提交 2bad95ec 编写于 作者: H hjchen2

Merge branch 'dev-latest' of https://github.com/hjchen2/paddle-mobile into dev-latest

......@@ -46,7 +46,7 @@ repos:
entry: bash ./tools/pre-commit.hooks/cpplint.hook
language: system
files: (test/|src/).*\.(c|cc|cxx|cpp|h|hpp|hxx)$
exclude: (?!.*third_party)^.*$ | (?!.*book)^.*$i | *\.pb\.cpp
exclude: (?!.*third_party)^.*$ | (?!.*book)^.*$i | *\.pb\.cpp | third_party/*
#
......
......@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "io/executor.h"
#include <operators/math/gemm.h>
#include <algorithm>
#include <utility>
#include <vector>
#include "common/enforce.h"
#include "common/log.h"
......@@ -26,7 +26,7 @@ limitations under the License. */
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "operators/math/gemm.h"
namespace paddle_mobile {
......@@ -34,9 +34,8 @@ using framework::Variable;
template <typename Dtype, Precision P>
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p,
const bool use_optimize,
const bool loddable)
: program_(p), use_optimize_(use_optimize), loddable_(loddable) {
const bool use_optimize, const bool loddable)
: program_(p), use_optimize_(use_optimize), loddable_(loddable) {
Variable *variable_ptr = program_.scope->Var("batch_size");
variable_ptr->SetValue<int>(1);
to_predict_program_ =
......@@ -77,20 +76,20 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p,
}
}
template<typename Dtype>
template <typename Dtype>
void LoadMemInternal(void **data, framework::LoDTensor *tensor) {
char **data_buf = reinterpret_cast<char **>(data);
int64_t size = tensor->numel();
Dtype* tensor_data = tensor->mutable_data<Dtype>();
Dtype *tensor_data = tensor->mutable_data<Dtype>();
if (0) {
// TODO should be moved into operator init function
// TODO(hjchen2) should be moved into operator init function
float min_value;
float max_value;
memcpy(&min_value, data_buf, sizeof(float));
memcpy(&max_value, data_buf + sizeof(float), sizeof(float));
data_buf += 2 * sizeof(float);
const float factor = (max_value - min_value) / 255.0;
const uint8_t *uint8_data = reinterpret_cast<uint8_t*>(data_buf);
const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(data_buf);
for (int k = 0; k < size; ++k) {
tensor_data[k] = uint8_data[k] * factor + min_value;
}
......@@ -103,21 +102,20 @@ void LoadMemInternal(void **data, framework::LoDTensor *tensor) {
template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(
void **data,
const std::shared_ptr<framework::VarDesc> var_desc,
framework::LoDTensor *tensor) {
char **data_buf = reinterpret_cast<char**>(data);
void **data, const std::shared_ptr<framework::VarDesc> var_desc,
framework::LoDTensor *tensor) {
char **data_buf = reinterpret_cast<char **>(data);
// version
uint32_t version = *(reinterpret_cast<uint32_t*>(*data_buf));
uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
*data_buf += sizeof(uint32_t);
// lod information
uint64_t lod_level = *(reinterpret_cast<uint64_t*>(*data_buf));
uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
*data_buf += sizeof(uint64_t);
auto *lod = tensor->mutable_lod();
lod->resize(lod_level);
for (uint64_t i = 0; i < lod_level; ++i) {
uint64_t size = *(reinterpret_cast<uint64_t*>(*data_buf));
uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
*data_buf += sizeof(uint64_t);
std::vector<size_t> tmp_dim(size / sizeof(size_t));
memcpy(tmp_dim.data(), *data_buf, size);
......@@ -125,10 +123,10 @@ void Executor<Dtype, P>::LoadMemory(
*data_buf += size;
}
// tensor version
uint32_t tensor_version = *(reinterpret_cast<uint32_t*>(*data_buf));
uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
*data_buf += sizeof(uint32_t);
// tensor desc size
int32_t tensor_desc_size = *(reinterpret_cast<int32_t*>(*data_buf));
int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
*data_buf += sizeof(int32_t);
// skip tensor desc
*data_buf += tensor_desc_size;
......@@ -138,13 +136,13 @@ void Executor<Dtype, P>::LoadMemory(
// parse tensor from stream
switch (tensor_desc.DataType()) {
case framework::VARTYPE_TYPE_FP32:
LoadMemInternal<float>((void**)data_buf, tensor);
LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor);
break;
case framework::VARTYPE_TYPE_INT8:
LoadMemInternal<int8_t>((void**)data_buf, tensor);
LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
break;
case framework::VARTYPE_TYPE_INT32:
LoadMemInternal<int>((void**)data_buf, tensor);
LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
break;
default:
LOG(kLOG_ERROR) << "data type is not supported";
......@@ -164,8 +162,8 @@ void Executor<Dtype, P>::InitMemory() {
char *origin_data =
ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
char *data = origin_data;
LoadMemory((void**)&data, var_desc, tensor);
delete [] origin_data;
LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
delete[] origin_data;
} else {
if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
varInputMemory(var_desc, var, tensor);
......@@ -180,7 +178,7 @@ void Executor<Dtype, P>::InitCombineMemory() {
char *origin_data = nullptr;
bool self_alloc = false;
