Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
30300c98
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
30300c98
编写于
11月 07, 2019
作者:
T
TianXiaogang
提交者:
GitHub
11月 07, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix:fix deviceinfo worksapce to tls
mv deviceinfo.workspace and other relative member to thread_local_storage
上级
3fa7a064
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
33 addition
and
37 deletion
+33
-37
lite/core/device_info.cc
lite/core/device_info.cc
+6
-0
lite/core/device_info.h
lite/core/device_info.h
+6
-7
lite/kernels/arm/conv_direct.cc
lite/kernels/arm/conv_direct.cc
+3
-19
lite/kernels/arm/conv_direct.h
lite/kernels/arm/conv_direct.h
+0
-3
lite/kernels/arm/conv_gemmlike.cc
lite/kernels/arm/conv_gemmlike.cc
+3
-0
lite/kernels/arm/conv_gemmlike.h
lite/kernels/arm/conv_gemmlike.h
+2
-1
lite/kernels/arm/conv_transpose_compute.cc
lite/kernels/arm/conv_transpose_compute.cc
+4
-3
lite/kernels/arm/conv_transpose_compute.h
lite/kernels/arm/conv_transpose_compute.h
+3
-0
lite/kernels/arm/conv_winograd.cc
lite/kernels/arm/conv_winograd.cc
+5
-4
lite/kernels/arm/conv_winograd.h
lite/kernels/arm/conv_winograd.h
+1
-0
未找到文件。
lite/core/device_info.cc
浏览文件 @
30300c98
...
...
@@ -59,6 +59,12 @@ namespace paddle {
namespace
lite
{
#ifdef LITE_WITH_ARM
thread_local
lite_api
::
PowerMode
DeviceInfo
::
mode_
;
thread_local
ARMArch
DeviceInfo
::
arch_
;
thread_local
int
DeviceInfo
::
mem_size_
;
thread_local
std
::
vector
<
int
>
DeviceInfo
::
active_ids_
;
thread_local
TensorLite
DeviceInfo
::
workspace_
;
thread_local
int64_t
DeviceInfo
::
count_
=
0
;
#ifdef TARGET_IOS
const
int
DEFAULT_L1_CACHE_SIZE
=
64
*
1024
;
...
...
lite/core/device_info.h
浏览文件 @
30300c98
...
...
@@ -79,7 +79,6 @@ class DeviceInfo {
int
core_num_
;
std
::
vector
<
int
>
max_freqs_
;
std
::
vector
<
int
>
min_freqs_
;
int
mem_size_
;
std
::
string
dev_name_
;
std
::
vector
<
int
>
L1_cache_
;
...
...
@@ -94,14 +93,15 @@ class DeviceInfo {
std
::
vector
<
bool
>
fp16_
;
std
::
vector
<
bool
>
dot_
;
ARMArch
arch_
;
// LITE_POWER_HIGH stands for using big cores,
// LITE_POWER_LOW stands for using small core,
// LITE_POWER_FULL stands for using all cores
lite_api
::
PowerMode
mode_
;
std
::
vector
<
int
>
active_ids_
;
TensorLite
workspace_
;
int64_t
count_
{
0
};
static
thread_local
lite_api
::
PowerMode
mode_
;
static
thread_local
ARMArch
arch_
;
static
thread_local
int
mem_size_
;
static
thread_local
std
::
vector
<
int
>
active_ids_
;
static
thread_local
TensorLite
workspace_
;
static
thread_local
int64_t
count_
;
void
SetDotInfo
(
int
argc
,
...);
void
SetFP16Info
(
int
argc
,
...);
...
...
@@ -119,7 +119,6 @@ class DeviceInfo {
DeviceInfo
()
=
default
;
};
#endif // LITE_WITH_ARM
template
<
TargetType
Type
>
...
...
lite/kernels/arm/conv_direct.cc
浏览文件 @
30300c98
...
...
@@ -20,15 +20,10 @@ namespace kernels {
namespace
arm
{
template
<
>
void
DirectConv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>::
ReInitWhenNeeded
()
{
auto
&
param
=
this
->
template
Param
<
param_t
>();
auto
x_dims
=
param
.
x
->
dims
();
auto
w_dims
=
param
.
filter
->
dims
();
auto
o_dims
=
param
.
output
->
dims
();
if
(
last_shape_
==
x_dims
)
{
return
;
}
void
DirectConv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
// extend workspace
if
(
param
.
strides
[
0
]
==
2
)
{
ctx
.
