prior_box
.
data
<
T
>
();
auto
*
prior_box_var_data
=
prior_box_var
.
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
];
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
];
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
j
*
len
+
3
]
+
prior_box_data
[
j
*
len
+
1
])
/
2
;
T
target_box_center_x
=
(
target_box_data
[
i
*
len
+
2
]
+
target_box_data
[
i
*
len
])
/
2
;
T
target_box_center_y
=
(
target_box_data
[
i
*
len
+
3
]
+
target_box_data
[
i
*
len
+
1
])
/
2
;
T
target_box_width
=
target_box_data
[
i
*
len
+
2
]
-
target_box_data
[
i
*
len
];
T
target_box_height
=
target_box_data
[
i
*
len
+
3
]
-
target_box_data
[
i
*
len
+
1
];
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
output
[
offset
]
=
(
target_box_center_x
-
prior_box_center_x
)
/
prior_box_width
/
prior_box_var_data
[
j
*
len
];
output
[
offset
+
1
]
=
(
target_box_center_y
-
prior_box_center_y
)
/
prior_box_height
/
prior_box_var_data
[
j
*
len
+
1
];
output
[
offset
+
2
]
=
std
::
log
(
std
::
fabs
(
target_box_width
/
prior_box_width
))
/
prior_box_var_data
[
j
*
len
+
2
];
output
[
offset
+
3
]
=
std
::
log
(
std
::
fabs
(
target_box_height
/
prior_box_height
))
/
prior_box_var_data
[
j
*
len
+
3
];
}
}
}
template
<
typename
T
>
void
DecodeCenterSize
(
const
framework
::
Tensor
&
target_box
,
const
framework
::
Tensor
&
prior_box
,
const
framework
::
Tensor
&
prior_box_var
,
T
*
output
)
{
int64_t
row
=
target_box
.
dims
()[
0
];
int64_t
col
=
prior_box
.
dims
()[
0
];
int64_t
len
=
prior_box
.
dims
()[
1
];
auto
*
target_box_data
=
target_box
.
data
<
T
>
();
auto
*
prior_box_data
=
prior_box
.
data
<
T
>
();
auto
*
prior_box_var_data
=
prior_box_var
.
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
];
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
];
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
j
*
len
+
3
]
+
prior_box_data
[
j
*
len
+
1
])
/
2
;
T
target_box_center_x
=
prior_box_var_data
[
j
*
len
]
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
T
target_box_center_y
=
prior_box_var_data
[
j
*
len
+
1
]
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
T
target_box_width
=
std
::
exp
(
prior_box_var_data
[
j
*
len
+
2
]
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
T
target_box_height
=
std
::
exp
(
prior_box_var_data
[
j
*
len
+
3
]
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
output
[
offset
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
offset
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
output
[
offset
+
2
]
=
target_box_center_x
+
target_box_width
/
2
;
output
[
offset
+
3
]
=
target_box_center_y
+
target_box_height
/
2
;
}
}
}
template
<
typename
P
>
void
BoxCoderCompute
(
const
BoxCoderParam
&
param
)
{
const
auto
*
input_priorbox
=
param
.
InputPriorBox
();
const
auto
*
input_priorboxvar
=
param
.
InputPriorBoxVar
();
const
auto
*
input_targetbox
=
param
.
InputTargetBox
();
const
auto
&
code_type
=
param
.
CodeType
();
auto
row
=
input_targetbox
->
dims
()[
0
];
auto
col
=
input_priorbox
->
dims
()[
0
];
auto
len
=
input_priorbox
->
dims
()[
1
];
Tensor
*
output_box
=
param
.
