Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
2fc1a20a
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2fc1a20a
编写于
7月 10, 2018
作者:
朔-望
提交者:
GitHub
7月 10, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into develop
上级
a536790e
aaa4e8f1
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
900 addition
and
375 deletion
+900
-375
CMakeLists.txt
CMakeLists.txt
+1
-1
src/io/executor.cpp
src/io/executor.cpp
+15
-0
src/io/executor.h
src/io/executor.h
+2
-0
src/operators/fusion_conv_add_bn_relu_op.h
src/operators/fusion_conv_add_bn_relu_op.h
+5
-5
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+40
-6
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
...operators/kernel/central-arm-func/conv_add_bn_relu_func.h
+10
-19
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
...erators/kernel/central-arm-func/depthwise_conv_arm_func.h
+6
-2
src/operators/kernel/lrn_kernel.h
src/operators/kernel/lrn_kernel.h
+4
-1
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+436
-0
src/operators/math/depthwise_conv_3x3.h
src/operators/math/depthwise_conv_3x3.h
+5
-0
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+110
-108
src/operators/math/gemm.h
src/operators/math/gemm.h
+105
-81
src/operators/math/math_function.cpp
src/operators/math/math_function.cpp
+7
-25
src/operators/math/pool_3x3.cpp
src/operators/math/pool_3x3.cpp
+140
-121
src/operators/math/pool_3x3.h
src/operators/math/pool_3x3.h
+3
-0
src/operators/math/pooling.cpp
src/operators/math/pooling.cpp
+4
-1
test/common/test_gemm.cpp
test/common/test_gemm.cpp
+3
-2
test/net/test_googlenet.cpp
test/net/test_googlenet.cpp
+4
-3
未找到文件。
CMakeLists.txt
浏览文件 @
2fc1a20a
...
...
@@ -2,7 +2,7 @@ cmake_minimum_required(VERSION 3.0)
project
(
paddle-mobile
)
option
(
DEBUGING
"enable debug mode"
ON
)
option
(
USE_OPENMP
"openmp support"
O
FF
)
option
(
USE_OPENMP
"openmp support"
O
N
)
option
(
USE_EXCEPTION
"use std exception"
ON
)
option
(
LOG_PROFILE
"log profile"
ON
)
# select the platform to build
...
...
src/io/executor.cpp
浏览文件 @
2fc1a20a
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "io/executor.h"
#include <operators/math/gemm.h>
#include <algorithm>
#include <vector>
#include "common/enforce.h"
...
...
@@ -25,6 +26,9 @@ limitations under the License. */
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#ifdef _OPENMP
#include <omp.h>
#endif // _OPENMP
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#include <queue>
#include <utility>
...
...
@@ -403,6 +407,17 @@ std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
return
result_vector
;
}
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
SetThreadNum
(
int
num
)
{
for
(
int
k
=
0
;
k
<
std
::
max
(
num
,
3
);
++
k
)
{
operators
::
math
::
Gemmer
::
gemmers
.
push_back
(
new
operators
::
math
::
Gemmer
());
}
#ifdef _OPENMP
// omp_set_dynamic(0);
omp_set_num_threads
(
num
);
#endif
}
template
class
Executor
<
CPU
,
Precision
::
FP32
>;
template
class
Executor
<
FPGA
,
Precision
::
FP32
>;
template
class
Executor
<
GPU_MALI
,
Precision
::
FP32
>;
...
...
src/io/executor.h
浏览文件 @
2fc1a20a
...
...
@@ -58,6 +58,8 @@ class Executor {
std
::
vector
<
Ptype
>
Predict
(
const
std
::
vector
<
Ptype
>
&
input
,
const
std
::
vector
<
int64_t
>
&
dims
);
void
SetThreadNum
(
int
num
);
protected:
Executor
()
=
default
;
void
InitMemory
();
...
...
src/operators/fusion_conv_add_bn_relu_op.h
浏览文件 @
2fc1a20a
...
...
@@ -79,11 +79,11 @@ class FusionConvAddBNReluOp
#ifdef PADDLE_MOBILE_CPU
//
#ifndef FUSION_CONV_ADD_BN_RELU_REGISTER
//
static framework::FusionOpRegistrar fusion_conv_add_bn_relu_registrar(
//
new FusionConvAddBNReluMatcher());
//
#define FUSION_CONV_ADD_BN_RELU_REGISTER
//
#endif
#ifndef FUSION_CONV_ADD_BN_RELU_REGISTER
static
framework
::
FusionOpRegistrar
fusion_conv_add_bn_relu_registrar
(
new
FusionConvAddBNReluMatcher
());
#define FUSION_CONV_ADD_BN_RELU_REGISTER
#endif
#endif
...
...
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
2fc1a20a
...
...
@@ -14,10 +14,14 @@ limitations under the License. */
#ifdef FUSION_CONVADD_OP
#pragma once
#if _OPENMP
#include <omp.h>
#endif
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/gemm.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
...
...
@@ -106,9 +110,33 @@ void ConvAddBasic(const FusionConvAddParam ¶m) {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
));
auto
dim_a
=
filter_slice
.
dims
();
auto
dim_b
=
col_matrix
.
dims
();
auto
dim_out
=
out_slice
.
dims
();
int
m
=
dim_out
[
0
];
int
n
=
dim_out
[
1
];
int
k
=
dim_a
[
1
];
float
*
output_data
=
out_slice
.
data
<
float
>
();
int
thread_num
=
4
;
int
m1
=
m
/
thread_num
;
int
m2
=
m
%
thread_num
;
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
thread_num
;
++
j
)
{
int
row_count
=
m1
;
if
(
j
==
thread_num
-
1
)
{
row_count
=
m1
+
m2
;
}
math
::
Gemmer
::
gemmers
[
j
]
->
Sgemm
(
row_count
,
n
,
k
,
1
,
filter_slice
.
data
<
float
>
()
+
j
*
m1
*
k
,
k
,
col_matrix
.
data
<
float
>
(),
n
,
1
,
output_data
+
j
*
m1
*
n
,
n
,
false
);
}
// math::matmul<float>(filter_slice, false, col_matrix, false,
// static_cast<float>(1), &out_slice,
// static_cast<float>(1));
}
}
}
...
...
@@ -124,9 +152,15 @@ void ConvAddCompute(const FusionConvAddParam ¶m) {
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
param
.
Bias
(),
param
.
Output
(),
true
);
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), param.Bias(),
// param.Output(), false);
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
*
param
.
Bias
(),
true
);
}
else
{
ConvAddBasic
(
param
);
}
...
...
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
浏览文件 @
2fc1a20a
...
...
@@ -26,8 +26,6 @@ void ConvAddBNReluBasic(const FusionConvAddBNReluParam ¶m) {
Tensor
bias
=
*
param
.
Bias
();
Tensor
new_bias
=
*
param
.
NewBias
();
Tensor
new_scale
=
*
param
.
NewScale
();
auto
new_bias_ptr
=
new_bias
.
data
<
float
>
();
auto
new_scale_ptr
=
new_scale
.
data
<
float
>
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
math
::
expand_bias
(
bias
,
axis
,
output
->
dims
());
...
...
@@ -106,20 +104,10 @@ void ConvAddBNReluBasic(const FusionConvAddBNReluParam ¶m) {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
}
/// todo : use neon in special case instead of 2for(300ms)
auto
output_ptr
=
output
->
data
<
float
>
();
for
(
int
c
=
0
;
c
<
output_matrix_shape
[
0
];
c
++
)
{
int
start
=
c
*
output_matrix_shape
[
1
];
for
(
int
j
=
0
;
j
<
output_matrix_shape
[
1
];
j
++
)
{
output_ptr
[
start
+
j
]
=
output_ptr
[
start
+
j
]
*
new_scale_ptr
[
c
]
+
new_bias_ptr
[
c
];
output_ptr
[
start
+
j
]
=
output_ptr
[
start
+
j
]
<
0
?
