提交 313b4b5a 编写于 作者: C chonwhite

tesnor qunat

上级 80fa3521
......@@ -6,9 +6,9 @@ option(USE_OPENMP "openmp support" OFF)
option(USE_EXCEPTION "use std exception" ON)
option(LOG_PROFILE "log profile" ON)
# select the platform to build
option(CPU "armv7 with neon" ON)
option(CPU "armv7 with neon" OFF)
option(MALI_GPU "mali gpu" OFF)
option(FPGA "fpga" OFF)
option(FPGA "fpga" ON)
file(GLOB_RECURSE PADDLE_MOBILE_CC src/*.cc src/*.cpp src/*.c src/*.mm)
file(GLOB_RECURSE PADDLE_MOBILE_H src/*.h)
......@@ -139,7 +139,7 @@ set(CMAKE_LIBRARY_OUTPUT_DIRECTORY build)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY build)
# NET default
set(NET "default" CACHE STRING "select net type")
set(NET "FPGAnets" CACHE STRING "select net type")
set_property(CACHE NET PROPERTY STRINGS "default" "googlenet" "mobilenet" "yolo" "squeezenet" "FPGAnets")
include("${CMAKE_CURRENT_LIST_DIR}/tools/op.cmake")
......
......@@ -46,8 +46,12 @@ static Dtype find_max(Dtype* data, int num) {
return max;
}
// template <typename Dtype>
framework::Tensor* quantify_filter(framework::Tensor* filter) {
void quantify_filter(framework::Tensor* filter) {
DLOG << "quantilize_filter........";
float scale = 0;
float fix_range = static_cast<float>((1 << (8 - 1)) - 1);
......@@ -62,25 +66,20 @@ framework::Tensor* quantify_filter(framework::Tensor* filter) {
// 32bit filter -> 8bit filter;
if (filter->type() == typeid(float)) {
float* float_data = filter->data<float>();
float max = find_max(float_data, filter->numel());
float max = find_max<float>(float_data, filter->numel());
scale = (max / fix_range);
framework::Tensor* filter = filter;
framework::Tensor* quant_filter = new framework::Tensor();
int_data = quant_filter->mutable_data<int8_t>();
for (int i = 0; i < filter->numel(); ++i) {
tmp_data[i] = (int8_t)float_data[i] * scale;
}
filter = quant_filter;
int_data = filter->mutable_data<int8_t>();
} else {
int8_t max = find_max(filter->data<int8_t>(), filter->numel());
int8_t max = find_max<int8_t>(filter->data<int8_t>(), filter->numel());
scale = (max / fix_range);
int_data = filter->data<int8_t>();
for (int i = 0; i < filter->numel(); ++i) {
tmp_data[i] = int_data[i];
tmp_data[i] = filter->data<int8_t>()[i];
}
int_data = filter->mutable_data<int8_t>();
}
......@@ -88,7 +87,7 @@ framework::Tensor* quantify_filter(framework::Tensor* filter) {
chw_to_hwc<int8_t>(tmp_data, int_data, batch_size, channel, height, width);
delete tmp_data;
*(filter->fpga_args().scale_pointer()) = scale;
return filter;
}
} // namespace fpga
......
......@@ -25,6 +25,7 @@ static void chw_to_hwc(Dtype* data_in, Dtype* data_out, int num, int channel,
int height, int width);
// template <typename Dtype>
framework::Tensor* quantify_filter(framework::Tensor* filter);
void quantify_filter(framework::Tensor* filter);
} // namespace fpga
} // namespace paddle_mobile
......@@ -77,6 +77,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
auto op_base = framework::OpRegistry<Dtype>::CreateOp(
op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
program_.scope);
DLOG << "InferShape: ";
op_base->InferShape();
ops_of_block_[*block_desc.get()].push_back(op_base);
#ifdef PADDLE_EXECUTOR_MULTITHREAD
......@@ -84,16 +85,19 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
#endif
}
}
DLOG << "InitMemory: ";
if (program_.combined) {
InitCombineMemory();
} else {
InitMemory();
}
DLOG << "InitMemory end ";
std::shared_ptr<framework::BlockDesc> to_predict_block =
to_predict_program_->Block(0);
auto &ops = ops_of_block_[*to_predict_block.get()];
for (const auto &op : ops) {
DLOG << "Init op " << op->Type();
op->Init();
}
}
......
......@@ -26,7 +26,7 @@ namespace paddle_mobile {
namespace memory {
const int MALLOC_ALIGN = 64;
#ifdef PADDLE_MOBILE_FPGA
#ifdef PADDLE_MOBILE_FPGA__VV
namespace fpga = paddle_mobile::fpga;
void Copy(void *dst, const void *src, size_t num) {
......
