提交 34cbf089 编写于 作者: J jameswu2014

support rfcn

上级 1743d3f3
-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEA4THaOYak2B6W/NTMmgKvbzQPVkW4LiFJE1b8Ho6+PYSC5a4U
CA3jysonlppsARy7QJ+WFI1Lutj7wMXvYphlBzUq0aww7ckU8esZylaW/TLxhqfr
mNkSxsLGjCAIysvM6PC/d7p8bWQf9EUOzSw/RT59ZeQUPPHZwgp9EhuFuidXHqxM
xpZSlUqlYGk5IIOYODMyMzejWPWoZXyx4HK6nhJXMh/1NEiWyDAG96voSjsPjJlD
j+PannCS5dPJajuE2KQ7P3aj/TwRkgyZzgrY01NK8BQPr1B8/KNCDFhm2Ctqc0Ad
EJdCFKdg6WtLsDaY6Urq06bTccwjyK6HyBwrPQIDAQABAoIBAQDS4vmm14V18qeY
27tDGvKpZApc02uYn4kseFAgWbKkL3zZlDykEkXZOZj7O1+bZwmgihJk6rEZqGuS
aoo0PdyWdF7F/cfQVner2WvMhWxebx+p54UFHXus8Og4fyNcrqAVIKddeyFc29/k
w+sJjr8tnEiYa4/cRuyS/3mCxI1l9gD+U9AUn4fA/Kp6MUDqbuIIfvbXvheao26X
8PHRROvfwTo1Kc+8dlZU9tvqMjKbRHHQGUdhJ5WFL/mqj8mBscOatF997J+B016I
q6c9e5LJN7n1RSKXZd3cOoiSK3kj8kz5bcwhU6/QtB1vGPyhqYuib2691vOideQ7
utEg5jvtAoGBAP4WBID8n+AoBjgd+Z2Z6DdDkOn65uU/8XKS33AczgGDAD94NFyG
pmp/AKie5FNYILz/WuXeaGBiutppDi5vtLqwfgjxbNMT+akOWYNTfbIltrY+QhQ2
fYF9gSgYSNxxLyihhh2t8oUckUFqmNT5t51FTmvEOuPGKL6sbwDXvUgLAoGBAOLk
Ht66hK8Q2AtOtXQ+G57s/xYIe/4Rj/UfFkxYgLEHBw5JAFHFR6EYZ/KJjq3N4Tjs
+g9ypKPwISjFJQ8nPrfaAXjo5f3qrZpSoOwrZR5qdhaPra9aePQ4u+UZ46drcDrQ
Dxvh7t5P6WHKs/+QRkHjWdjuntb5o0Z4XXTHVj7XAoGAIzzoeP8QKSVD34qAsNPE
ec2cDmcmmIqqsKof5MuJ4nnJkgPYtzBRahmc/MW0gr6JI80CTTjwHtXydhH1zojd
drq9b/4Tip6NlF2SGn18xDUoxtORlH4OH+RJAkeD61ajJK5qDDmwlbdlib3/3iGX
zm7rNlTrmeVEh1Ugu+wvqwsCgYB4JldWmS0ETAYsTrz2VqFn0pbugwWuMHysUI8N
VNypYlBRN0VNCAx7eaIqJMACuACplYyCO7KGAfZ9UZDjamPjFjYrYiHRCcJu84y2
I/DDX5szLVjLgDyHD7gohUIx+UoQSveFS2qkHWs4VxBkqHEcGRoOL6a7rqzQ95J9
8cVxNwKBgQCGCcQhZsY7V81m4rFkFwIJXRcWQwkhzIF8Z23cEHADhAbm6vtBbIuG
ZITHLPOcHASuinvXbkGylN+kJxXXAv6HrHQKOCtnQDAvPUvm9HJy0KIivhiXLFEJ
R0eaNAO9bBBRmi3r0m9O3eCx6gYuj9yqmgChz7uegIp3BlQAuzMf9w==
-----END RSA PRIVATE KEY-----
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDhMdo5hqTYHpb81MyaAq9vNA9WRbguIUkTVvwejr49hILlrhQIDePKyieWmmwBHLtAn5YUjUu62PvAxe9imGUHNSrRrDDtyRTx6xnKVpb9MvGGp+uY2RLGwsaMIAjKy8zo8L93unxtZB/0RQ7NLD9FPn1l5BQ88dnCCn0SG4W6J1cerEzGllKVSqVgaTkgg5g4MzIzN6NY9ahlfLHgcrqeElcyH/U0SJbIMAb3q+hKOw+MmUOP49qecJLl08lqO4TYpDs/dqP9PBGSDJnOCtjTU0rwFA+vUHz8o0IMWGbYK2pzQB0Ql0IUp2Dpa0uwNpjpSurTptNxzCPIrofIHCs9 545426914@qq.com
......@@ -30,9 +30,9 @@ void format_image(framework::Tensor *image_tensor) {
auto data_ptr = image_tensor->data<float>();
auto external_ptr = reinterpret_cast<float *>(image_tensor->external_data);
float *p_data = external_ptr == nullptr ? data_ptr : external_ptr;
float *old_p = p_data;
image::format_image(&p_data, channel, height, width);
if (old_p != p_data) {
if (p_data != data_ptr) {
image_tensor->reset_data_ptr(p_data);
}
}
......@@ -48,9 +48,9 @@ void format_fp16_ofm(framework::Tensor *ofm_tensor) {
auto dims = ofm_tensor->dims();
size_t memory_size = 0;
if (dims.size() == 4) {
auto channel = dims[1], height = dims[2], width = dims[3];
memory_size =
height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
auto channel = dims[1], height = dims[2], width = dims[3], num = dims[0];
memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
sizeof(half);
} else if (dims.size() == 2) {
memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
} else {
......@@ -960,10 +960,10 @@ void fill_DWDeconv_arg(struct DWDeconvArgs *arg, framework::Tensor *input,
sizeof(int16_t));
arg->dw_conv_args[i]->output.scale_address =
static_cast<float *>(fpga_malloc(2 * sizeof(float)));
arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
arg->vector_dw_conv_space.push_back(std::shared_ptr<char>( // NOLINT
reinterpret_cast<char *>(arg->dw_conv_args[i]->output.address),
deleter));
arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
arg->vector_dw_conv_space.push_back(std::shared_ptr<char>( // NOLINT
reinterpret_cast<char *>(arg->dw_conv_args[i]->output.scale_address),
deleter));
}
......