0
:
output_ptr
[
start
+
j
];
math
::
matmulWithBn
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
),
true
,
&
new_scale
,
&
new_bias
);
}
}
}
...
...
@@ -138,9 +126,12 @@ void ConvAddBNReluCompute(const FusionConvAddBNReluParam ¶m) {
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
math
::
DepthwiseConvAddBNRelu3x3s2p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
1
);
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
math
::
DepthwiseConvAddBNRelu3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
true
);
}
else
{
ConvAddBNReluBasic
(
param
);
}
...
...
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
浏览文件 @
2fc1a20a
...
...
@@ -37,8 +37,12 @@ void DepthwiseConvCompute(const ConvParam ¶m) {
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
&
Bias
,
param
.
Output
(),
false
);
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), &Bias, param.Output(), false);
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
Bias
,
false
);
}
else
{
ConvBasic
(
param
);
}
...
...
src/operators/kernel/lrn_kernel.h
浏览文件 @
2fc1a20a
...
...
@@ -13,7 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#ifdef LRN_OP
#ifdef _OPENMP
#include <omp.h>
#endif
#include "framework/operator.h"
#include "operators/op_param.h"
...
...
@@ -47,6 +49,7 @@ struct LRNFunctor {
std
::
fill
(
sqr_buffer_ptr
,
sqr_buffer_ptr
+
sqr_buffer
.
numel
(),
0.0
);
for
(
int
a
=
0
;
a
<
N
;
a
++
)
{
#pragma parallel for
for
(
int
b
=
0
;
b
<
C
;
b
++
)
{
for
(
int
index
=
start
;
index
<
end
;
index
++
)
{
int
channel
=
b
+
index
;
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
2fc1a20a
...
...
@@ -1010,6 +1010,442 @@ void DepthwiseConvAddBNRelu3x3s2p1(const Tensor *input, const Tensor *filter,
output_data
+=
output_batch_stride
;
}
}
void
DepthwiseConv3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
bias
,
bool
if_bias
)
{
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
bias_data
=
bias
.
data
<
float
>
();
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
out_w
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
out_l
=
out_h
;
const
int
in_l
=
in_h
;
const
int
inhxw
=
in_h
*
in_w
;
const
int
outhxw
=
out_h
*
out_w
;
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
const
int
w_times
=
(
out_w
-
2
)
/
3
;
float32x4_t
vbias
=
vdupq_n_f32
(
0.0
);
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
];
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
int
out2in_mid
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
auto
input_const
=
input_data_tmp
;
if
(
if_bias
)
{
vbias
=
vdupq_n_f32
(
bias_data
[
j
]);
}
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
float
w10
=
filter_data_tmp
[
3
];
float
w11
=
filter_data_tmp
[
4
];
float
w12
=
filter_data_tmp
[
5
];
float
w20
=
filter_data_tmp
[
6
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
int
h_mid
=
0
;
for
(;
h_mid
<
out_h
-
1
;
h_mid
++
)
{
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
if
(
h_mid
==
0
)
{
elewise_res1
=
zero
;
elewise_res0
=
zero
;
elewise_res2
=
zero
;
}
else
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
}
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vaddq_f32
(
res3
,
vbias
);
vst1q_f32
(
output_row_ptr
,
res3
);
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
}
clock
();
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
if
(
!
if_pad
)
{
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
}
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vaddq_f32
(
res3
,
vbias
);
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
}
else
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
}
else
if
(
out_l
-
2
-
w_times
*
3
==
2
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
}
}
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
input_const
[
in_l
]
*
w21
+
input_const
[
in_l
+
1
]
*
w22
;
out2in_mid
=
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
-
1
]
=
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
;
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
(
1
-
if_pad
)
*
(
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
*
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
(
1
-
if_pad
)
*
(
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
if
(
if_bias
)
{
output_data_tmp
[
0
]
+=
bias_data
[
j
];
output_data_tmp
[
out_l
-
1
]
+=
bias_data
[
j
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
+=
bias_data
[
j
];
output_data_tmp
[
out_l
*
out_l
-
1
]
+=
bias_data
[
j
];
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
out2in_mid
=
i
*
2
*
in_w
;
output_data_tmp
[
i
*
out_l
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
if
(
if_bias
)
{
output_data_tmp
[
i
*
out_l
]
+=
bias_data
[
j
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
+=
bias_data
[
j
];
}
}
filter_data_tmp
+=
9
;
}
input_data
+=
inhxw
*
c
;
output_data
+=
outhxw
*
c
;
}
}
void
DepthwiseConvAddBNRelu3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
out_w
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
out_l
=
out_h
;
const
int
in_l
=
in_h
;
const
int
inhxw
=
in_h
*
in_w
;
const
int
outhxw
=
out_h
*
out_w
;
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
const
int
w_times
=
(
out_w
-
2
)
/
3
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
];
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
int
out2in_mid
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
auto
input_const
=
input_data_tmp
;
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
float
w10
=
filter_data_tmp
[
3
];
float
w11
=
filter_data_tmp
[
4
];
float
w12
=
filter_data_tmp
[
5
];
float
w20
=
filter_data_tmp
[
6
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
int
h_mid
=
0
;
for
(;
h_mid
<
out_h
-
1
;
h_mid
++
)
{
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
if
(
h_mid
==
0
)
{
elewise_res1
=
zero
;
elewise_res0
=
zero
;
elewise_res2
=
zero
;
}
else
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
}
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
vst1q_f32
(
output_row_ptr
,
res3
);
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
}
clock
();
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
if
(
!
if_pad
)
{
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
}
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
}
else
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
}
else
if
(
out_l
-
2
-
w_times
*
3
==
2
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
}
}
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
input_const
[
in_l
]
*
w21
+
input_const
[
in_l
+
1
]
*
w22
;
out2in_mid
=
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
-
1
]
=
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
;
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
(
1
-
if_pad
)
*
(
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
*
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
(
1
-
if_pad
)
*
(
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
-
1
]
=
output_data_tmp
[
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
<
0
?
0
:
output_data_tmp
[
0
];
output_data_tmp
[
out_l
-
1
]
=
output_data_tmp
[
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
-
1
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
<
0
?
0
:
output_data_tmp
[
out_l
*
(
out_l
-
1
)];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
*
out_l
-
1
];
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
out2in_mid
=
i
*
2
*
in_w
;
output_data_tmp
[
i
*
out_l
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
i
*
out_l
]
=
output_data_tmp
[
i
*
out_l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
i
*
out_l
]
=
output_data_tmp
[
i
*
out_l
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
+
out_l
-
1
];
}
}
filter_data_tmp
+=
9
;
}
input_data
+=
inhxw
*
c
;
output_data
+=
outhxw
*
c
;
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/depthwise_conv_3x3.h
浏览文件 @
2fc1a20a
...
...
@@ -38,6 +38,11 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
void
DepthwiseConvAddBNRelu3x3s2p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
);
void
DepthwiseConv3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
bias
,
bool
if_bias
);
void
DepthwiseConvAddBNRelu3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/gemm.cpp
浏览文件 @
2fc1a20a
...
...
@@ -22,17 +22,11 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
int
MC
=
0
;
int
KC
=
0
;
int
NC
=
0
;
float
*
packedA
;
float
*
packedB
;
float
*
packedC
;
float
*
zero
;
std
::
vector
<
Gemmer
*>
Gemmer
::
gemmers
;
// 将A矩阵分块复制到连续内存(ColMajor)
void
PackMatrixA
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
void
Gemmer
::
PackMatrixA
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
int
i
,
j
;
const
float
*
Aij
;
for
(
i
=
0
;
i
<
m
-
m_tail
;
i
+=
MR
)
{
...
...
@@ -58,8 +52,8 @@ void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
}
// 将A矩阵分块复制到连续内存(RowMajor)
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
void
Gemmer
::
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
const
float
*
a0
,
*
a1
,
*
a2
,
*
a3
;
for
(
int
i
=
0
;
i
<
m
-
m_tail
;
i
+=
MR
)
{
a0
=
A
+
i
*
lda
;
...
...