ExtendWorkspace
(
lite
::
arm
::
math
::
conv3x3s2_direct_workspace_size
(
param
,
&
ctx
));
...
...
@@ -36,12 +31,7 @@ void DirectConv<PRECISION(kFloat), PRECISION(kFloat)>::ReInitWhenNeeded() {
ctx
.
ExtendWorkspace
(
lite
::
arm
::
math
::
conv3x3s1_direct_workspace_size
(
param
,
&
ctx
));
}
}
template
<
>
void
DirectConv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
const
auto
*
i_data
=
param
.
x
->
data
<
float
>
();
const
auto
*
w_data
=
weights_
.
data
<
float
>
();
const
auto
*
b_data
=
param
.
bias
?
param
.
bias
->
data
<
float
>
()
:
nullptr
;
...
...
@@ -89,9 +79,6 @@ void DirectConv<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
}
}
template
<
>
void
DirectConv
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>::
ReInitWhenNeeded
()
{}
template
<
>
void
DirectConv
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
...
...
@@ -148,9 +135,6 @@ void DirectConv<PRECISION(kInt8), PRECISION(kFloat)>::Run() {
}
}
template
<
>
void
DirectConv
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>::
ReInitWhenNeeded
()
{}
template
<
>
void
DirectConv
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
...
...
lite/kernels/arm/conv_direct.h
浏览文件 @
30300c98
...
...
@@ -156,7 +156,6 @@ class DirectConv : public KernelLite<TARGET(kARM), Ptype> {
auto
x_dims
=
param
.
x
->
dims
();
auto
w_dims
=
param
.
filter
->
dims
();
auto
o_dims
=
param
.
output
->
dims
();
last_shape_
=
x_dims
;
int
ic
=
x_dims
[
1
];
int
oc
=
o_dims
[
1
];
...
...
@@ -179,12 +178,10 @@ class DirectConv : public KernelLite<TARGET(kARM), Ptype> {
w_scale_
);
}
virtual
void
ReInitWhenNeeded
();
virtual
void
Run
();
/// todo, support inplace weights transform
protected:
DDim
last_shape_
;
Tensor
weights_
;
Tensor
bias_
;
bool
flag_trans_weights_
{
false
};
...
...
lite/kernels/arm/conv_gemmlike.cc
浏览文件 @
30300c98
...
...
@@ -85,6 +85,7 @@ template <>
void
GemmLikeConv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
ctx
.
ExtendWorkspace
(
workspace_size_
);
auto
weights
=
param
.
filter
->
data
<
float
>
();
if
(
flag_trans_weights_
)
{
weights
=
weights_
.
data
<
float
>
();
...
...
@@ -120,6 +121,7 @@ template <>
void
GemmLikeConv
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
ctx
.
ExtendWorkspace
(
workspace_size_
);
auto
weights
=
param
.
filter
->
data
<
int8_t
>
();
if
(
flag_trans_weights_
)
{
weights
=
weights_
.
data
<
int8_t
>
();
...
...
@@ -179,6 +181,7 @@ template <>
void
GemmLikeConv
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
ctx
.
ExtendWorkspace
(
workspace_size_
);
auto
weights
=
param
.
filter
->
data
<
int8_t
>
();
if
(
flag_trans_weights_
)
{
weights
=
weights_
.
data
<
int8_t
>
();
...
...
lite/kernels/arm/conv_gemmlike.h
浏览文件 @
30300c98
...
...
@@ -72,7 +72,7 @@ class GemmLikeConv : public KernelLite<TARGET(kARM), Ptype> {
}
else
{
//! im2col gemmlike conv
flag_1x1gemm_
=
false
;
ctx
.
ExtendWorkspace
(
k
*
n
*
sizeof
(
float
)
);
workspace_size_
=
k
*
n
*
sizeof
(
float
);
}
if
(
!
flag_trans_weights_
&&
n
>
1
)
{
lite
::
arm
::
math
::
trans_gemm_weights
<
Ptype
>
(
...
...
@@ -97,6 +97,7 @@ class GemmLikeConv : public KernelLite<TARGET(kARM), Ptype> {
bool
flag_trans_bias_
{
false
};
Tensor
weights_
;
Tensor
bias_
;
int
workspace_size_
{
0
};
};
}
// namespace arm
...
...
lite/kernels/arm/conv_transpose_compute.cc
浏览文件 @
30300c98
...
...