......@@ -21,15 +21,37 @@ namespace paddle_mobile {
namespace fpga {
namespace image {
void convert_to_hwc(float **data_in, int channel, int height, int width) {
float *data_tmp =
(float *)fpga_malloc(channel * height * width * sizeof(float)); // NOLINT
void convert_to_hwc(float **data_in, int channel, int height, int width,
int num) {
float *data_tmp = reinterpret_cast<float *>(
fpga_malloc(num * channel * height * width * sizeof(float)));
int64_t amount_per_row = width * channel;
for (int n = 0; n < num; n++) {
for (int c = 0; c < channel; c++) {
for (int h = 0; h < height; h++) {
int64_t offset_height = h * amount_per_row;
for (int w = 0; w < width; w++) {
*(data_tmp + offset_height + w * channel + c) = *((*data_in)++);
*(data_tmp + n * channel * height * width + offset_height +
w * channel + c) = *((*data_in)++);
}
}
}
}
*data_in = data_tmp;
}
void convert_to_chw(float **data_in, int channel, int height, int width,
int num) {
float *data_tmp =
(float *)fpga_malloc(channel * height * width * sizeof(float)); // NOLINT
int64_t amount_per_side = width * height;
for (int n = 0; n < num; n++) {
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
for (int c = 0; c < channel; c++) {
*(data_tmp + n * height * width * channel + c * amount_per_side +
width * h + w) = *((*data_in)++);
}
}
}
}
......@@ -55,7 +77,7 @@ void align_element_conv(float **data_in, int height, int cw) {
}
void format_image(float **data_in, int channel, int height, int width) {
convert_to_hwc(data_in, channel, height, width);
// convert_to_hwc(data_in, channel, height, width);
int cw = channel * width;
int align_cw = align_to_x(cw, IMAGE_ALIGNMENT);
if (align_cw != cw) {
......@@ -132,8 +154,8 @@ void split_image(int16_t *image_in, const float *scale_in, void **images_out,
for (int i = 0; i < image_num; i++) {
des_offset = h * align_to_x(channel_nums[i] * width, IMAGE_ALIGNMENT) +
w * channel_nums[i];
memcpy((int16_t *)images_out[i] + des_offset, image_in + src_offset,
channel_nums[i] * sizeof(int16_t));
memcpy(reinterpret_cast<int16_t *>(images_out[i]) + des_offset,
image_in + src_offset, channel_nums[i] * sizeof(int16_t));
src_offset += channel_nums[i];
}
}
......
......@@ -20,7 +20,11 @@ namespace paddle_mobile {
namespace fpga {
namespace image {
void convert_to_hwc(float** data_in, int channel, int height, int width);
void convert_to_hwc(float** data_in, int channel, int height, int width,
int num = 1);
void convert_to_chw(float** data_in, int channel, int height, int width,
int num = 1);
void align_element_conv(float** data_in, int height, int cw);
void format_image(float** data_in, int channel, int height, int width);
......
......@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "framework/operator.h"
#include <memory>
#include "operators/op_param.h"
namespace paddle_mobile {
namespace framework {
......@@ -70,7 +70,12 @@ void OperatorBase<Dtype>::Run() {
auto vari = this->scope_->FindVar(var_vec_in[i]);
if (vari->IsInitialized()) {
const Tensor *tensor = vari->template Get<framework::LoDTensor>();
if (tensor) DLOG << type_ << " input- " << key << "=" << *tensor;
if (tensor) {
DLOG << type_ << " input- " << key << "=" << *tensor;
#ifdef PADDLE_MOBILE_FPGA
DLOG << var_vec_in[i];
#endif
}
}
}
}
......@@ -80,7 +85,12 @@ void OperatorBase<Dtype>::Run() {
auto vari = scope_->FindVar(var_vec_out[i]);
if (vari->IsInitialized()) {
const Tensor *tensor = vari->template Get<framework::LoDTensor>();
if (tensor) DLOG << type_ << " output- " << key << "=" << *tensor;
if (tensor) {
DLOG << type_ << " output- " << key << "=" << *tensor;
#ifdef PADDLE_MOBILE_FPGA
DLOG << var_vec_out[i];
#endif
}
}
}
}
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
......@@ -80,7 +81,9 @@ class OperatorBase {
}
#ifdef PADDLE_MOBILE_FPGA
void InsertTensors();
void ChangeNameMap(string key, std::vector<string> value);
#endif
protected:
std::shared_ptr<Scope> scope_;
std::string type_;
......@@ -95,6 +98,7 @@ class OperatorBase {
template <typename Dtype, typename ParamType, typename KernelType>
class OperatorWithKernel : public OperatorBase<Dtype> {
public:
#ifndef PADDLE_MOBILE_FPGA1
OperatorWithKernel(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
std::shared_ptr<Scope> scope)
......@@ -104,6 +108,25 @@ class OperatorWithKernel : public OperatorBase<Dtype> {
kernel_.InitCLHelper(scope->GetCLScpoe());
#endif
}
#else
OperatorWithKernel(const std::string &type, const VariableNameMap inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
std::shared_ptr<Scope> scope)
: OperatorBase<Dtype>(type, inputs, outputs, attrs, scope) {
static int feed_num = 0;
static int fetch_num = 0;
if (type == "feed") {
auto new_name = string("feed") + std::to_string(feed_num++);
auto var = scope->Var(new_name);
(const_cast<VariableNameMap &>(inputs)).at("X") = {string(new_name)};
} else if (type == "fetch") {
auto new_name = string("fetch") + std::to_string(fetch_num++);
auto var = scope->Var(new_name);
(const_cast<VariableNameMap &>(outputs)).at("Out") = {string(new_name)};
}
param_ = ParamType(inputs, outputs, attrs, *scope);
}
#endif
virtual void RunImpl() { this->kernel_.Compute(this->param_); }
virtual void InferShape() const = 0;
......
......@@ -126,6 +126,8 @@ std::vector<Variable *> Scope::VarContain(const std::string substring) {
return v;
}
void Scope::InsertVar(const std::string str, Variable *var) {}
void Scope::print_vars() {
DLOG << "====================start to print variables=================";
for (auto pair : vars_) {
......
......@@ -86,6 +86,7 @@ class Scope {
#ifdef PADDLE_MOBILE_FPGA
Variable *Var(const std::string &name, const int id);
std::vector<Variable *> VarContain(const std::string substring);
void InsertVar(const std::string str, Variable *var);
void print_vars();
#endif
......