OutputBox
();
auto
*
output_box_dataptr
=
output_box
->
mutable_data
<
float
>
({
row
,
col
,
len
});
if
(
code_type
==
"encode_center_size"
)
{
EncodeCenterSize
<
float
>
(
*
input_targetbox
,
*
input_priorbox
,
*
input_priorboxvar
,
output_box_dataptr
);
}
if
(
code_type
==
"decode_center_size"
)
{
DecodeCenterSize
<
float
>
(
*
input_targetbox
,
*
input_priorbox
,
*
input_priorboxvar
,
output_box_dataptr
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/concat_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONCAT_OP
#pragma once
#include <vector>
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
class
ConcatFunctor
{
public:
void
operator
()(
const
std
::
vector
<
framework
::
Tensor
>
&
input
,
const
int
axis
,
framework
::
Tensor
*
output
)
{
size_t
num
=
input
.
size
();
int
rows
=
1
;
auto
dim_0
=
input
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
dim_0
[
i
];
}
int
out_rows
=
rows
,
out_cols
=
0
;
std
::
vector
<
int64_t
>
input_cols
(
input
.
size
());
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
input
[
i
].
numel
()
/
rows
;
out_cols
+=
t_cols
;
input_cols
[
i
]
=
t_cols
;
}
// computation
for
(
int
k
=
0
;
k
<
out_rows
;
++
k
)
{
T
*
dst_ptr
=
output
->
data
<
T
>
()
+
k
*
out_cols
;
int
col_idx
=
0
;
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
input_cols
[
j
];
const
T
*
src_prt
=
input
[
j
].
data
<
T
>
()
+
k
*
col_len
;
memory
::
Copy
(
dst_ptr
+
col_idx
,
src_prt
,
sizeof
(
T
)
*
col_len
);
col_idx
+=
col_len
;
}
}
}
};
template
<
typename
P
>
void
ConcatCompute
(
const
ConcatParam
&
param
)
{
auto
inputs
=
param
.
Inputs
();
auto
*
out
=
param
.
Out
();
int64_t
axis
=
param
.
Axis
();
out
->
mutable_data
<
float
>
();
/// Sometimes direct copies will be faster, this maybe need deeply analysis.
if
(
axis
==
0
&&
inputs
.
size
()
<
10
)
{
size_t
output_offset
=
0
;
for
(
auto
*
in
:
inputs
)
{
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
auto
dst
=
out
->
data
<
float
>
()
+
output_offset
;
auto
src
=
in
->
data
<
float
>
();
PADDLE_MOBILE_ENFORCE
(
in_stride
.
size
()
==
out_stride
.
size
(),
"src and dst tensor should have the same dims size."
);
memory
::
Copy
(
dst
,
src
,
sizeof
(
float
)
*
in_stride
[
0
]);
output_offset
+=
in_stride
[
0
];
}
}
else
{
std
::
vector
<
framework
::
Tensor
>
inputs_concat
(
inputs
.
size
());
for
(
int
j
=
0
;
j
<
inputs
.
size
();
++
j
)
{
inputs_concat
[
j
]
=
*
inputs
[
j
];
}
ConcatFunctor
<
float
>
concat_functor
;
concat_functor
(
inputs_concat
,
static_cast
<
int
>
(
axis
),
out
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
浏览文件 @
4116aeba
...
...
@@ -15,7 +15,6 @@ limitations under the License. */
#ifdef FUSION_CONVADDBNRELU_OP
#pragma once
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
src/operators/kernel/central-arm-func/elementwise_add_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef ELEMENTWISEADD_OP
#pragma once
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
AddFunctor
{
inline
T
operator
()(
T
a
,
T
b
)
const
{
return
a
+
b
;
}
};
template
<
typename
P
>
void
ElementwiseAddCompute
(
const
ElementwiseAddParam
&
param
)
{
const
Tensor
*
input_x
=
param
.
InputX
();
const
Tensor
*
input_y
=
param
.
InputY
();
Tensor
*
Out
=
param
.
Out
();
Out
->
mutable_data
<
float
>
();
int
axis
=
param
.
Axis
();
ElementwiseComputeEx
<
AddFunctor
<
float
>
,
float
>
(
input_x
,
input_y
,
axis
,
AddFunctor
<
float
>
(),
Out
);
}
template
class
ElementwiseAddKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_FC_OP
#pragma once
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
FusionFcCompute
(
const
FusionFcParam
&
param
)
{
const
Tensor
*
input_x
=
param
.
InputX
();
const
Tensor
*
input_y
=
param
.
InputY
();
const
Tensor
*
input_z
=
param
.
InputZ
();
auto
*
input_z_data
=
input_z
->
data
<
float
>
();
int
axis
=
param
.
Axis
();
Tensor
*
out
=
param
.