@@ -40,13 +40,13 @@ void Conv2DTransposeCompute::PrepareForRun() {
int
group
=
param
.
groups
;
// deconv weights layout: chin * chout * kh * kw
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
int
m
=
chout
*
kw
*
kh
/
group
;
int
n
=
hin
*
win
;
int
k
=
chin
/
group
;
ctx
.
ExtendWorkspace
(
group
*
m
*
n
*
sizeof
(
float
)
);
workspace_size_
=
group
*
m
*
n
*
sizeof
(
float
);
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
lite
::
Tensor
tmp_weights
;
lite
::
arm
::
math
::
prepackA
(
&
tmp_weights
,
*
(
param
.
filter
),
1.
f
,
m
,
k
,
group
,
true
,
&
ctx
);
...
...
@@ -57,6 +57,8 @@ void Conv2DTransposeCompute::PrepareForRun() {
}
void
Conv2DTransposeCompute
::
Run
()
{
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
ctx
.
ExtendWorkspace
(
workspace_size_
);
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
x_dims
=
param
.
x
->
dims
();
auto
o_dims
=
param
.
output
->
dims
();
...
...
@@ -80,7 +82,6 @@ void Conv2DTransposeCompute::Run() {
int
group_size_in
=
win
*
hin
*
chin
/
group
;
int
group_size_out
=
wout
*
hout
*
chout
/
group
;
int
group_size_coldata
=
m
*
n
;
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
int
hblock
=
lite
::
arm
::
math
::
get_hblock
(
&
ctx
);
int
m_roundup
=
hblock
*
((
m
+
hblock
-
1
)
/
hblock
);
int
group_size_weights
=
((
m_roundup
*
k
+
15
)
/
16
)
*
16
;
...
...
lite/kernels/arm/conv_transpose_compute.h
浏览文件 @
30300c98
...
...
@@ -32,6 +32,9 @@ class Conv2DTransposeCompute
void
Run
()
override
;
~
Conv2DTransposeCompute
()
=
default
;
protected:
int
workspace_size_
{
0
};
};
}
// namespace arm
...
...
lite/kernels/arm/conv_winograd.cc
浏览文件 @
30300c98
...
...
@@ -46,8 +46,7 @@ void WinogradConv<PRECISION(kFloat), PRECISION(kFloat)>::ReInitWhenNeeded() {
int
max_ch
=
ic
>
oc
?
ic
:
oc
;
const
int
n_wino
=
size_tile
;
ctx
.
ExtendWorkspace
((
size_trans_channel
*
max_ch
*
2
+
n_wino
)
*
sizeof
(
float
));
workspace_size_
=
(
size_trans_channel
*
max_ch
*
2
+
n_wino
)
*
sizeof
(
float
);
last_shape_
=
x_dims
;
}
...
...
@@ -76,8 +75,7 @@ void WinogradConv<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
int
hblock
=
lite
::
arm
::
math
::
get_hblock
(
&
ctx
);
int
m_round
=
hblock
*
((
m_wino
+
hblock
-
1
)
/
hblock
);
weights_
.
Resize
({
1
,
1
,
1
,
8
*
8
*
m_round
*
ic
});
ctx
.
ExtendWorkspace
((
size_trans_channel
*
max_ch
*
2
+
n_wino
)
*
sizeof
(
float
));
workspace_size_
=
(
size_trans_channel
*
max_ch
*
2
+
n_wino
)
*
sizeof
(
float
);
auto
weights_wino
=
static_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
8
*
8
*
oc
*
ic
));
void
*
trans_tmp_ptr
=
malloc
(
sizeof
(
float
)
*
8
*
8
*
oc
*
ic
);
...
...
@@ -106,6 +104,9 @@ template <>
void
WinogradConv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
// extend workspace
ctx
.
ExtendWorkspace
(
workspace_size_
);
const
auto
*
i_data
=
param
.
x
->
data
<
float
>
();
const
auto
*
w_data
=
weights_
.
data
<
float
>
();
const
auto
*
b_data
=
param
.
bias
?
param
.
bias
->
data
<
float
>
()
:
nullptr
;
...
...
lite/kernels/arm/conv_winograd.h
浏览文件 @
30300c98
...
...
@@ -39,6 +39,7 @@ class WinogradConv : public KernelLite<TARGET(kARM), Ptype> {
using
param_t
=
operators
::
ConvParam
;
Tensor
weights_
;
DDim
last_shape_
;
int
workspace_size_
{
0
};
};
}
// namespace arm
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录