......@@ -43,9 +43,11 @@ bool AnchorGeneratorKernel<FPGA, float>::Init(
// DLOG << "stride_height: " << stride_height;
for (int h_idx = 0; h_idx < feature_height; ++h_idx) {
int offset0 = h_idx * feature_width * num_anchors * 4;
for (int w_idx = 0; w_idx < feature_width; ++w_idx) {
int offset = h_idx * w_idx * num_anchors * 4;
int offset1 = w_idx * num_anchors * 4;
for (int idx = 0; idx < num_anchors; idx++) {
int offset = offset0 + offset1 + idx * 4;
anchor_ptr[offset + 0] =
anchors_offset[idx * 4 + 0] + w_idx * stride_width;
anchor_ptr[offset + 1] =
......
......@@ -25,11 +25,6 @@ bool FeedKernel<FPGA, float>::Init(FeedParam<FPGA> *param) {
input->Resize(output->dims());
if (output->dims().size() != 4) {
auto input_ptr = input->mutable_data<float>();
size_t size = output->numel() * sizeof(float);
auto p = fpga::fpga_malloc(size);
memcpy(p, input_ptr, size);
output->reset_data_ptr(p);
return true;
}
fpga::format_fp16_ofm(output);
......@@ -41,7 +36,14 @@ void FeedKernel<FPGA, float>::Compute(const FeedParam<FPGA> &param) {
auto output = param.Out();
auto input = const_cast<LoDTensor *>(param.InputX());
if (input->dims().size() != 4) {
if (output->dims().size() != 4) {
size_t size = output->numel() * sizeof(float);
auto output_ptr = output->data<float>();
auto input_ptr = input->data<float>();
auto external_ptr = reinterpret_cast<float *>(input->external_data);
float *p_data = external_ptr == nullptr ? input_ptr : external_ptr;
memcpy(output_ptr, p_data, size);
input->external_data = nullptr;
return;
}
......
......@@ -49,17 +49,20 @@ bool FetchKernel<FPGA, float>::Init(FetchParam<FPGA> *param) {
template <>
void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> &param) {
auto input = param.InputX();
auto input = const_cast<Tensor *>(param.InputX());
if (input->type() == typeid(float)) {
auto output = param.Out();
output->ShareDataWith(*input);
return;
}
fpga::PerformBypass(param.fpga_bypass_args);
fpga::BypassArgs args = param.fpga_bypass_args;
auto data = (input->mutable_data<half>());
args.image.address = static_cast<void *>(data);
fpga::PerformBypass(args);
fpga::fpga_invalidate(param.fpga_bypass_args.output.address,
param.fpga_bypass_args.image.channels * sizeof(float));
// TODO: DEalign: get rid of extra 0
// TODO(zhangyang): DEalign: get rid of extra 0
}
template class FetchKernel<FPGA, float>;
......
......@@ -22,15 +22,29 @@ namespace operators {
template <>
bool PoolKernel<FPGA, float>::Init(PoolParam<FPGA> *param) {
auto *input = const_cast<Tensor *>(param->Input());
auto input_ptr = input->data<half>();
Tensor *output = param->Output();
fpga::format_fp16_ofm(output);
auto output_ptr = output->mutable_data<half>();
auto *output = param->Output();
vector<int> ksize = param->Ksize();
vector<int> strides = param->Strides();
vector<int> paddings = param->Paddings();
std::string pooling_type = param->PoolingType();
if (input->type() == typeid(float)) {
int channels = input->dims()[1];
int height = input->dims()[2];
int width = input->dims()[3];
int num = input->dims()[0];
int out_width = (width + 2 * paddings[1] - ksize[1]) / strides[1] + 1;
int out_height = (height + 2 * paddings[0] - ksize[0]) / strides[0] + 1;
framework::DDim dim =
framework::make_ddim({num, channels, out_height, out_width});
output->mutable_data<float>(dim);
return true;
}
auto input_ptr = input->data<half>();
fpga::format_fp16_ofm(output);
auto output_ptr = output->mutable_data<half>();
fpga::PoolingArgs poolArgs = {0};
poolArgs.mode = pooling_type == "max" ? 0 : 1; // max:0, avg:1
poolArgs.kernel_reciprocal =
......@@ -54,6 +68,31 @@ bool PoolKernel<FPGA, float>::Init(PoolParam<FPGA> *param) {
template <>
void PoolKernel<FPGA, float>::Compute(const PoolParam<FPGA> &param) {
auto *input = const_cast<Tensor *>(param.Input());
if (input->type() == typeid(float)) {
auto *output = param.Output();
auto in = input->data<float>();
auto len = output->numel();
auto out = output->mutable_data<float>();
int N = input->dims()[0], C = input->dims()[1], H = input->dims()[2],
W = input->dims()[3];
int HW = H * W, CHW = C * H * W, WC = W * C;
for (int n = 0; n < N; n++) {
for (int c = 0; c < C; c++) {
out[n * C + c] = 0;
for (int h = 0; h < H; h++) {
for (int w = 0; w < W; w++) {
out[n * C + c] += in[n * CHW + h * WC + w * C +
c]; // in[n * CHW + c * HW + h * W + w]; //
}
}
out[n * C + c] /= HW;
}
}
return;
}
fpga::ComputeFpgaPool(param.FpgaArgs());
}
} // namespace operators
......