@@ -98,8 +92,8 @@ void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
}
// 将B矩阵分块复制到连续内存(ColMajor)
void
PackMatrixB
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
void
Gemmer
::
PackMatrixB
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
int
i
,
j
;
const
float
*
Bj
,
*
Bj1
,
*
Bj2
,
*
Bj3
;
for
(
j
=
0
;
j
<
n
-
n_tail
;
j
+=
NR
)
{
...
...
@@ -127,8 +121,8 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
}
// 将B矩阵分块复制到连续内存(RowMajor)
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
void
Gemmer
::
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
const
float
*
b0
;
for
(
int
j
=
0
;
j
<
n
-
n_tail
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
k
;
++
i
)
{
...
...
@@ -156,8 +150,9 @@ void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
}
// 分块矩阵乘法
void
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
)
{
void
Gemmer
::
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
)
{
for
(
int
j
=
0
;
j
<
nc
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
mc
;
i
+=
MR
)
{
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
...
...
@@ -184,9 +179,10 @@ void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
}
// 分块矩阵乘法
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
void
Gemmer
::
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
for
(
int
j
=
0
;
j
<
nc
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
mc
;
i
+=
MR
)
{
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
...
...
@@ -202,7 +198,8 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
}
#if defined(IOS)
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
C
,
int
ldc
)
{
void
Gemmer
::
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
C
,
int
ldc
)
{
// init C
float32x4_t
cv0
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv1
=
vdupq_n_f32
(
0.0
);
...
...
@@ -253,7 +250,8 @@ void AddDot4x4(int k, const float *a, const float *b, float *C, int ldc) {
}
// namespace math
#elif defined(ARMV7)
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
void
Gemmer
::
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
const
float
*
a_ptr
,
*
b_ptr
;
a_ptr
=
a
;
b_ptr
=
b
;
...
...
@@ -324,7 +322,8 @@ void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
}
#else
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
void
Gemmer
::
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
float
*
c0
,
*
c1
,
*
c2
,
*
c3
;
c0
=
c
;
c1
=
c
+
ldc
;
...
...
@@ -363,8 +362,9 @@ void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
#endif
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
void
Gemmer
::
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
30
*
1024
;
...
...
@@ -415,9 +415,10 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
void
Gemmer
::
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
30
*
1024
;
...
...
@@ -458,8 +459,7 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
InnerKernelWithBn
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
,
new_scale
+
ldc
*
i
+
j
,
new_bias
+
ldc
*
i
+
j
);
&
C
(
i
,
j
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
);
}
}
...
...
@@ -469,9 +469,9 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
VectorKernel
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
void
Gemmer
::
VectorKernel
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
float
*
bufferC
=
static_cast
<
float
*>
(
memory
::
Alloc
(
sizeof
(
float
)
*
n
));
const
float
*
a0
,
*
b0
,
*
b1
,
*
b2
,
*
b3
;
...
...
@@ -691,9 +691,10 @@ void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
}
}
void
VectorKernelWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
void
Gemmer
::
VectorKernelWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
float
*
bufferC
=
static_cast
<
float
*>
(
memory
::
Alloc
(
sizeof
(
float
)
*
n
));
const
float
*
a0
,
*
b0
,
*
b1
,
*
b2
,
*
b3
;
...
...
@@ -902,7 +903,8 @@ void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
}
}
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
void
Gemmer
::
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
const
float
*
a_ptr
,
*
b_ptr
;
a_ptr
=
a
;
b_ptr
=
b
;
...
...
@@ -1010,7 +1012,7 @@ void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc) {
}
// C = A * B
void
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
Gemmer
::
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
step
=
4
*
ldc
;
...
...
@@ -1067,10 +1069,10 @@ void WriteBasic(int mc, int nc, float *c, float *C, int ldc) {
}
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
void
Gemmer
::
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
// C = A * B + C
void
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
Gemmer
::
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
step
=
4
*
ldc
;
...
...
@@ -1134,7 +1136,7 @@ void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc) {
}
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
Gemmer
::
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
step
=
4
*
ldc
;
...
...
@@ -1208,8 +1210,8 @@ void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc) {
}
// C = A * B, batchnorm(C)
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
void
Gemmer
::
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
nc2
=
_nc1
/
4
;
...
...
@@ -1224,23 +1226,27 @@ void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *scale,
"mov r5, %[nc1]
\n\t
"
"mov r6, %[nc2]
\n\t
"
"vld1.32 {d0}, [%[scale]]
\n\t
"
"vld1.32 {d1}, [%[bias]]
\n\t
"
"vdup.32 q1, d0[0]
\n\t
"
"vdup.32 q2, d1[0]
\n\t
"
"subs r5, r5, #1
\n\t
"
"blt end_nc1_%=
\n\t
"
"loop_nc1_%=:
\n\t
"
"vld1.32 {q
0, q1
}, [%[c]]!
\n\t
"
"v
ld1.32 {q2, q3}, [%[scale]]!
\n\t
"
"v
ld1.32 {q10, q11}, [%[bias]]!
\n\t
"
"v
mla.f32 q10, q0,
q2
\n\t
"
"v
mla.f32 q11, q1, q3
\n\t
"
"vld1.32 {q
3, q4
}, [%[c]]!
\n\t
"
"v
mul.f32 q10, q3, q1
\n\t
"
"v
mul.f32 q11, q4, q1
\n\t
"
"v
add.f32 q10, q10,
q2
\n\t
"
"v
add.f32 q11, q11, q2
\n\t
"
"vst1.32 {q10, q11}, [%[C]]!
\n\t
"
"vld1.32 {q
4, q5
}, [%[c]]!
\n\t
"
"v
ld1.32 {q6, q7}, [%[scale]]!
\n\t
"
"v
ld1.32 {q12, q13}, [%[bias]]!
\n\t
"
"v
mla.f32 q12, q4, q6
\n\t
"
"v
mla.f32 q13, q5, q7
\n\t
"
"vld1.32 {q
5, q6
}, [%[c]]!
\n\t
"
"v
mul.f32 q12, q5, q1
\n\t
"
"v
mul.f32 q13, q6, q1
\n\t
"
"v
add.f32 q12, q12, q2
\n\t
"
"v
add.f32 q13, q13, q2
\n\t
"
"vst1.32 {q12, q13}, [%[C]]!
\n\t
"
"subs r5, r5, #1
\n\t
"
...
...
@@ -1251,11 +1257,10 @@ void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *scale,
"blt end_nc2_%=
\n\t
"
"loop_nc2_%=:
\n\t
"
"vld1.32 {q0}, [%[c]]!
\n\t
"
"vld1.32 {q1}, [%[scale]]!
\n\t
"
"vld1.32 {q10}, [%[bias]]!
\n\t
"
"vmla.f32 q10, q0, q1
\n\t
"
"vst1.32 {q10}, [%[C]]!
\n\t
"
"vld1.32 {q7}, [%[c]]!
\n\t
"
"vmul.f32 q10, q7, q1
\n\t
"
"vadd.f32 q10, q10, q2
\n\t
"
"vst1.32 {q10}, [%[C]]!
\n\t
"
"subs r6, r6, #1
\n\t
"
"bge loop_nc2_%=
\n\t
"
...
...
@@ -1265,20 +1270,17 @@ void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *scale,
"beq end_nc3_%=
\n\t
"
"sub %[c], %[c], %[nc3]
\n\t
"
"sub %[scale], %[scale], %[nc3]
\n\t
"
"sub %[bias], %[bias], %[nc3]
\n\t
"
"sub %[C], %[C], %[nc3]
\n\t
"
"vld1.32 {q0}, [%[c]]!
\n\t
"
"vld1.32 {q1}, [%[scale]]!
\n\t
"
"vld1.32 {q10}, [%[bias]]!
\n\t
"
"vmla.f32 q10, q0, q1
\n\t
"
"vst1.32 {q10}, [%[C]]!
\n\t
"
"vld1.32 {q8}, [%[c]]!