Out
();
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
:
*
input_x
;
const
Tensor
y_matrix
=
input_y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_y
,
param
.
YNumColDims
())
:
*
input_y
;
auto
out_dim
=
out
->
dims
();
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
PADDLE_MOBILE_ENFORCE
(
input_z
->
dims
().
size
()
==
1
,
"inpu_z size must be 1"
);
PADDLE_MOBILE_ENFORCE
(
out_dim
[
1
]
==
input_z
->
dims
()[
0
],
" out_dim.size must be 2."
);
axis
=
(
axis
==
-
1
?
out_dim
.
size
()
-
input_z
->
dims
().
size
()
:
axis
);
PADDLE_MOBILE_ENFORCE
(
axis
==
1
,
" to fit broadcast, axis = 1. "
)
int64_t
classes
=
input_z
->
numel
();
for
(
int
i
=
0
;
i
<
out_dim
[
0
];
i
++
)
{
memory
::
Copy
(
out_data
+
i
*
classes
,
input_z_data
,
sizeof
(
float
)
*
classes
);
}
for
(
int
i
=
0
;
i
<
out
->
numel
();
i
++
)
{
DLOG
<<
out_data
[
i
];
}
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
1
));
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
// if (out_dim.size() != 2) {
// out->Resize(out_dim);
// }
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/lrn_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef LRN_OP
#pragma once
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
LrnCompute
(
const
LrnParam
&
param
)
{
const
Tensor
*
input_x
=
param
.
InputX
();
auto
x_dims
=
input_x
->
dims
();
Tensor
*
out
=
param
.
Out
();
out
->
mutable_data
<
float
>
();
/// data_format = NCHW
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
H
=
x_dims
[
2
];
const
int
W
=
x_dims
[
3
];
const
int
n
=
param
.
N
();
const
float
alpha
=
param
.
Alpha
();
const
float
beta
=
param
.
Beta
();
const
float
k
=
param
.
K
();
LRNFunctor
<
float
>
lrnFunctor
;
lrnFunctor
(
*
input_x
,
out
,
N
,
C
,
H
,
W
,
n
,
k
,
alpha
,
beta
);
}
template
class
LrnKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/mul_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef MUL_OP
#pragma once
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
MulCompute
(
const
MulParam
&
param
)
{
const
Tensor
*
input_x
=
param
.
InputX
();
const
Tensor
*
input_y
=
param
.
InputY
();
Tensor
*
out
=
param
.
Out
();
out
->
mutable_data
<
float
>
();
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
:
*
input_x
;
const
Tensor
y_matrix
=
input_y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_y
,
param
.
YNumColDims
())
:
*
input_y
;
auto
out_dim
=
out
->
dims
();
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
0
));
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
(
out_dim
);
}
}
template
class
MulKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/multiclass_nms_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef MULTICLASSNMS_OP
#pragma once
#include <algorithm>
#include <map>
#include <utility>
#include <vector>
namespace
paddle_mobile
{
namespace
operators
{
constexpr
int
kOutputDim
=
6
;
constexpr
int
kBBoxSize
=
4
;
template
<
class
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
static
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>&
scores
,
const
T
threshold
,
int
top_k
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
if
(
scores
[
i
]
>
threshold
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
static_cast
<
int
>
(
sorted_indices
->
size
()))
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
class
T
>
static
inline
T
BBoxArea
(
const
T
*
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
inline
T
JaccardOverlap
(
const
T
*
box1
,
const
T
*
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
const
T
inter_w
=
inter_xmax
-
inter_xmin
;
const
T
inter_h
=
inter_ymax
-
inter_ymin
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
typename
T
>
static
inline
void
NMSFast
(
const
Tensor
&
bbox
,
const
Tensor
&
scores
,
const
T
score_threshold
,
const
T
nms_threshold
,
const
T
eta
,
const
int64_t
top_k
,
std
::
vector
<
int
>*
selected_indices
)
{
// The total boxes for each instance.
int64_t
num_boxes
=
bbox
.