......@@ -67,6 +67,30 @@ bool ProposalKernel<FPGA, float>::Init(ProposalParam<FPGA> *param) {
return true;
}
template <typename T>
void CPUGather(const Tensor &src, const Tensor &index, Tensor *output) {
PADDLE_MOBILE_ENFORCE(index.dims().size() == 1 ||
(index.dims().size() == 2 && index.dims()[1] == 1),
"Dim not correct");
int64_t index_size = index.dims()[0];
auto src_dims = src.dims();
const T *p_src = src.data<T>();
const int *p_index = index.data<int>();
T *p_output = output->data<T>();
// slice size
int slice_size = 1;
for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
const size_t slice_bytes = slice_size * sizeof(T);
for (int64_t i = 0; i < index_size; ++i) {
int index_ = p_index[i];
memcpy(p_output + i * slice_size, p_src + index_ * slice_size, slice_bytes);
}
}
void AppendProposals(Tensor *dst, int64_t offset, const Tensor &src) {
auto *out_data = dst->data<void>();
......@@ -103,11 +127,11 @@ static inline void BoxCoder(Tensor *all_anchors, Tensor *bbox_deltas,
T bbox_center_x = 0, bbox_center_y = 0;
T bbox_width = 0, bbox_height = 0;
/*
if (variances) {
bbox_center_x =
variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width +
anchor_center_x;
bbox_center_y = variances_data[i * len + 1] *
variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width
+ anchor_center_x; bbox_center_y = variances_data[i * len + 1] *
bbox_deltas_data[i * len + 1] * anchor_height +
anchor_center_y;
bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
......@@ -119,22 +143,33 @@ static inline void BoxCoder(Tensor *all_anchors, Tensor *bbox_deltas,
kBBoxClipDefault)) *
anchor_height;
} else {
bbox_center_x =
bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
*/
bbox_center_x = bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
bbox_center_y =
bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
/*
bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
kBBoxClipDefault)) *
anchor_width;
bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
kBBoxClipDefault)) *
anchor_height;
}
*/
bbox_width = std::exp(bbox_deltas_data[i * len + 2]) * anchor_width;
bbox_height = std::exp(bbox_deltas_data[i * len + 3]) * anchor_height;
// }
proposals_data[i * len] = bbox_center_x - bbox_width / 2;
proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
/*
//wong
proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
//wong
*/
proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2;
proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2;
}
// return proposals;
}
......@@ -328,9 +363,12 @@ std::pair<Tensor, Tensor> ProposalForOneImage(
anchor_sel.mutable_data<T>({index_t.numel(), 4});
var_sel.mutable_data<T>({index_t.numel(), 4});
CPUGather<T>(scores_slice, index_t, &scores_sel);
CPUGather<T>(bbox_deltas_slice, index_t, &bbox_sel);
CPUGather<T>(anchors, index_t, &anchor_sel);
Tensor proposals;
proposals.mutable_data<T>({index_t.numel(), 4});
BoxCoder<T>(&anchor_sel, &bbox_sel, &var_sel, &proposals);
BoxCoder<T>(&anchor_sel, &bbox_sel, nullptr, &proposals);
ClipTiledBoxes<T>(im_info_slice, &proposals);
......@@ -341,6 +379,8 @@ std::pair<Tensor, Tensor> ProposalForOneImage(
bbox_sel.mutable_data<T>({keep.numel(), 4});
scores_filter.mutable_data<T>({keep.numel(), 1});
CPUGather<T>(proposals, keep, &bbox_sel);
CPUGather<T>(scores_sel, keep, &scores_filter);
if (nms_thresh <= 0) {
return std::make_pair(bbox_sel, scores_filter);
}
......@@ -351,14 +391,86 @@ std::pair<Tensor, Tensor> ProposalForOneImage(
keep_nms.Resize({post_nms_top_n});
}
proposals.mutable_data<T>({keep_nms.numel(), 4});
scores_sel.mutable_data<T>({keep_nms.numel(), 1});
// proposals.mutable_data<T>({keep_nms.numel(), 4});//original
// scores_sel.mutable_data<T>({keep_nms.numel(), 1});//original
proposals.mutable_data<T>({post_nms_top_n, 4}); // wong
scores_sel.mutable_data<T>({post_nms_top_n, 1}); // wong
CPUGather<T>(bbox_sel, keep_nms, &proposals);
CPUGather<T>(scores_filter, keep_nms, &scores_sel);
return std::make_pair(proposals, scores_sel);
}
template <>
void ProposalKernel<FPGA, float>::Compute(const ProposalParam<FPGA> &param) {
auto input_score = param.scores_;
auto input_score_data = input_score->data<half>();
auto input_score_data_tmp = input_score->data<half>();
uint32_t score_n, score_height, score_width, score_channels;
auto input_bbox = param.bbox_deltas_;
auto input_bbox_data = input_bbox->data<half>();
auto input_bbox_data_tmp = input_bbox->data<half>();
uint32_t bbox_n, bbox_height, bbox_width, bbox_channels;
score_n = (uint32_t)(input_score->dims()[0]);
score_channels = (uint32_t)(input_score->dims()[1]);
score_height = (uint32_t)(input_score->dims()[2]);
score_width = (uint32_t)(input_score->dims()[3]);
bbox_n = (uint32_t)(input_bbox->dims()[0]);
bbox_channels = (uint32_t)(input_bbox->dims()[1]);
bbox_height = (uint32_t)(input_bbox->dims()[2]);
bbox_width = (uint32_t)(input_bbox->dims()[3]);
// score_tmp->init(typeid(half));
std::shared_ptr<Tensor> score_tmp = std::make_shared<Tensor>();
score_tmp->Resize(param.scores_->dims());
score_tmp->mutable_data<half>();
std::shared_ptr<Tensor> bbox_tmp = std::make_shared<Tensor>();
bbox_tmp->Resize(param.bbox_deltas_->dims());
bbox_tmp->mutable_data<half>();
auto score_tmp_data = score_tmp->data<half>();
auto bbox_tmp_data = bbox_tmp->data<half>();
int64_t amount_per_side = score_width * score_height;
int idx = 0;
fpga::fpga_invalidate(
input_score_data_tmp,
score_height * score_width * score_channels * sizeof(half));
for (int h = 0; h < score_height; h++) {
for (int w = 0; w < score_width; w++) {
for (int c = 0; c < score_channels; c++) {
idx++;
// DLOG << "wong input_score: "<<
// paddle_mobile::fpga::fp16_2_fp32(input_score_data[idx]);
*(score_tmp_data + c * amount_per_side + score_width * h + w) =
(*(input_score_data_tmp++));
}
}
}
amount_per_side = bbox_width * bbox_height;
fpga::fpga_invalidate(input_bbox_data_tmp, bbox_height * bbox_width *
bbox_channels * sizeof(half));
for (int h = 0; h < bbox_height; h++) {
for (int w = 0; w < bbox_width; w++) {
for (int c = 0; c < bbox_channels; c++) {
idx++;
// DLOG << "wong input_score: "<<
// paddle_mobile::fpga::fp16_2_fp32(input_score_data[idx]);
*(bbox_tmp_data + c * amount_per_side + bbox_width * h + w) =
(*(input_bbox_data_tmp++));
}
}
}
struct paddle_mobile::fpga::BypassArgs temp_score_arg;
struct paddle_mobile::fpga::BypassArgs temp_bbox_arg;
temp_score_arg = param.score_arg;
temp_score_arg.image.address = score_tmp->data<half>();
temp_bbox_arg = param.bbox_arg;
temp_bbox_arg.image.address = bbox_tmp->data<half>();
auto score_tensor = param.float_score.get();
fpga::PerformBypass(param.score_arg);
fpga::fpga_invalidate(score_tensor->data<float>(),
......@@ -396,23 +508,23 @@ void ProposalKernel<FPGA, float>::Compute(const ProposalParam<FPGA> &param) {
int64_t w_bbox = bbox_dim[3];
//
Tensor bbox_deltas_swap, scores_swap;
bbox_deltas_swap.mutable_data<float>({num, h_bbox, w_bbox, c_bbox});
scores_swap.mutable_data<float>({num, h_score, w_score, c_score});
rpn_rois->mutable_data<float>({bbox_deltas->numel(), 4});
rpn_roi_probs->mutable_data<float>({scores->numel(), 1});
framework::LoD lod;
lod.resize(1);
auto &lod0 = lod[0];
lod0.push_back(0);
anchors.Resize({anchors.numel() / 4, 4});
anchors.Resize({anchors.numel(), 4});
variances.Resize({variances.numel(), 4});
int64_t num_proposals = 0;
for (int64_t i = 0; i < num; ++i) {
Tensor im_info_slice = im_info->Slice(i, i + 1);
Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
Tensor scores_slice = scores_swap.Slice(i, i + 1);
Tensor bbox_deltas_slice = (*bbox_tensor).Slice(i, i + 1);
Tensor scores_slice = (*score_tensor).Slice(i, i + 1);
bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox, 4});
scores_slice.Resize({h_score * w_score * c_score, 1});
std::pair<Tensor, Tensor> tensor_pair = ProposalForOneImage<float>(
......