\n\t
"
"vmul.f32 q11, q8, q1
\n\t
"
"vadd.f32 q11, q11, q2
\n\t
"
"vst1.32 {q11}, [%[C]]!
\n\t
"
"end_nc3_%=:
\n\t
"
"add %[scale], %[scale], #4
\n\t
"
"add %[bias], %[bias], #4
\n\t
"
"add %[c], %[c], %[step1]
\n\t
"
"add %[scale], %[scale], %[step]
\n\t
"
"add %[bias], %[bias], %[step]
\n\t
"
"add %[C], %[C], %[step]
\n\t
"
"subs %[mc], %[mc], #1
\n\t
"
...
...
@@ -1289,13 +1291,13 @@ void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *scale,
:
[
C
]
"r"
(
C
),
[
c
]
"r"
(
c
),
[
mc
]
"r"
(
mc
),
[
nc1
]
"r"
(
nc1
),
[
nc2
]
"r"
(
nc2
),
[
nc3
]
"r"
(
nc3
),
[
step
]
"r"
(
step
),
[
step1
]
"r"
(
step1
),
[
scale
]
"r"
(
scale
),
[
bias
]
"r"
(
bias
)
:
"memory"
,
"
cc"
,
"r5"
,
"r6"
,
"r7"
,
"r8"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4
"
,
"q
5"
,
"q6"
,
"q7
"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
);
:
"memory"
,
"
r5"
,
"r6"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7
"
,
"q
8
"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
);
}
// C = A * B, batchnorm(C), relu(C)
void
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
void
Gemmer
::
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
nc2
=
_nc1
/
4
;
...
...
@@ -1311,25 +1313,29 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale,
"mov r5, %[nc1]
\n\t
"
"mov r6, %[nc2]
\n\t
"
"vld1.32 {d0}, [%[scale]]
\n\t
"
"vld1.32 {d1}, [%[bias]]
\n\t
"
"vdup.32 q1, d0[0]
\n\t
"
"vdup.32 q2, d1[0]
\n\t
"
"subs r5, r5, #1
\n\t
"
"blt end_nc1_%=
\n\t
"
"loop_nc1_%=:
\n\t
"
"vld1.32 {q
0, q1
}, [%[c]]!
\n\t
"
"v
ld1.32 {q2, q3}, [%[scale]]!
\n\t
"
"v
ld1.32 {q10, q11}, [%[bias]]!
\n\t
"
"v
mla.f32 q10, q0,
q2
\n\t
"
"v
mla.f32 q11, q1, q3
\n\t
"
"vld1.32 {q
3, q4
}, [%[c]]!
\n\t
"
"v
mul.f32 q10, q3, q1
\n\t
"
"v
mul.f32 q11, q4, q1
\n\t
"
"v
add.f32 q10, q10,
q2
\n\t
"
"v
add.f32 q11, q11, q2
\n\t
"
"vmax.f32 q10, q10, q14
\n\t
"
"vmax.f32 q11, q11, q14
\n\t
"
"vst1.32 {q10, q11}, [%[C]]!
\n\t
"
"vld1.32 {q
4, q5
}, [%[c]]!
\n\t
"
"v
ld1.32 {q6, q7}, [%[scale]]!
\n\t
"
"v
ld1.32 {q12, q13}, [%[bias]]!
\n\t
"
"v
mla.f32 q12, q4, q6
\n\t
"
"v
mla.f32 q13, q5, q7
\n\t
"
"vld1.32 {q
5, q6
}, [%[c]]!
\n\t
"
"v
mul.f32 q12, q5, q1
\n\t
"
"v
mul.f32 q13, q6, q1
\n\t
"
"v
add.f32 q12, q12, q2
\n\t
"
"v
add.f32 q13, q13, q2
\n\t
"
"vmax.f32 q12, q12, q14
\n\t
"
"vmax.f32 q13, q13, q14
\n\t
"
"vst1.32 {q12, q13}, [%[C]]!
\n\t
"
...
...
@@ -1342,12 +1348,11 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale,
"blt end_nc2_%=
\n\t
"
"loop_nc2_%=:
\n\t
"
"vld1.32 {q0}, [%[c]]!
\n\t
"
"vld1.32 {q1}, [%[scale]]!
\n\t
"
"vld1.32 {q10}, [%[bias]]!
\n\t
"
"vmla.f32 q10, q0, q1
\n\t
"
"vmax.f32 q10, q10, q14
\n\t
"
"vst1.32 {q10}, [%[C]]!
\n\t
"
"vld1.32 {q7}, [%[c]]!
\n\t
"
"vmul.f32 q10, q7, q1
\n\t
"
"vadd.f32 q10, q10, q2
\n\t
"
"vmax.f32 q10, q10, q14
\n\t
"
"vst1.32 {q10}, [%[C]]!
\n\t
"
"subs r6, r6, #1
\n\t
"
"bge loop_nc2_%=
\n\t
"
...
...
@@ -1357,21 +1362,18 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale,
"beq end_nc3_%=
\n\t
"
"sub %[c], %[c], %[nc3]
\n\t
"
"sub %[scale], %[scale], %[nc3]
\n\t
"
"sub %[bias], %[bias], %[nc3]
\n\t
"
"sub %[C], %[C], %[nc3]
\n\t
"
"vld1.32 {q0}, [%[c]]!
\n\t
"
"vld1.32 {q1}, [%[scale]]!
\n\t
"
"vld1.32 {q10}, [%[bias]]!
\n\t
"
"vmla.f32 q10, q0, q1
\n\t
"
"vmax.f32 q10, q10, q14
\n\t
"
"vst1.32 {q10}, [%[C]]!
\n\t
"
"vld1.32 {q8}, [%[c]]!
\n\t
"
"vmul.f32 q11, q8, q1
\n\t
"
"vadd.f32 q11, q11, q2
\n\t
"
"vmax.f32 q11, q11, q14
\n\t
"
"vst1.32 {q11}, [%[C]]!
\n\t
"
"end_nc3_%=:
\n\t
"
"add %[scale], %[scale], #4
\n\t
"
"add %[bias], %[bias], #4
\n\t
"
"add %[c], %[c], %[step1]
\n\t
"
"add %[scale], %[scale], %[step]
\n\t
"
"add %[bias], %[bias], %[step]
\n\t
"
"add %[C], %[C], %[step]
\n\t
"
"subs %[mc], %[mc], #1
\n\t
"
...
...
@@ -1382,12 +1384,12 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale,
:
[
C
]
"r"
(
C
),
[
c
]
"r"
(
c
),
[
mc
]
"r"
(
mc
),
[
nc1
]
"r"
(
nc1
),
[
nc2
]
"r"
(
nc2
),
[
nc3
]
"r"
(
nc3
),
[
step
]
"r"
(
step
),
[
step1
]
"r"
(
step1
),
[
scale
]
"r"
(
scale
),
[
bias
]
"r"
(
bias
)
:
"memory"
,
"r5"
,
"r6"
,
"
r7"
,
"r8"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5
"
,
"q
6"
,
"q7
"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
);
:
"memory"
,
"r5"
,
"r6"
,
"
q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7
"
,
"q
8
"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
);
}
// C = A * B
void
VecWriteBasic
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
Gemmer
::
VecWriteBasic
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
int
nc2
=
_nc1
/
4
;
...
...
@@ -1433,10 +1435,10 @@ void VecWriteBasic(int n, float *c, float *C, int ldc) {
}
// C = alpha * A * B + beta * C
void
VecWriteWithAlphaBeta
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
void
Gemmer
::
VecWriteWithAlphaBeta
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
// C = A * B + C
void
VecWriteWithAdd
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
Gemmer
::
VecWriteWithAdd
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
...
...
@@ -1474,7 +1476,7 @@ void VecWriteWithAdd(int n, float *c, float *C, int ldc) {
}
// C = A * B + C, relu(C)
void
VecWriteWithAddRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
Gemmer
::
VecWriteWithAddRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
...
...