......@@ -37,7 +37,7 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
param_.Out()->Resize(out_dims);
}
#ifdef PADDLE_MOBILE_FPGA
#ifdef PADDLE_MOBILE_FPGA__VV
void RunImpl() const { fpga::PerformBypass(param_.FpgaArgs()); }
void Init() {
const Tensor *input = param_.InputX();
......
......@@ -60,10 +60,7 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam *param) {
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
Tensor *quant_filter = fpga::quantify_filter(filter);
// delete original filter?
filter = quant_filter;
fpga::quantify_filter(filter);
auto filter_ptr = filter->data<float>();
fpga::ConvArgs convArgs;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/kernel/conv_add_kernel.h"
#include "../central-arm-func/conv_add_arm_func.h"
#include "fpga/fpga_quantilization.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvAddKernel<CPU, float>::Init(FusionConvAddParam *param) {
DLOG << ">>>>>>>>>>>>>>>>>>>> ConvKernel <<<<<<<<<<<<<<<<<<<<<<<";
Tensor *filter = param->Filter();
fpga::quantify_filter(filter);
return true;
}
template <>
void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam &param) const {
ConvAddCompute<float>(param);
}
template class ConvAddKernel<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -27,7 +27,7 @@ bool ConvKernel<FPGA, float>::Init(ConvParam *param) {
template <>
void ConvKernel<FPGA, float>::Compute(const ConvParam &param) const {
// ConvCompute<float>(param);
ConvCompute<float>(param);
}
template class ConvKernel<FPGA, float>;
......
......@@ -210,7 +210,7 @@ class ConvParam : OpParam {
const Tensor *Input() const { return input_; }
const Tensor *Filter() const { return filter_; }
Tensor *Filter() const { return filter_; }
Tensor *Output() const { return output_; }
......
......@@ -27,6 +27,11 @@ elseif("resnet" IN_LIST NET)
ADD_EXECUTABLE(test-resnet net/test_resnet.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-resnet paddle-mobile)
elseif("FPGAnets" IN_LIST NET)
# ADD_EXECUTABLE(test-resnet net/test_resnet.cpp test_helper.h test_include.h executor_for_test.h)
# target_link_libraries(test-resnet paddle-mobile)
ADD_EXECUTABLE(test-tensor-quant fpga/test_tensor_quant.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-tensor-quant paddle-mobile)
else ()
# gen test
......@@ -173,8 +178,7 @@ else ()
endif()
if(FPGA)
ADD_EXECUTABLE(test-tensor-quant fpga/test_tensor_quant.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-tensor-quant paddle-mobile)
endif()
# if(FPGA)
# ADD_EXECUTABLE(test-tensor-quant fpga/test_tensor_quant.cpp test_helper.h test_include.h executor_for_test.h)
# target_link_libraries(test-tensor-quant paddle-mobile)
# endif()
......@@ -12,23 +12,34 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"
int main() {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
bool optimize = false;
if (paddle_mobile.Load(g_googlenet, optimize)) {
paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile;
paddle_mobile.SetThreadNum(4);
auto time1 = time();
DLOG << "load cost: " << time_diff(time1, time1) << "ms";
std::vector<float> input;
std::vector<int64_t> dims{1, 3, 224, 224};
GetInput<float>(g_test_image_1x3x224x224, &input, dims);
if (paddle_mobile.Load(g_resnet, true)) {
auto time2 = time();
std::cout << "load cost :" << time_diff(time1, time1) << "ms" << std::endl;
std::vector<int64_t> dims{1, 3, 32, 32};
Tensor input_tensor;
SetupTensor<float>(&input_tensor, {1, 3, 32, 32}, static_cast<float>(0),
static_cast<float>(1));
std::vector<float> input(input_tensor.data<float>(),
input_tensor.data<float>() + input_tensor.numel());
// 预热一次
paddle_mobile.Predict(input, dims);
auto time3 = time();
auto vec_result = paddle_mobile.Predict(input, dims);
for (int i = 0; i < 10; ++i) {
paddle_mobile.Predict(input, dims);
}
auto time4 = time();
DLOG << "predict cost :" << time_diff(time3, time4) << "ms";
std::cout << "predict cost :" << time_diff(time3, time4) << "ms"
<< std::endl;
}
return 0;
}
......@@ -82,6 +82,8 @@ if ("FPGAnets" IN_LIST NET)
set(CONCAT_OP ON)
set(SOFTMAX_OP ON)
set(DROPOUT_OP ON)
set(FUSION_CONVADD_OP ON)
# set(CONV_OP ON)
set(FOUND_MATCH ON)
endif()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册