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
int64_t
box_size
=
bbox
.
dims
()[
1
];
std
::
vector
<
T
>
scores_data
(
num_boxes
);
std
::
copy_n
(
scores
.
data
<
T
>
(),
num_boxes
,
scores_data
.
begin
());
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
GetMaxScoreIndex
(
scores_data
,
score_threshold
,
top_k
,
&
sorted_indices
);
selected_indices
->
clear
();
T
adaptive_threshold
=
nms_threshold
;
const
T
*
bbox_data
=
bbox
.
data
<
T
>
();
while
(
sorted_indices
.
size
()
!=
0
)
{
const
int
idx
=
sorted_indices
.
front
().
second
;
bool
keep
=
true
;
for
(
size_t
k
=
0
;
k
<
selected_indices
->
size
();
++
k
)
{
if
(
keep
)
{
const
int
kept_idx
=
(
*
selected_indices
)[
k
];
T
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
true
);
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
break
;
}
}
if
(
keep
)
{
selected_indices
->
push_back
(
idx
);
}
sorted_indices
.
erase
(
sorted_indices
.
begin
());
if
(
keep
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
}
}
}
template
<
typename
T
>
void
MultiClassNMS
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
std
::
map
<
int
,
std
::
vector
<
int
>>*
indices
,
int
*
num_nmsed_out
,
const
int
&
background_label
,
const
int
&
nms_top_k
,
const
int
&
keep_top_k
,
const
T
&
nms_threshold
,
const
T
&
nms_eta
,
const
T
&
score_threshold
)
{
int64_t
class_num
=
scores
.
dims
()[
0
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int
num_det
=
0
;
for
(
int64_t
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
c
==
background_label
)
continue
;
Tensor
score
=
scores
.
Slice
(
c
,
c
+
1
);
/// [c] is key
NMSFast
<
float
>
(
bboxes
,
score
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
((
*
indices
)[
c
]));
num_det
+=
(
*
indices
)[
c
].
size
();
}
*
num_nmsed_out
=
num_det
;
const
T
*
scores_data
=
scores
.
data
<
T
>
();
if
(
keep_top_k
>
-
1
&&
num_det
>
keep_top_k
)
{
std
::
vector
<
std
::
pair
<
float
,
std
::
pair
<
int
,
int
>>>
score_index_pairs
;
for
(
const
auto
&
it
:
*
indices
)
{
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
label_indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
label_indices
.
size
();
++
j
)
{
int
idx
=
label_indices
[
j
];
// PADDLE_ENFORCE_LT(idx, predict_dim);
score_index_pairs
.
push_back
(
std
::
make_pair
(
sdata
[
idx
],
std
::
make_pair
(
label
,
idx
)));
}
}
// Keep top k results per image.
std
::
stable_sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
SortScorePairDescend
<
std
::
pair
<
int
,
int
>>
);
score_index_pairs
.
resize
(
keep_top_k
);
// Store the new indices.
std
::
map
<
int
,
std
::
vector
<
int
>>
new_indices
;
for
(
size_t
j
=
0
;
j
<
score_index_pairs
.
size
();
++
j
)
{
int
label
=
score_index_pairs
[
j
].
second
.
first
;
int
idx
=
score_index_pairs
[
j
].
second
.
second
;
new_indices
[
label
].
push_back
(
idx
);
}
new_indices
.
swap
(
*
indices
);
*
num_nmsed_out
=
keep_top_k
;
}
}
template
<
typename
T
>
void
MultiClassOutput
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
const
std
::
map
<
int
,
std
::
vector
<
int
>>&
selected_indices
,
Tensor
*
outs
)
{
int
predict_dim
=
scores
.
dims
()[
1
];
auto
*
scores_data
=
scores
.
data
<
T
>
();
auto
*
bboxes_data
=
bboxes
.
data
<
T
>
();
auto
*
odata
=
outs
->
data
<
T
>
();
int
count
=
0
;
for
(
const
auto
&
it
:
selected_indices
)
{
/// one batch
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
indices
.
size
();
++
j
)
{
int
idx
=
indices
[
j
];
const
T
*
bdata
=
bboxes_data
+
idx
*
kBBoxSize
;
odata
[
count
*
kOutputDim
]
=
label
;
// label
odata
[
count
*
kOutputDim
+
1
]
=
sdata
[
idx
];
// score
// xmin, ymin, xmax, ymax
std
::
memcpy
(
odata
+
count
*
kOutputDim
+
2
,
bdata
,
4
*
sizeof
(
T
));
count
++
;
}
}
}
template
<
typename
P
>
void
MultiClassNMSCompute
(
const
MultiClassNMSParam
&
param
)
{
const
auto
*
input_bboxes
=
param
.