@@ -1522,8 +1524,8 @@ void VecWriteWithAddRelu(int n, float *c, float *C, int ldc) {
}
// C = A * B, batchnorm(C)
void
VecWriteWithBn
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
void
Gemmer
::
VecWriteWithBn
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
int
nc2
=
_nc1
/
4
;
...
...
@@ -1589,8 +1591,8 @@ void VecWriteWithBn(int n, float *c, float *C, int ldc, float *scale,
}
// C = A * B, batchnorm(C), relu(C)
void
VecWriteWithBnRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
void
Gemmer
::
VecWriteWithBnRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
int
nc2
=
_nc1
/
4
;
...
...
src/operators/math/gemm.h
浏览文件 @
2fc1a20a
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
...
...
@@ -27,88 +28,111 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
struct
Gemmer
{
int
MC
=
0
;
int
KC
=
0
;
int
NC
=
0
;
// 将 A 矩阵分块复制到连续内存(ColMajor)
void
PackMatrixA
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
);
// 将 B 矩阵分块复制到连续内存(ColMajor)
void
PackMatrixB
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
);
// 将 A 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
);
// 将 B 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
);
// 分块矩阵乘法
void
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
);
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// 向量矩阵乘法 (M = 1)
void
VectorKernel
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
);
void
VectorKernelWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// 计算一个更小的 C 矩阵分块
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
// 分块矩阵乘法结果回写
// C = A * B
void
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C
void
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B, batchnorm(C)
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// C = A * B, batchnorm(C), relu(C)
void
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// 向量矩阵乘法结果回写
// C = A * B
void
VecWriteBasic
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = alpha * A * B + beta * C
void
VecWriteWithAlphaBeta
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C
void
VecWriteWithAdd
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C, relu(C)
void
VecWriteWithAddRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B, batchnorm(C)
void
VecWriteWithBn
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// C = A * B, batchnorm(C), relu(C)
void
VecWriteWithBnRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
);
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// 64位 double 矩阵乘法
void
dgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
double
*
A
,
int
lda
,
const
double
*
B
,
int
ldb
,
float
beta
,
double
*
C
,
int
ldc
);
float
*
packedA
;
float
*
packedB
;
float
*
packedC
;
float
*
zero
;
static
std
::
vector
<
Gemmer
*>
gemmers
;
// 将 A 矩阵分块复制到连续内存(ColMajor)
void
PackMatrixA
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
);
// 将 B 矩阵分块复制到连续内存(ColMajor)
void
PackMatrixB
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
);
// 将 A 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
);
// 将 B 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
);
// 分块矩阵乘法
void
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
);
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// 向量矩阵乘法 (M = 1)
void
VectorKernel
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
);
void
VectorKernelWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// 计算一个更小的 C 矩阵分块
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
// 分块矩阵乘法结果回写
// C = A * B
void
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C
void
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B, batchnorm(C)
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// C = A * B, batchnorm(C), relu(C)
void
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// 向量矩阵乘法结果回写
// C = A * B
void
VecWriteBasic
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = alpha * A * B + beta * C
void
VecWriteWithAlphaBeta
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C
void
VecWriteWithAdd
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C, relu(C)
void
VecWriteWithAddRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B, batchnorm(C)
void
VecWriteWithBn
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// C = A * B, batchnorm(C), relu(C)
void
VecWriteWithBnRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
);
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// 64位 double 矩阵乘法
void
dgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
double
*
A
,
int
lda
,
const
double
*
B
,
int
ldb
,
float
beta
,
double
*
C
,
int
ldc
);
};
}
// namespace math
}
// namespace operators
...
...
src/operators/math/math_function.cpp
浏览文件 @
2fc1a20a
...
...
@@ -26,23 +26,14 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int
M
=
dim_out
[
0
];
int
N
=
dim_out
[
1
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
);
Gemmer
::
gemmers
[
0
]
->
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
);
}
template
<
>
...
...
@@ -54,24 +45,15 @@ void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int
M
=
dim_out
[
0
];
int
N
=
dim_out
[
1
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
SgemmWithBn
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
new_scale
->
data
<
float
>
(),
new_bias
->
data
<
float
>
());
Gemmer
::
gemmers
[
0
]
->
SgemmWithBn
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
new_scale
->
data
<
float
>
(),
new_bias
->
data
<
float
>
());
}
}
// namespace math
...
...
src/operators/math/pool_3x3.cpp
浏览文件 @
2fc1a20a
...
...
@@ -13,8 +13,12 @@ See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POOL_OP
#include "pool_3x3.h"
#define __ARM_NEON true
#ifdef _OPENMP
#include <omp.h>
#endif
#include "framework/tensor.h"
#include "pool_3x3.h"
#if __ARM_NEON
#include <arm_neon.h>
#endif // __ARM_NEON
...
...
@@ -40,46 +44,52 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
const
int
w_out
=
output
->
dims
()[
3
];
const
int
outputdata_channel_stride
=
h_out
*
w_out
;
const
int
inputdata_channel_stride
=
h_in
*
w_in
;
const
int
input_batch_stride
=
output_channels
*
inputdata_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
outputdata_channel_stride
;
float
*
out_data
=
output
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
coef
=
1.0
/
9.0
;
for
(
int
k
=
0
;
k
<
batch_size
;
++
k
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
const
float
*
input_seg
=
input_data
+
c
*
inputdata_channel_stride
;
float
*
output_seg
=
out_data
+
c
*
outputdata_channel_stride
;
// four corner point
out
_data
[
0
]
=
(
input_data
[
0
]
+
input_data
[
1
]
+
input_data
[
w_in
]
+
input_data
[
w_in
+
1
])
*
coef
;
out
_data
[
w_out
-
1
]
=
(
input_
data
[
w_in
-
2
]
+
input_data
[
w_in
-
1
]
+
input_
data
[
w_in
*
2
-
2
]
+
input_data
[
2
*
w_in
-
1
])
*
out
put_seg
[
0
]
=
(
input_seg
[
0
]
+
input_seg
[
1
]
+
input_seg
[
w_in
]
+
input_seg
[
w_in
+
1
])
*
coef
;
out
put_seg
[
w_out
-
1
]
=
(
input_
seg
[
w_in
-
2
]
+
input_seg
[
w_in
-
1
]
+
input_seg
[
w_in
*
2
-
2
]
+
input_
seg
[
2
*
w_in
-
1
])
*
coef
;
out
_data
[(
h_out
-
1
)
*
w_out
]
=
(
input_
data
[(
h_in
-
2
)
*
w_in
]
+
input_data
[(
h_in
-
2
)
*
w_in
+
1
]
+
input_
data
[(
h_in
-
1
)
*
w_in
]
+
input_data
[(
h_in
-
1
)
*
w_in
+
1
])
*
out
put_seg
[(
h_out
-
1
)
*
w_out
]
=
(
input_
seg
[(
h_in
-
2
)
*
w_in
]
+
input_seg
[(
h_in
-
2
)
*
w_in
+
1
]
+
input_
seg
[(
h_in
-
1
)
*
w_in
]
+
input_seg
[(
h_in
-
1
)
*
w_in
+
1
])
*
coef
;
out
_data
[
h_out
*
w_out
-
1
]
=
(
input_
data
[
h_in
*
w_in
-
1
]
+
input_data
[
h_in
*
w_in
-
2
]
+
input_
data
[(
h_in
-
1
)
*
w_in
-
1
]
+
input_
data
[(
h_in
-
1
)
*
w_in
-
2
])
*
out
put_seg
[
h_out
*
w_out
-
1
]
=
(
input_
seg
[
h_in
*
w_in
-
1
]
+
input_seg
[
h_in
*
w_in
-
2
]
+
input_
seg
[(
h_in
-
1
)
*
w_in
-
1
]
+
input_
seg
[(
h_in
-
1
)
*
w_in
-
2
])
*
coef
;
// left side & right side
for
(
int
i
=
1
;
i
<
h_in
-
1
;
++
i
)
{
out
_data
[
i
*
w_out
]
=
(
input_
data
[
i
*
w_in
-
w_in
]
+
input_data
[
i
*
w_in
-
w_in
+
1
]
+
input_
data
[
i
*
w_in
]
+
input_data
[
i
*
w_in
+
1
]
+
input_
data
[
i
*
w_in
+
w_in
]
+
input_data
[
i
*
w_in
+
w_in
+
1
])
*
out
put_seg
[
i
*
w_out
]
=
(
input_
seg
[
i
*
w_in
-
w_in
]
+
input_seg
[
i
*
w_in
-
w_in
+
1
]
+
input_
seg
[
i
*
w_in
]
+
input_seg
[
i
*
w_in
+
1
]
+
input_
seg
[
i
*
w_in
+
w_in
]
+
input_seg
[
i
*
w_in
+
w_in
+
1
])
*
coef
;
out
_data
[
i
*
w_out
+
w_out
-
1
]
=
(
input_
data
[
i
*
w_in
-
w_in
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
-
w_in
+
1
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
+
1
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
+
w_in
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
+
w_in
+
1
+
w_in
-
2
])
*
out
put_seg
[
i
*
w_out
+
w_out
-
1
]
=
(
input_
seg
[
i
*
w_in
-
w_in
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
-
w_in
+
1
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
+
1
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
+
w_in
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
+
w_in
+
1
+
w_in
-
2
])
*
coef
;
}
// top 1 row & bottom 1 row
const
float
*
input_tmp
=
input_
data
;
const
float
*
input_tmp
=
input_
seg
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
in6
,
in7
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
sum
,
out0
;
...