......@@ -18,6 +18,8 @@ limitations under the License. */
#include <vector>
#include "operators/kernel/detection_kernel.h"
#include "fpga/V1/api.h"
#include "fpga/V1/image.h"
namespace paddle_mobile {
namespace operators {
......@@ -29,8 +31,7 @@ bool PSRoiPoolKernel<FPGA, float>::Init(PSRoiPoolParam<FPGA>* param) {
param->float_input = std::make_shared<Tensor>();
param->float_input->mutable_data<float>(param->input_x_->dims());
param->float_output = std::make_shared<Tensor>();
param->float_output->mutable_data<float>(param->output_->dims());
// param->float_output = std::make_shared<Tensor>();
auto input = param->input_x_;
fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
......@@ -46,22 +47,90 @@ bool PSRoiPoolKernel<FPGA, float>::Init(PSRoiPoolParam<FPGA>* param) {
args.output.scale_address = param->float_input->scale;
param->input_arg = args;
fpga::format_fp16_ofm(param->output_);
input = param->float_output.get();
args.input_data_type = fpga::DATA_TYPE_FP32;
auto* rois = param->input_rois_;
int rois_num = rois->dims()[0];
framework::DDim dims_out_new = framework::make_ddim(
{rois_num, param->output_->dims()[1], param->output_->dims()[2],
param->output_->dims()[3]});
param->output_->Resize(dims_out_new);
// fpga::format_fp16_ofm(param->output_);
param->output_->mutable_data<float>(dims_out_new);
// auto output = param->float_output.get();
// param->output_ = output;
/* args.input_data_type = fpga::DATA_TYPE_FP32;
args.output_data_type = fpga::DATA_TYPE_FP16;
args.image.address = input->data<float>();
args.image.height = (uint32_t)input->dims()[2];
args.image.width = (uint32_t)input->dims()[3];
args.image.channels = (uint32_t)input->dims()[1];
args.image.address = output->data<float>();
args.image.height = (uint32_t)output->dims()[2];
args.image.width = (uint32_t)output->dims()[3];
args.image.channels = (uint32_t)output->dims()[1] ;
args.output.address = param->output_->mutable_data<half>();
args.output.scale_address = param->output_->scale;
param->input_arg = args;
param->output_arg = args;*/
return true;
}
template <typename Dtype>
void PSROIPooling(const Dtype* bottom_data, const Dtype spatial_scale,
const int channels, const int height, const int width,
const int pooled_height, const int pooled_width,
const Dtype* bottom_rois, const int output_dim,
const int group_size, Dtype* top_data,
// int* mapping_channel,
int index, int* rois_batch_id) {
// The output is in order (n, ctop, ph, pw)
// static int cnt = 0;
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int ctop = (index / pooled_width / pooled_height) % output_dim;
int n = index / pooled_width / pooled_height / output_dim;
// [start, end) interval for spatial sampling
bottom_rois += n * 4;
int roi_batch_ind = rois_batch_id[n]; // bottom_rois[0];
Dtype roi_start_w = static_cast<Dtype>(round(bottom_rois[0])) * spatial_scale;
Dtype roi_start_h = static_cast<Dtype>(round(bottom_rois[1])) * spatial_scale;
Dtype roi_end_w =
static_cast<Dtype>(round(bottom_rois[2]) + 1.) * spatial_scale;
Dtype roi_end_h =
static_cast<Dtype>(round(bottom_rois[3]) + 1.) * spatial_scale;
// Force too small ROIs to be 1x1
Dtype roi_width = std::max(roi_end_w - roi_start_w, 0.1f); // avoid 0
Dtype roi_height = std::max(roi_end_h - roi_start_h, 0.1f);
// Compute w and h at bottom
Dtype bin_size_h = roi_height / static_cast<Dtype>(pooled_height);
Dtype bin_size_w = roi_width / static_cast<Dtype>(pooled_width);
int hstart = floor(static_cast<Dtype>(ph) * bin_size_h + roi_start_h);
int wstart = floor(static_cast<Dtype>(pw) * bin_size_w + roi_start_w);
int hend = ceil(static_cast<Dtype>(ph + 1) * bin_size_h + roi_start_h);
int wend = ceil(static_cast<Dtype>(pw + 1) * bin_size_w + roi_start_w);
// Add roi offsets and clip to input boundaries
hstart = std::min(std::max(hstart, 0), height);
hend = std::min(std::max(hend, 0), height);
wstart = std::min(std::max(wstart, 0), width);
wend = std::min(std::max(wend, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
int gw = pw;
int gh = ph;
int c = (ctop * group_size + gh) * group_size + gw;
bottom_data += (roi_batch_ind * channels + c) * height * width;
Dtype out_sum = 0;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int bottom_index = h * width + w;
out_sum += bottom_data[bottom_index];
}
}
Dtype bin_area = (hend - hstart) * (wend - wstart);
top_data[index] = is_empty ? 0. : out_sum / bin_area;
}
template <>
void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
auto input_tensor = param.float_input.get();
......@@ -71,7 +140,7 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
auto* in = input_tensor;
auto* rois = param.input_rois_;
auto* out = param.float_output.get();