InputBBoxes
();
const
auto
&
input_bboxes_dims
=
input_bboxes
->
dims
();
const
auto
*
input_scores
=
param
.
InputScores
();
const
auto
&
input_scores_dims
=
input_scores
->
dims
();
auto
*
outs
=
param
.
Out
();
auto
background_label
=
param
.
BackGroundLabel
();
auto
nms_top_k
=
param
.
NMSTopK
();
auto
keep_top_k
=
param
.
KeepTopK
();
auto
nms_threshold
=
param
.
NMSThreshold
();
auto
nms_eta
=
param
.
NMSEta
();
auto
score_threshold
=
param
.
ScoreThreshold
();
int64_t
batch_size
=
input_scores_dims
[
0
];
int64_t
class_num
=
input_scores_dims
[
1
];
int64_t
predict_dim
=
input_scores_dims
[
2
];
int64_t
box_dim
=
input_bboxes_dims
[
2
];
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
input_scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
input_bboxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
int
num_nmsed_out
=
0
;
MultiClassNMS
<
float
>
(
ins_score
,
ins_boxes
,
&
indices
,
&
num_nmsed_out
,
background_label
,
nms_top_k
,
keep_top_k
,
nms_threshold
,
nms_eta
,
score_threshold
);
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
int
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
float
*
od
=
outs
->
mutable_data
<
float
>
({
1
});
od
[
0
]
=
-
1
;
}
else
{
outs
->
mutable_data
<
float
>
({
num_kept
,
kOutputDim
});
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
input_scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
input_bboxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
int64_t
s
=
batch_starts
[
i
];
int64_t
e
=
batch_starts
[
i
+
1
];
if
(
e
>
s
)
{
Tensor
out
=
outs
->
Slice
(
s
,
e
);
MultiClassOutput
<
float
>
(
ins_score
,
ins_boxes
,
all_indices
[
i
],
&
out
);
}
}
}
// framework::LoD lod;
// lod.emplace_back(batch_starts);
//
// outs->set_lod(lod);
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/prior_box_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PRIORBOX_OP
#pragma once
#include <algorithm>
#include <vector>
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
ClipFunctor
{
inline
T
operator
()(
T
in
)
const
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
in
,
0.
),
1.
);
}
};
template
<
typename
P
>
void
PriorBoxCompute
(
const
PriorBoxParam
&
param
)
{
const
auto
*
input_
=
param
.
Input
();
const
auto
&
input_dims
=
input_
->
dims
();
const
auto
*
input_image
=
param
.
InputImage
();
const
auto
&
input_image_dims
=
input_image
->
dims
();
const
auto
&
min_sizes
=
param
.
MinSizes
();
const
auto
&
max_sizes
=
param
.
MaxSizes
();
const
auto
&
variances
=
param
.
Variances
();
const
auto
&
input_aspect_ratio
=
param
.
AspectRatios
();
const
bool
&
flip
=
param
.
Flip
();
const
bool
&
clip
=
param
.
Clip
();
const
float
&
step_w
=
param
.
StepW
();
const
float
&
step_h
=
param
.
StepH
();
const
float
&
offset
=
param
.
Offset
();
Tensor
*
output_boxes
=
param
.
OutputBoxes
();
auto
output_boxes_dataptr
=
output_boxes
->
mutable_data
<
float
>
();
Tensor
*
output_variances
=
param
.