...
@@ -90,7 +100,7 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
in4
=
vld1q_f32
(
input_tmp_end
);
in6
=
vld1q_f32
(
input_tmp_end
+
w_in
);
int
c_mid
=
w_out
-
2
;
auto
output_ptr
=
out
_data
+
1
;
auto
output_ptr
=
out
put_seg
+
1
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
w_in
+
4
);
...
...
@@ -135,8 +145,8 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
in6
=
in7
;
}
// top right remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_
data
[
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
data
[
2
*
w_in
-
1
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_
seg
[
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
seg
[
2
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
...
...
@@ -163,8 +173,8 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
}
// bottom_right remain
float32x4_t
pad2
=
vdupq_n_f32
(
input_
data
[(
h_in
-
1
)
*
w_in
-
1
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_
data
[
h_in
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
seg
[(
h_in
-
1
)
*
w_in
-
1
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_
seg
[
h_in
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in4
,
pad2
,
1
);
tmp1
=
vextq_f32
(
in4
,
pad2
,
2
);
...
...
@@ -191,8 +201,8 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
}
// mid
for
(
int
j
=
0
;
j
<
h_out
-
2
;
++
j
)
{
output_ptr
=
out
_data
+
w_out
*
(
j
+
1
)
+
1
;
input_tmp
=
input_
data
+
j
*
w_in
;
output_ptr
=
out
put_seg
+
w_out
*
(
j
+
1
)
+
1
;
input_tmp
=
input_
seg
+
j
*
w_in
;
in0
=
vld1q_f32
(
input_tmp
);
in2
=
vld1q_f32
(
input_tmp
+
w_in
);
...
...
@@ -228,9 +238,9 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
in4
=
in5
;
}
// mid remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_
data
[(
j
+
1
)
*
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
data
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
data
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_
seg
[(
j
+
1
)
*
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
seg
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
seg
[(
j
+
2
)
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
...
...
@@ -261,9 +271,11 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
}
}
}
input_data
+=
inputdata_channel_stride
;
out_data
+=
outputdata_channel_stride
;
//
input_data += inputdata_channel_stride;
//
out_data += outputdata_channel_stride;
}
input_data
+=
input_batch_stride
;
out_data
+=
output_batch_stride
;
}
#endif
}
...
...
@@ -282,44 +294,50 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
const
int
w_out
=
output
->
dims
()[
3
];
const
int
outputdata_channel_stride
=
h_out
*
w_out
;
const
int
inputdata_channel_stride
=
h_in
*
w_in
;
const
int
input_batch_stride
=
output_channels
*
inputdata_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
outputdata_channel_stride
;
float
*
out_data
=
output
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
for
(
int
k
=
0
;
k
<
batch_size
;
++
k
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
const
float
*
input_seg
=
input_data
+
c
*
inputdata_channel_stride
;
float
*
output_seg
=
out_data
+
c
*
outputdata_channel_stride
;
// four corner point
out
_data
[
0
]
=
std
::
max
(
std
::
max
(
input_data
[
0
],
input_data
[
1
]),
std
::
max
(
input_data
[
w_in
],
input_data
[
w_in
+
1
]));
out
_data
[
w_out
-
1
]
=
std
::
max
(
std
::
max
(
input_data
[
w_in
-
2
],
input_data
[
w_in
-
1
]),
std
::
max
(
input_data
[
w_in
*
2
-
2
],
input_data
[
2
*
w_in
-
1
]));
out
_data
[(
h_out
-
1
)
*
w_out
]
=
std
::
max
(
std
::
max
(
input_
data
[(
h_in
-
2
)
*
w_in
],
input_
data
[(
h_in
-
2
)
*
w_in
+
1
]),
std
::
max
(
input_
data
[(
h_in
-
1
)
*
w_in
],
input_
data
[(
h_in
-
1
)
*
w_in
+
1
]));
out
_data
[
h_out
*
w_out
-
1
]
=
std
::
max
(
std
::
max
(
input_
data
[(
h_in
-
1
)
*
w_in
-
1
],
input_
data
[(
h_in
-
1
)
*
w_in
-
2
]),
std
::
max
(
input_
data
[
h_in
*
w_in
-
1
],
input_data
[
h_in
*
w_in
-
2
]));
out
put_seg
[
0
]
=
std
::
max
(
std
::
max
(
input_seg
[
0
],
input_seg
[
1
]),
std
::
max
(
input_seg
[
w_in
],
input_seg
[
w_in
+
1
]));
out
put_seg
[
w_out
-
1
]
=
std
::
max
(
std
::
max
(
input_seg
[
w_in
-
2
],
input_seg
[
w_in
-
1
]),
std
::
max
(
input_seg
[
w_in
*
2
-
2
],
input_seg
[
2
*
w_in
-
1
]));
out
put_seg
[(
h_out
-
1
)
*
w_out
]
=
std
::
max
(
std
::
max
(
input_
seg
[(
h_in
-
2
)
*
w_in
],
input_
seg
[(
h_in
-
2
)
*
w_in
+
1
]),
std
::
max
(
input_
seg
[(
h_in
-
1
)
*
w_in
],
input_
seg
[(
h_in
-
1
)
*
w_in
+
1
]));
out
put_seg
[
h_out
*
w_out
-
1
]
=
std
::
max
(
std
::
max
(
input_
seg
[(
h_in
-
1
)
*
w_in
-
1
],
input_
seg
[(
h_in
-
1
)
*
w_in
-
2
]),
std
::
max
(
input_
seg
[
h_in
*
w_in
-
1
],
input_seg
[
h_in
*
w_in
-
2
]));
// left side & right side
for
(
int
i
=
1
;
i
<
h_in
-
1
;
++
i
)
{
float
max1
=
std
::
max
(
input_data
[
i
*
w_in
-
w_in
],
input_data
[
i
*
w_in
-
w_in
+
1
]);
float
max2
=
std
::
max
(
input_data
[
i
*
w_in
],
input_data
[
i
*
w_in
+
1
]);
float
max3
=
std
::
max
(
input_data
[
i
*
w_in
+
w_in
],
input_data
[
i
*
w_in
+
w_in
+
1
]);
out_data
[
i
*
w_out
]
=
std
::
max
(
std
::
max
(
max1
,
max2
),
max3
);
max1
=
std
::
max
(
input_data
[
i
*
w_in
-
w_in
+
w_in
-
2
],
input_data
[
i
*
w_in
-
w_in
+
1
+
w_in
-
2
]);
max2
=
std
::
max
(
input_data
[
i
*
w_in
+
w_in
-
2
],
input_data
[
i
*
w_in
+
1
+
w_in
-
2
]);
max3
=
std
::
max
(
input_data
[
i
*
w_in
+
w_in
+
w_in
-
2
],
input_data
[
i
*
w_in
+
w_in
+
1
+
w_in
-
2
]);
out_data
[
i
*
w_out
+
w_out
-
1
]
=
std
::
max
(
std
::
max
(
max1
,
max2
),
max3
);
float
max1
=
std
::
max
(
input_seg
[
i
*
w_in
-
w_in
],
input_seg
[
i
*
w_in
-
w_in
+
1
]);
float
max2
=
std
::
max
(
input_seg
[
i
*
w_in
],
input_seg
[
i
*
w_in
+
1
]);
float
max3
=
std
::
max
(
input_seg
[
i
*
w_in
+
w_in
],
input_seg
[
i
*
w_in
+
w_in
+
1
]);
output_seg
[
i
*
w_out
]
=
std
::
max
(
std
::
max
(
max1
,
max2
),
max3
);
max1
=
std
::
max
(
input_seg
[
i
*
w_in
-
w_in
+
w_in
-
2
],
input_seg
[
i
*
w_in
-
w_in
+
1
+
w_in
-
2
]);
max2
=
std
::
max
(
input_seg
[
i
*
w_in
+
w_in
-
2
],
input_seg
[
i
*
w_in
+
1
+
w_in
-
2
]);
max3
=
std
::
max
(
input_seg
[
i
*
w_in
+
w_in
+
w_in
-
2
],
input_seg
[
i
*
w_in
+
w_in
+
1
+
w_in
-
2
]);
output_seg
[
i
*
w_out
+
w_out
-
1
]
=
std
::
max
(
std
::
max
(
max1
,
max2
),
max3
);
}
// top 1 row & bottom 1 row
const
float
*
input_tmp
=
input_
data
;
const
float
*
input_tmp
=
input_
seg
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
in6
,
in7
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
max
;
...