auto* out = param.output_; // param.float_output.get();
auto pooled_height = param.pooled_height_;
auto pooled_width = param.pooled_width_;
......@@ -85,18 +154,17 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
int width = in_dims[3];
int rois_num = rois->dims()[0];
// TODO auto in_stride = framework::stride(in_dims);
// TODO auto out_stride = framework::stride(out->dims());
auto in_stride =
framework::stride({batch_size, height, width, input_channels});
auto out_stride = framework::stride(
{out->dims()[0], out->dims()[2], out->dims()[3], out->dims()[1]});
auto data_nhwc = in->mutable_data<float>();
fpga::image::convert_to_chw(&data_nhwc, input_channels, height, width);
framework::DDim dims_out_new = framework::make_ddim(
{rois_num, (param.output_)->dims()[1], (((param.output_)->dims()[2])),
(param.output_)->dims()[3]});
(param.output_)->Resize(dims_out_new);
const float* input_data = in->data<float>();
const float* input_data = data_nhwc; // in->data<float>();
framework::Tensor rois_batch_id_list;
rois_batch_id_list.Resize({rois_num});
auto rois_batch_id_data = rois_batch_id_list.mutable_data<int>();
return;
PADDLE_MOBILE_ENFORCE(rois->NumLevels() > 0, "ROIS should not be empty");
......@@ -124,78 +192,18 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
auto input_rois = rois->data<float>();
// calculate psroipooling, parallel processing can be implemented per ROI
for (int n = 0; n < rois_num; ++n) {
// set roi batch id
int roi_batch_id = rois_batch_id_data[n];
// [start, end) interval for spatial sampling
auto offset_input_rois = input_rois + n * 4;
auto roi_start_w =
static_cast<float>(round(offset_input_rois[0])) * spatial_scale;
auto roi_start_h =
static_cast<float>(round(offset_input_rois[1])) * spatial_scale;
auto roi_end_w =
static_cast<float>(round(offset_input_rois[2]) + 1.) * spatial_scale;
auto roi_end_h =
static_cast<float>(round(offset_input_rois[3]) + 1.) * spatial_scale;
// Force too small rois to be 1 x 1
auto roi_height = std::max(roi_end_h - roi_start_h, 0.1f); // avoid 0
auto roi_width = std::max(roi_end_w - roi_start_w, 0.1f);
// Compute bin size w and h at input feature map
auto bin_size_h = roi_height / static_cast<float>(pooled_height);
auto bin_size_w = roi_width / static_cast<float>(pooled_width);
DLOG << 3;
// calculate each pixel of the output feature map.
int out_roi_offset = n * out_stride[0];
for (int c = 0; c < output_channels; ++c) {
// per category
// int out_plane_offset = out_roi_offset + c * out_stride[1];
int out_plane_offset = out_roi_offset + c;
for (int ph = 0; ph < pooled_height; ++ph) {
// TODO int out_row_offset = out_plane_offset + ph *
// out_stride[2];
int out_row_offset = out_plane_offset + ph * out_stride[1];
for (int pw = 0; pw < pooled_width; ++pw) {
// calculate w and h at input feature map
int hstart = floor(static_cast<float>(ph) * bin_size_h + roi_start_h);
int wstart = floor(static_cast<float>(pw) * bin_size_w + roi_start_w);
int hend =
ceil(static_cast<float>(ph + 1) * bin_size_h + roi_start_h);
int wend =
ceil(static_cast<float>(pw + 1) * bin_size_w + roi_start_w);
// Add roi offsets and clip to input boundaries
hstart = std::min(std::max(hstart, 0), height);
wstart = std::min(std::max(wstart, 0), width);
hend = std::min(std::max(hend, 0), height);
wend = std::min(std::max(wend, 0), width);
// TODO int output_index = out_row_offset + pw;
int output_index = out_row_offset + pw * output_channels;
int input_channel = (c * pooled_height + ph) * pooled_width + pw;
// TODO int input_plane_offset =
// TODO roi_batch_id * in_stride[0] + input_channel *
// in_stride[1];
int input_plane_offset = roi_batch_id * in_stride[0] + input_channel;
auto offset_input_data = input_data + input_plane_offset;
float out_sum = 0.;
bool is_empty = (hend <= hstart) || (wend <= wstart);
for (int ih = hstart; ih < hend; ++ih) {
for (int iw = wstart; iw < wend; ++iw) {
int input_index = ih * in_stride[1] + iw * input_channel;
out_sum += offset_input_data[input_index];
}
}
float bin_area = (hend - hstart) * (wend - wstart);
output_data[output_index] = is_empty ? 0. : out_sum / bin_area;
}
}
}
int index = pooled_height * pooled_width * output_channels * rois_num;
for (int idx = 0; idx < index; idx++) {
PSROIPooling<float>(input_data, spatial_scale, input_channels, height,
width, pooled_height, pooled_width, input_rois,
output_channels, pooled_height, output_data, idx,
rois_batch_id_data);
}
fpga::format_image(out);
fpga::PerformBypass(param.output_arg);
//
fpga::image::convert_to_hwc(&output_data, output_channels, pooled_height,
pooled_width, rois_num);
out->reset_data_ptr(output_data);
}
} // namespace operators
......