OutputVariances
();
auto
output_variances_dataptr
=
output_variances
->
mutable_data
<
float
>
();
std
::
vector
<
float
>
aspect_ratios
;
ExpandAspectRatios
(
input_aspect_ratio
,
flip
,
&
aspect_ratios
);
auto
img_width
=
input_image_dims
[
3
];
auto
img_height
=
input_image_dims
[
2
];
auto
feature_width
=
input_dims
[
3
];
auto
feature_height
=
input_dims
[
2
];
auto
stride0
=
output_boxes
->
dims
()[
1
]
*
output_boxes
->
dims
()[
2
]
*
output_boxes
->
dims
()[
3
];
auto
stride1
=
output_boxes
->
dims
()[
2
]
*
output_boxes
->
dims
()[
3
];
auto
stride2
=
output_boxes
->
dims
()[
3
];
float
step_width
,
step_height
;
/// 300 / 19
if
(
step_w
==
0
||
step_h
==
0
)
{
step_width
=
static_cast
<
float
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
float
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
step_w
;
step_height
=
step_h
;
}
int
num_priors
=
aspect_ratios
.
size
()
*
min_sizes
.
size
();
if
(
!
max_sizes
.
empty
())
{
num_priors
+=
max_sizes
.
size
();
}
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
/// map origin image
float
center_x
=
(
w
+
offset
)
*
step_width
;
float
center_y
=
(
h
+
offset
)
*
step_height
;
float
box_width
,
box_height
;
int
idx
=
0
;
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
auto
min_size
=
min_sizes
[
s
];
// priors with different aspect ratios
for
(
float
ar
:
aspect_ratios
)
{
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
/// box_width/2 , / img_width 为了得到feature map 相对于
/// 原图的归一化位置的比例。
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
0
]
=
(
center_x
-
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
1
]
=
(
center_y
-
box_height
)
/
img_height
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
2
]
=
(
center_x
+
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
}
if
(
!
max_sizes
.
empty
())
{
auto
max_size
=
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
0
]
=
(
center_x
-
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
1
]
=
(
center_y
-
box_height
)
/
img_height
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
2
]
=
(
center_x
+
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
}
}
}
}
if
(
clip
)
{
math
::
Transform
trans
;
ClipFunctor
<
float
>
clip_func
;
trans
(
output_boxes_dataptr
,
output_boxes_dataptr
+
output_boxes
->
numel
(),
output_boxes_dataptr
,
clip_func
);
}
if
((
variances
.
size
()
!=
4
))
{
LOG
(
kLOG_ERROR
)
<<
" variances.size() must be 4."
;
}
int64_t
box_num
=
feature_height
*
feature_width
*
num_priors
;
for
(
int
i
=
0
;
i
<
box_num
;
i
++
)
{
output_variances_dataptr
[
4
*
i
]
=
variances
[
0
];
output_variances_dataptr
[
4
*
i
+
1
]
=
variances
[
1
];
output_variances_dataptr
[
4
*
i
+
2
]
=
variances
[
2
];
output_variances_dataptr
[
4
*
i
+
3
]
=
variances
[
3
];
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/relu_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef RELU_OP
#pragma once
#include <operators/math/transform.h>
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
ReluFunctor
{
inline
T
operator
()(
T
in
)
const
{
return
in
>
0
?
in
:
0
;
}
};
/*
* @b 特化到具体平台的实现, param 从 op 层传入
* */
template
<
typename
P
>
void
ReluCompute
(
const
ReluParam
&
param
)
{
const
auto
*
input_x
=
param
.
InputX
();
auto
*
input_x_ptr
=
input_x
->
data
<
float
>
();
auto
*
out
=
param
.
Out
();
auto
*
out_ptr
=
out
->
mutable_data
<
float
>
();
int
numel
=
input_x
->
numel
();
// if (numel > 64) {
// asm volatile(
// "pld [%[input_x_ptr], #0] \n\t"
// "vmov.f32 q8, #0.0 \n\t"
// "subs %[num], %[num], #32 \n\t"
// "blt end_num_%= \n\t"
// "loop_num_%=: \n\t"
// "pld [%[input_x_ptr], #1024] \n\t"
//
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
//
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
//
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
//
// "subs %[num], %[num], #32 \n\t"
// "bge loop_num_%= \n\t"
// "end_num_%=: \n\t"
// "cmp %[num], #0 \n\t"
// "bge end_%= \n\t"
// "mov r6, #4 \n\t"
// "mul r5, %[num], r6 \n\t"
// "add %[input_x_ptr], %[input_x_ptr], r5 \n\t"
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
// "add %[out_ptr], %[out_ptr], r5 \n\t"
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
// "end_%=: \n\t"
// :
// :
// [out_ptr] "r"(out_ptr), [input_x_ptr] "r"(input_x_ptr), [num]
// "r"(numel) : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6",
// "q7", "q8", "r5",
// "r6");
// } else {
ReluFunctor
<
float
>
func_
;
math
::
Transform
trans
;
trans
(
input_x_ptr
,
input_x_ptr
+
numel
,
out_ptr
,
func_
);
// }
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/reshape_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef RESHAPE_OP
#pragma once
#include <vector>
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
ReshapeCompute
(
const
ReshapeParam
&
param
)
{
const
auto
*
input_x
=
param
.