...
@@ -329,7 +347,7 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
in4
=
vld1q_f32
(
input_tmp_end
);
in6
=
vld1q_f32
(
input_tmp_end
+
w_in
);
int
c_mid
=
w_out
-
2
;
auto
output_ptr
=
out
_data
+
1
;
auto
output_ptr
=
out
put_seg
+
1
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
w_in
+
4
);
...
...
@@ -373,8 +391,8 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
in6
=
in7
;
}
// top right remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_
data
[
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
data
[
2
*
w_in
-
1
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_
seg
[
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
seg
[
2
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
...
...
@@ -400,8 +418,8 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
}
// bottom_right remain
float32x4_t
pad2
=
vdupq_n_f32
(
input_
data
[(
h_in
-
1
)
*
w_in
-
1
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_
data
[
h_in
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
seg
[(
h_in
-
1
)
*
w_in
-
1
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_
seg
[
h_in
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in4
,
pad2
,
1
);
tmp1
=
vextq_f32
(
in4
,
pad2
,
2
);
...
...
@@ -427,8 +445,8 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
}
// mid
for
(
int
j
=
0
;
j
<
h_out
-
2
;
++
j
)
{
output_ptr
=
out
_data
+
(
j
+
1
)
*
w_out
+
1
;
input_tmp
=
input_
data
+
j
*
w_in
;
output_ptr
=
out
put_seg
+
(
j
+
1
)
*
w_out
+
1
;
input_tmp
=
input_
seg
+
j
*
w_in
;
in0
=
vld1q_f32
(
input_tmp
);
in2
=
vld1q_f32
(
input_tmp
+
w_in
);
...
...
@@ -463,9 +481,9 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
in4
=
in5
;
}
// mid remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_
data
[(
j
+
1
)
*
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
data
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
data
[(
j
+
3
)
*
w_in
-
1
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_
seg
[(
j
+
1
)
*
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
seg
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
seg
[(
j
+
3
)
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
...
...
@@ -495,9 +513,11 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
}
}
}
input_data
+=
inputdata_channel_stride
;
out_data
+=
outputdata_channel_stride
;
//
input_data += inputdata_channel_stride;
//
out_data += outputdata_channel_stride;
}
input_data
+=
input_batch_stride
;
out_data
+=
output_batch_stride
;
}
#endif
}
...
...
@@ -515,11 +535,11 @@ void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
int
_kernel_size
=
3
;
const
int
stride
_height
=
strides
[
0
];
const
int
stride_width
=
strides
[
1
];
const
int
padding
_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
//
const int _kernel_size = 3;
const
int
stride
=
strides
[
0
];
//
const int stride_width = strides[1];
const
int
padding
=
paddings
[
0
];
//
const int padding_width = paddings[1];
const
float
negative_max
=
-
INT_MAX
;
const
int
input_channel_stride
=
input_height
*
input_width
;
const
int
output_channel_stride
=
output_height
*
output_width
;
...
...
@@ -529,36 +549,39 @@ void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
const
int
input_batch_stride
=
output_channels
*
input_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
output_channel_stride
;
const
float
*
pos1
,
*
pos2
,
*
pos3
,
*
output_ptr
;
const
float
*
pos1
,
*
output_ptr
;
int
hstart
,
wstart
,
hend
,
wend
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
const
float
*
input_seg
=
input_data
+
c
*
input_channel_stride
;
float
*
output_seg
=
output_data
+
c
*
output_channel_stride
;
for
(
int
ph
=
0
;
ph
<
output_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
pw
++
)
{
hstart
=
ph
*
stride_height
-
padding_height
;
wstart
=
pw
*
stride_width
-
padding_width
;
hend
=
min
(
hstart
+
_kernel_size
,
input_height
+
padding_height
);
wend
=
min
(
wstart
+
_kernel_size
,
input_width
+
padding_width
);
int
hstart
=
ph
*
stride
-
padding
;
int
wstart
=
pw
*
stride
-
padding
;
int
hend
=
min
(
hstart
+
3
,
input_height
+
padding
);
int
wend
=
min
(
wstart
+
3
,
input_width
+
padding
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
hend
=
min
(
hend
,
input_height
);
wend
=
min
(
wend
,
input_width
);
pos1
=
input_data
+
hstart
*
input_width
+
wstart
;
pos2
=
input_data
+
(
hstart
+
1
)
*
input_width
+
wstart
;
pos3
=
input_data
+
(
hstart
+
2
)
*
input_width
+
wstart
;
output_ptr
=
output_
data
+
ph
*
output_width
+
pw
;
const
float
*
pos1
=
input_seg
+
hstart
*
input_width
+
wstart
;
const
float
*
pos2
=
input_seg
+
(
hstart
+
1
)
*
input_width
+
wstart
;
const
float
*
pos3
=
input_seg
+
(
hstart
+
2
)
*
input_width
+
wstart
;
output_ptr
=
output_
seg
+
ph
*
output_width
+
pw
;
if
(
hend
-
hstart
!=
3
||
wend
-
wstart
!=
3
)
{
float
max_value
=
-
INT_MAX
;
for
(
int
h
=
hstart
;
h
<
hend
;
h
++
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
w
++
)
{
float
value
=
input_
data
[
h
*
input_width
+
w
];
float
value
=
input_
seg
[
h
*
input_width
+
w
];
if
(
value
>
max_value
)
{
max_value
=
value
;
}
}
}
output_
data
[
ph
*
output_width
+
pw
]
=
max_value
;
output_
seg
[
ph
*
output_width
+
pw
]
=
max_value
;
}
else
{
#if defined(ARMV7)
asm
volatile
(
...
...