......@@ -47,21 +47,11 @@ bool Reshape2Kernel<FPGA, float>::Init(Reshape2Param<FPGA> *param) {
void reshape(LoDTensor *input, LoDTensor *output) {
// Subscript r means after reshape
// TODO zhangyang verify this function
float *input_ptr_f, *output_ptr_f;
half *input_ptr_h, *output_ptr_h;
bool is_float = false;
if (input->type() == typeid(float)) {
input_ptr_f = input->data<float>();
output_ptr_f = output->data<float>();
is_float = true;
} else {
input_ptr_h = input->data<half>();
output_ptr_h = output->data<half>();
}
auto input_ptr = input->data<half>();
auto output_ptr = output->data<half>();
output->scale[0] = input->scale[0];
output->scale[1] = input->scale[1];
auto C = static_cast<int>(input->dims()[1]);
auto H = static_cast<int>(input->dims()[2]);
......@@ -77,6 +67,8 @@ void reshape(LoDTensor *input, LoDTensor *output) {
auto WCr_align = fpga::align_to_x(WCr, IMAGE_ALIGNMENT);
auto HWr = Hr * Wr;
fpga::fpga_invalidate(input_ptr, H * WC_align * sizeof(half));
int offset_align = 0;
int offset_r = 0, offset_align_r = 0;
int cr = 0, hr = 0, wr = 0;
......@@ -87,21 +79,17 @@ void reshape(LoDTensor *input, LoDTensor *output) {
int offset1 = w * C + offset0;
for (int c = 0; c < C; c++) {
offset_align = offset1 + c;
offset_r = c * HW + h * W + c;
offset_r = c * HW + h * W + w;
cr = offset_r / HWr;
hr = offset_r % HWr / Wr;
wr = offset_r % Wr;
offset_align_r = hr * WCr_align + wr * Cr + cr;
// DLOG << "hwc"<< h<< " " << w << " " << c;
// DLOG << "hrwrcr" << hr<< " " << wr << " " << cr;
if (is_float) {
output_ptr_f[offset_align_r] = input_ptr_f[offset_align];
} else {
output_ptr_h[offset_align_r] = input_ptr_h[offset_align];
}
output_ptr[offset_align_r] = input_ptr[offset_align];
}
}
}
fpga::fpga_flush(output_ptr, Hr * WCr_align * sizeof(half));
}
template <>
......@@ -123,6 +111,9 @@ void Reshape2Kernel<FPGA, float>::Compute(const Reshape2Param<FPGA> &param) {
output->Resize(framework::make_ddim(shape));
if (output->dims() == input->dims()) {
DLOG << "No need to reshape";
output->ShareDataWith(*input);
framework::LoD lod = input->lod();
output->set_lod(lod);
return;
}
......
......@@ -33,13 +33,18 @@ bool SliceKernel<FPGA, float>::Init(SliceParam<FPGA>* param) {
template <>
void SliceKernel<FPGA, float>::Compute(const SliceParam<FPGA>& param) {
// Only support slicing in channel dimension
// Only support half data
// W must be aligned to 16
auto input = param.input_;
DLOG << input;
auto output = param.output_;
int HW = input->dims()[2] * input->dims()[3];
int channel = input->dims()[1];
auto input_ptr = input->data<half>();
auto output_ptr = param.output_->data<half>();
auto output_ptr = output->data<half>();
output->scale[0] = input->scale[0];
output->scale[1] = input->scale[1];
int start = param.starts_[0], end = param.ends_[0];
start = start < 0 ? start + channel : start;
......@@ -47,9 +52,10 @@ void SliceKernel<FPGA, float>::Compute(const SliceParam<FPGA>& param) {
start = start > channel ? channel : start;
end = end > channel ? channel : end;
int len = end - start;
size_t size = len * sizeof(half);
for (int i = 0; i < HW; i++) {
memcpy(output_ptr + len * i, input_ptr + i * channel + start, len);
memcpy(output_ptr + len * i, input_ptr + i * channel + start, size);
}
}
} // namespace operators
......
......@@ -23,14 +23,21 @@ namespace operators {
template <>
bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
auto input = const_cast<LoDTensor *>(param->InputX());
auto input_ptr = input->data<half>();
auto dims = framework::vectorize(input->dims());
half *input_ptr;
auto out = param->Out();
if (input->type() == typeid(float)) {
out->Resize(framework::make_ddim(dims));
out->mutable_data<float>(framework::make_ddim(dims));
} else {
input_ptr = input->data<half>();
}
auto float_input = new Tensor;
PADDLE_MOBILE_ENFORCE(input->dims().size() == 4,
"Softmax should have 4-order input");
auto dims = framework::vectorize(input->dims());
auto channel = dims[3];
if (channel == 1) { // This input is generated by FC op, dims = [N C 1 1]
PADDLE_MOBILE_ENFORCE(dims[2] == 1, "Softmax input must come from FC op");
......@@ -41,9 +48,12 @@ bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
float_input->Resize(framework::make_ddim(dims));
if (channel != 2) { // Use CPU
out->Resize(framework::make_ddim(dims));
out->mutable_data<float>(framework::make_ddim(dims));
float_input->init(typeid(float));
fpga::format_fp32_ofm(float_input);
fpga::format_fp32_ofm(out);
float_input->mutable_data<float>(framework::make_ddim(dims));
// fpga::format_fp32_ofm(float_input);
// fpga::format_fp32_ofm(out);
fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
args.input_layout_type = fpga::LAYOUT_HWC;
......@@ -51,7 +61,7 @@ bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
args.input_data_type = fpga::DATA_TYPE_FP16;
args.output_data_type = fpga::DATA_TYPE_FP32;
args.image.address = input_ptr;
args.image.height = (uint32_t)dims[1];
args.image.height = (uint32_t)dims[1] * dims[0];
args.image.width = (uint32_t)dims[2];
args.image.channels = (uint32_t)dims[3];
args.output.address = float_input->data<float>();
......@@ -80,14 +90,23 @@ bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
template <>
void SoftmaxKernel<FPGA, float>::Compute(const SoftmaxParam<FPGA> &param) {
auto *in_x = (param.InputX());
if (in_x->type() == typeid(half)) {
fpga::PerformBypass(param.FpgaArgs());
if (param.FpgaArgs().output.activation.activation_type != fpga::SOFTMAX) {
Tensor *out = param.Out();
Tensor *in_x2 = param.FloatInput();
fpga::fpga_invalidate(in_x2->data<float>(),
in_x2->numel() * sizeof(float));
math::SoftmaxFuntor<CPU, float>()(in_x2, out);
fpga::fpga_flush(out->data<float>(), out->memory_size());
}
} else {
if (param.FpgaArgs().output.activation.activation_type != fpga::SOFTMAX) {
Tensor *out = param.Out();
Tensor *in_x = param.FloatInput();
fpga::fpga_invalidate(in_x->data<float>(), in_x->numel() * sizeof(float));
math::SoftmaxFuntor<CPU, float>()(in_x, out);
fpga::fpga_flush(out->data<float>(), out->memory_size());
}
}
}
......