InputX
();
const
auto
&
input_x_dims
=
input_x
->
dims
();
auto
*
out
=
param
.
Out
();
framework
::
DDim
out_dims
=
out
->
dims
();
const
auto
*
input_shape
=
param
.
InputShape
();
if
(
input_shape
)
{
auto
*
shape_data
=
input_shape
->
data
<
int
>
();
framework
::
Tensor
cpu_shape_tensor
;
auto
shape
=
std
::
vector
<
int
>
(
shape_data
,
shape_data
+
input_shape
->
numel
());
out_dims
=
ValidateShape
(
shape
,
input_x
->
dims
());
}
bool
inplace
=
param
.
Inplace
();
out
->
Resize
(
out_dims
);
if
(
!
inplace
)
{
out
->
mutable_data
<
float
>
();
framework
::
TensorCopy
(
*
input_x
,
out
);
out
->
Resize
(
out_dims
);
}
else
{
out
->
ShareDataWith
(
*
input_x
);
out
->
Resize
(
out_dims
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/transpose_arm_func.h
0 → 100644
浏览文件 @
4116aeba
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE_OP
#pragma once
#include <vector>
namespace
paddle_mobile
{
namespace
operators
{
// vector<int> pos;
// template <typename T>
// void TransposeFunc(const int numel, const T* input, const vector<int> axis,
// const vector<int> old_strides, const vector<int>
// new_strides, T* output) {
// for (int i = 0; i < numel; ++i) {
// int old_idx = 0;
// int idx = i;
// for (int j = 0; j < axis.size(); ++j) {
// int order = axis[j];
// old_idx += (idx / new_strides[j]) * old_strides[order];
// idx %= new_strides[j];
// }
// output[i] = input[old_idx];
// }
// }
template
<
typename
P
>
void
TransposeCompute
(
const
TransposeParam
&
param
)
{
const
auto
*
input_x
=
param
.
InputX
();
const
auto
input_x_dims
=
input_x
->
dims
();
auto
*
out
=
param
.
Out
();
const
auto
axis
=
param
.
Axis
();
const
auto
*
input_x_data
=
input_x
->
data
<
float
>
();
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
size_t
ndim
=
axis
.
size
();
std
::
vector
<
int
>
xdim
(
ndim
);
std
::
vector
<
int
>
xstride
(
ndim
);
std
::
vector
<
int
>
xout
(
ndim
);
for
(
int
i
=
0
;
i
<
ndim
;
i
++
)
{
int
j
=
ndim
-
1
-
i
;
xdim
[
j
]
=
input_x_dims
[
axis
[
i
]];
xstride
[
j
]
=
1
;
for
(
int
k
=
axis
[
i
]
+
1
;
k
<
ndim
;
k
++
)
{
xstride
[
j
]
*=
input_x_dims
[
k
];
}
xout
[
j
]
=
xstride
[
j
]
*
xdim
[
j
];
}
auto
numel
=
input_x
->
numel
();
size_t
pind
=
0
;
std
::
vector
<
int
>
ind
(
ndim
);
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
out_data
[
i
]
=
input_x_data
[
pind
];
ind
[
0
]
++
;
pind
+=
xstride
[
0
];
for
(
int
j
=
0
;
j
<
ndim
-
1
;
j
++
)
{
if
(
ind
[
j
]
==
xdim
[
j
])
{
ind
[
j
+
1
]
++
;
ind
[
j
]
=
0
;
pind
+=
xstride
[
j
+
1
];
pind
-=
xout
[
j
];
}
else
{
break
;
}
}
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录