@@ -572,27 +595,25 @@ void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
"vpmax.f32 d7, d6, d6
\n\t
"
"vst1.32 {d7[0]},[%[output_ptr]]
\n\t
"
:
:
[
input_
data
]
"r"
(
input_data
),
[
pos1
]
"r"
(
pos1
),
:
[
input_
seg
]
"r"
(
input_seg
),
[
pos1
]
"r"
(
pos1
),
[
pos2
]
"r"
(
pos2
),
[
pos3
]
"r"
(
pos3
),
[
output_ptr
]
"r"
(
output_ptr
),
[
negative_max
]
"r"
(
negative_max
)
:
"memory"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
);
#else
const
float32x4_t
data1
=
vld1q_f32
(
pos1
);
const
float32x4_t
data2
=
vld1q_f32
(
pos
2
);
const
float32x4_t
data3
=
vld1q_f32
(
pos
3
);
const
float32x4_t
data2
=
vld1q_f32
(
pos
1
+
input_width
);
const
float32x4_t
data3
=
vld1q_f32
(
pos
1
+
2
*
input_width
);
const
float32x4_t
max_data
=
vmaxq_f32
(
vmaxq_f32
(
data1
,
data
3
),
data2
);
vmaxq_f32
(
vmaxq_f32
(
data1
,
data
2
),
data3
);
float32x2_t
res
=
vpmax_f32
(
vget_high_f32
(
vsetq_lane_f32
(
-
INT_MAX
,
max_data
,
3
)),
vget_low_f32
(
max_data
));
res
=
vpmax_f32
(
res
,
res
);
output_
data
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
);
output_
seg
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
);
#endif
}
}
}
input_data
+=
input_channel_stride
;
output_data
+=
output_channel_stride
;
}
input_data
+=
input_batch_stride
;
output_data
+=
output_batch_stride
;
...
...
@@ -613,11 +634,8 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
int
_kernel_size
=
3
;
const
int
stride_height
=
strides
[
0
];
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
int
stride
=
strides
[
0
];
const
int
padding
=
paddings
[
0
];
const
int
input_channel_stride
=
input_height
*
input_width
;
const
int
output_channel_stride
=
output_height
*
output_width
;
...
...
@@ -631,30 +649,33 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
const
int
input_batch_stride
=
output_channels
*
input_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
output_channel_stride
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
const
float
*
input_seg
=
input_data
+
c
*
input_channel_stride
;
float
*
output_seg
=
output_data
+
c
*
output_channel_stride
;
for
(
int
ph
=
0
;
ph
<
output_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
pw
++
)
{
int
hstart
=
ph
*
stride
_height
-
padding_height
;
int
wstart
=
pw
*
stride
_width
-
padding_width
;
int
hend
=
min
(
hstart
+
_kernel_size
,
input_height
+
padding_height
);
int
wend
=
min
(
wstart
+
_kernel_size
,
input_width
+
padding_width
);
int
hstart
=
ph
*
stride
-
padding
;
int
wstart
=
pw
*
stride
-
padding
;
int
hend
=
min
(
hstart
+
3
,
input_height
+
padding
);
int
wend
=
min
(
wstart
+
3
,
input_width
+
padding
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
hend
=
min
(
hend
,
input_height
);
wend
=
min
(
wend
,
input_width
);
const
float
*
pos1
=
input_
data
+
hstart
*
input_width
+
wstart
;
const
float
*
pos2
=
input_
data
+
(
hstart
+
1
)
*
input_width
+
wstart
;
const
float
*
pos3
=
input_
data
+
(
hstart
+
2
)
*
input_width
+
wstart
;
const
float
*
output_ptr
=
output_data
+
ph
*
output_width
+
pw
;
const
float
*
pos1
=
input_
seg
+
hstart
*
input_width
+
wstart
;
const
float
*
pos2
=
input_
seg
+
(
hstart
+
1
)
*
input_width
+
wstart
;
const
float
*
pos3
=
input_
seg
+
(
hstart
+
2
)
*
input_width
+
wstart
;
float
*
output_ptr
=
output_seg
+
ph
*
output_width
+
pw
;
if
(
hend
-
hstart
!=
3
||
wend
-
wstart
!=
3
)
{
float
sum
=
0
;
for
(
int
h
=
hstart
;
h
<
hend
;
h
++
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
w
++
)
{
sum
+=
input_
data
[
h
*
input_width
+
w
];
sum
+=
input_
seg
[
h
*
input_width
+
w
];
}
}
output_
data
[
ph
*
output_width
+
pw
]
=
sum
/
9.0
;
output_
seg
[
ph
*
output_width
+
pw
]
=
sum
/
9.0
;
}
else
{
#if defined(ARMV7)
...
...
@@ -671,7 +692,7 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
"vmul.f32 d6,d7
\n\t
"
"vst1.32 {d6[0]},[%[output_ptr]]
\n\t
"
:
:
[
input_
data
]
"r"
(
input_data
),
[
pos1
]
"r"
(
pos1
),
:
[
input_
seg
]
"r"
(
input_seg
),
[
pos1
]
"r"
(
pos1
),
[
pos2
]
"r"
(
pos2
),
[
pos3
]
"r"
(
pos3
),
[
output_ptr
]
"r"
(
output_ptr
),
[
zero
]
"r"
(
zero
),
[
nine_ptr
]
"r"
(
nine_ptr
)
...
...
@@ -686,13 +707,11 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
vpadd_f32
(
vget_high_f32
(
vsetq_lane_f32
(
0
,
sum_data
,
3
)),
vget_low_f32
(
sum_data
));
res
=
vpadd_f32
(
res
,
res
);
output_
data
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
)
/
9.0
;
output_
seg
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
)
/
9.0
;
#endif
}
}
}
input_data
+=
input_channel_stride
;
output_data
+=
output_channel_stride
;
}
input_data
+=
input_batch_stride
;
output_data
+=
output_batch_stride
;
...
...
src/operators/math/pool_3x3.h
浏览文件 @
2fc1a20a
...
...
@@ -15,6 +15,9 @@ limitations under the License. */
#ifdef POOL_OP
#pragma once
#ifdef _OPENMP
#include <omp.h>
#endif
#include <algorithm>
#include <vector>
#include "framework/tensor.h"
...
...
src/operators/math/pooling.cpp
浏览文件 @
2fc1a20a
...
...
@@ -16,6 +16,9 @@ limitations under the License. */
#include "pooling.h"
#include "common/types.h"
#ifdef _OPENMP
#include <omp.h>
#endif
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -57,8 +60,8 @@ class PoolFunctor<CPU, PoolProcess, T> {
T
*
output_data
=
output
->
mutable_data
<
T
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// #pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
#pragma omp parallel for
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
...
...
test/common/test_gemm.cpp
浏览文件 @
2fc1a20a
...
...
@@ -52,8 +52,9 @@ int main() {
}
auto
time1
=
time
();
paddle_mobile
::
operators
::
math
::
sgemm
(
m
,
n
,
k
,
0.9
,
a
,
lda
,
b
,
ldb
,
0.3
,
c
,
ldc
);
// paddle_mobile::operators::math::Sgemm(m, n, k, 0.9, a, lda, b, ldb, 0.3,
// c,
// ldc);
auto
time2
=
time
();
DLOG
<<
"gemm cost :"
<<
time_diff
(
time1
,
time2
)
<<
"ms
\n
"
;
for
(
int
i
=
0
;
i
<
m
*
n
;
++
i
)
{
...
...
test/net/test_googlenet.cpp
浏览文件 @
2fc1a20a
...
...
@@ -26,16 +26,17 @@ int main() {
auto
time2
=
time
();
DLOG
<<
"load cost :"
<<
time_diff
(
time1
,
time2
)
<<
"ms
\n
"
;
paddle_mobile
::
Executor
<
paddle_mobile
::
CPU
>
executor
(
program
,
1
,
optimize
);
executor
.
SetThreadNum
(
4
);
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
GetInput
<
float
>
(
g_test_image_1x3x224x224
,
&
input
,
dims
);
auto
time3
=
time
();
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
int
count
=
1
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
executor
.
Predict
(
input
,
dims
);
}
auto
time4
=
time
();
DLOG
<<
"predict cost :"
<<
time_diff
(
time3
,
time4
)
<<
"ms
\n
"
;
DLOG
<<
"predict cost :"
<<
time_diff
(
time3
,
time4
)
/
count
<<
"ms
\n
"
;
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录