......@@ -97,7 +97,7 @@ void dump_stride_float(std::string filename, Tensor input_tensor,
out.close();
}
static const char *g_resnet50 = "../models/resnet50";
const std::string g_image_src_float = "../images/image_src_float";
const std::string g_image_src_float = "../images/image_src_float"; // NOLINT
int main() {
paddle_mobile::fpga::open_device();
paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile;
......@@ -114,14 +114,14 @@ int main() {
std::string saveName = "resnet50_result_" + std::to_string(i);
paddle_mobile::fpga::fpga_invalidate((*tensor_ptr).get_data(),
tensor_ptr->numel() * sizeof(half));
dump_stride_half(saveName, (*tensor_ptr), 20);
// dump_stride_half(saveName, (*tensor_ptr), 20);
// dump(saveName, (*tensor_ptr));
}
auto tensor_ptr = paddle_mobile.FetchResult(73);
dump_stride_float("resnet50_result_73", (*tensor_ptr), 20);
// dump_stride_float("resnet50_result_73", (*tensor_ptr), 20);
tensor_ptr = paddle_mobile.FetchResult(74);
dump_stride_float("resnet50_result_74", (*tensor_ptr), 9999);
// dump_stride_float("resnet50_result_74", (*tensor_ptr), 9999);
float max = 0;
auto data_ptr = tensor_ptr->data<float>();
......
......@@ -23,21 +23,101 @@ limitations under the License. */
#include "fpga/V2/api.h"
#endif
void readStream(std::string filename, uint8_t *buf) {
#include <string>
void readStream(std::string filename, char *buf) {
std::ifstream in;
in.open(filename, std::ios::in);
in.open(filename, std::ios::in | std::ios::binary);
if (!in.is_open()) {
std::cout << "open File Failed." << std::endl;
return;
}
int i = 0;
while (!in.eof()) {
in >> buf[i];
i++;
}
in.seekg(0, std::ios::end); // go to the end
auto length = in.tellg(); // report location (this is the length)
in.seekg(0, std::ios::beg); // go back to the beginning
in.read(buf, length);
DLOG << length;
in.close();
}
void convert_to_chw(int16_t **data_in, int channel, int height, int width,
int num, int16_t *data_tmp) {
int64_t amount_per_side = width * height;
for (int n = 0; n < num; n++) {
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
for (int c = 0; c < channel; c++) {
*(data_tmp + n * amount_per_side * channel + c * amount_per_side +
width * h + w) = *((*data_in)++);
}
}
}
}
}
void dump_stride_half(std::string filename, Tensor input_tensor,
const int dumpnum, bool use_chw) {
// bool use_chw = true;
if (input_tensor.dims().size() != 4) return;
int c = (input_tensor.dims())[1];
int h = (input_tensor.dims())[2];
int w = (input_tensor.dims())[3];
int n = (input_tensor.dims())[0];
auto data_ptr = input_tensor.get_data();
auto *data_ptr_16 = reinterpret_cast<half *>(data_ptr);
auto data_tmp = data_ptr_16;
if (use_chw) {
data_tmp =
reinterpret_cast<half *>(malloc(n * c * h * w * sizeof(int16_t)));
convert_to_chw(&data_ptr_16, c, h, w, n, data_tmp);
}
std::ofstream out(filename.c_str());
float result = 0;
int stride = input_tensor.numel() / dumpnum;
stride = stride > 0 ? stride : 1;
for (int i = 0; i < input_tensor.numel(); i += stride) {
result = paddle_mobile::fpga::fp16_2_fp32(data_tmp[i]);
out << result << std::endl;
}
out.close();
if (data_tmp != data_ptr_16) {
free(data_tmp);
}
}
void dump_stride_float(std::string filename, Tensor input_tensor,
const int dumpnum) {
auto data_ptr = reinterpret_cast<float *>(input_tensor.get_data());
std::ofstream out(filename.c_str());
float result = 0;
int stride = input_tensor.numel() / dumpnum;
stride = stride > 0 ? stride : 1;
for (int i = 0; i < input_tensor.numel(); i += stride) {
result = data_ptr[i];
out << result << std::endl;
}
out.close();
}
void dump_stride(std::string filename, Tensor input_tensor, const int dumpnum,
bool use_chw) {
static int i = 0;
if (input_tensor.numel() == 0) {
return;
}
if (input_tensor.type() == typeid(float)) {
DLOG << "op: " << i++ << ", float data " << input_tensor.numel();
dump_stride_float(filename, input_tensor, dumpnum);
} else {
DLOG << "op: " << i++ << ", half data " << input_tensor.numel();
dump_stride_half(filename, input_tensor, dumpnum, use_chw);
}
DLOG << "dump input address: " << input_tensor.get_data();
}
static const char *g_rfcn_combine = "../models/rfcn";
static const char *g_image_src_float = "../models/rfcn/data.bin";
int main() {
......@@ -48,12 +128,45 @@ int main() {
std::string(g_rfcn_combine) + "/params", true, false,
1, true)) {
float img_info[3] = {768, 1536, 768.0f / 960.0f};
auto img = fpga::fpga_malloc(768 * 1536 * 3 * sizeof(float));
readStream(g_image_src_float, reinterpret_cast<uint8_t *>(img));
auto img = reinterpret_cast<float *>(
fpga::fpga_malloc(768 * 1536 * 3 * sizeof(float)));
readStream(g_image_src_float, reinterpret_cast<char *>(img));
std::vector<void *> v(3, nullptr);
paddle_mobile.FeedData({img_info, img});
paddle_mobile.Predict_To(-1);
paddle_mobile.GetResults(&v);
for (int i = 55; i < 69; i++) {
auto tensor_ptr = paddle_mobile.FetchResult(i);
std::string saveName = "rfcn_" + std::to_string(i);
// if(i != 58)
paddle_mobile::fpga::fpga_invalidate((*tensor_ptr).get_data(),
tensor_ptr->numel() * sizeof(float));
// tensor_ptr->numel() * sizeof(float));
if ((i == 48) || (i == 47)) {
dump_stride(saveName, (*tensor_ptr), 20,
false); // 20);//tensor_ptr->numel());
} else if (i == 55) {
dump_stride(saveName, (*tensor_ptr), tensor_ptr->numel(),
true); // 20);//tensor_ptr->numel());
} else {
dump_stride(saveName, (*tensor_ptr), tensor_ptr->numel(),
true); // 20);//tensor_ptr->numel());
}
/* float result = 0;
std::string str = "softmax_input_data";
float* data =
static_cast<float*>(fpga::fpga_malloc(tensor_ptr->numel() *
sizeof(float))); str = "softmax_output_data"; auto output_ptr =
static_cast<half*>((*tensor_ptr).get_data()); for (int idx = 0; idx <
tensor_ptr->numel(); ++idx)
{
data[idx] = fpga::fp16_2_fp32(output_ptr[idx]);
}
fpga::savefile<float>(str,data, tensor_ptr->numel(), result ); */
}
// paddle_mobile.GetResults(&v);
DLOG << "Computation done";
fpga::fpga_free(img);
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册