if (program_.combined_params_buf && program_.combined_params_len) {
origin_data = (char *)program_.combined_params_buf;
origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
} else {
self_alloc = true;
origin_data = ReadFileToBuff(program_.para_path);
......@@ -195,7 +193,7 @@ void Executor<Dtype, P>::InitCombineMemory() {
if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
continue;
}
LoadMemory((void**)&data, var_desc, tensor);
LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
} else {
if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
varInputMemory(var_desc, var, tensor);
......@@ -204,7 +202,7 @@ void Executor<Dtype, P>::InitCombineMemory() {
}
}
if (self_alloc) {
delete [] origin_data;
delete[] origin_data;
}
LOG(kLOG_INFO) << "init combine memory finish";
}
......@@ -231,9 +229,9 @@ bool Executor<Dtype, P>::varInputMemory(
break;
}
bool is_mute_match = (type == framework::VARTYPE_TYPE_FP32) ||
(type == framework::VARTYPE_TYPE_INT8) ||
(type == framework::VARTYPE_TYPE_INT32) ||
(type == framework::VARTYPE_TYPE_INT64);
(type == framework::VARTYPE_TYPE_INT8) ||
(type == framework::VARTYPE_TYPE_INT32) ||
(type == framework::VARTYPE_TYPE_INT64);
PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type);
return is_mute_match;
}
......@@ -402,12 +400,12 @@ void Executor<Dtype, P>::InjectVariable(const framework::Tensor &t,
g_feed_value->GetMutable<framework::LoDTensor>();
feed_tensor->Resize(t.dims());
feed_tensor->ShareDataWith(t);
};
}
template <typename Dtype, Precision P>
void Executor<Dtype, P>::FeedData(const framework::Tensor &t) {
InjectVariable(t, "feed");
};
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::FetchResult(int id) {
......@@ -423,14 +421,14 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::FetchResult(int id) {
auto *output_tensor = framework::GetVarValue<framework::LoDTensor>(
out_keys[0], output_map, *(program_.scope));
return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
};
}
template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From_To(int start, int end) {
std::shared_ptr<framework::BlockDesc> to_predict_block =
to_predict_program_->Block(0);
auto &ops = ops_of_block_[*to_predict_block.get()];
end = end < 0 ? (int)ops.size() : end;
end = end < 0 ? static_cast<int>(ops.size()) : end;
PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
"start or end parameter is wrong");
......@@ -451,17 +449,17 @@ void Executor<Dtype, P>::Predict_From_To(int start, int end) {
profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
}
};
}
template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From(int start) {
Predict_From_To(start);
};
}
template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_To(int end) {
Predict_From_To(0, end);
};
}
#endif
template class Executor<CPU, Precision::FP32>;
......
......@@ -14,16 +14,16 @@ limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "common/types.h"
#include "common/util.h"
#include "framework/lod_tensor.h"
#include "framework/operator.h"
#include "framework/program/program.h"
#include "framework/tensor.h"
#include <memory>
#include <string>
#include <vector>
#include <map>
namespace paddle_mobile {
......@@ -36,8 +36,7 @@ class Executor {
// @param use_optimize bool whether use operator fusion to speed up or not
// @param loddable bool
Executor(const framework::Program<Dtype> program,
const bool use_optimize = true,
const bool loddable = false);
const bool use_optimize = true, const bool loddable = false);
// predict with tensor input
// @param t input tensor to do prediction
......@@ -68,8 +67,8 @@ class Executor {
framework::LoDTensor *tensor) const;
void InitMemory();
void InitCombineMemory();
void LoadMemory(void** data,
const std::shared_ptr<framework::VarDesc> var_desc,
void LoadMemory(void **data,
const std::shared_ptr<framework::VarDesc> var_desc,
framework::LoDTensor *tensor);
framework::Program<Dtype> program_;
......
......@@ -30,4 +30,3 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(dequantize, ops::DequantizeOp);
#endif
......@@ -12,8 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "feed_op.h"
#include "operators/feed_op.h"
namespace ops = paddle_mobile::operators;
......@@ -26,4 +25,3 @@ REGISTER_OPERATOR_MALI_GPU(feed, ops::FeedOp);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(feed, ops::FeedOp);
#endif
......@@ -44,7 +44,7 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
}
void RunImpl() const {
auto input = (Tensor *)const_cast<LoDTensor *>(param_.InputX());
auto input = reinterpret_cast<Tensor *>(param_.InputX());
fpga::format_image(input);
auto input_ptr = input->data<float>();
Tensor *output = param_.Out();
......@@ -53,7 +53,7 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
fpga::BypassArgs args;
args.convert_type = fpga::DATA_FP32_TO_FP16;
args.layout_type = fpga::LAYOUT_NO_CONVERT;
args.image.address = (void *)input_ptr;
args.image.address = input_ptr;
args.image.channels = input->dims()[1];
args.image.height = input->dims()[2];
args.image.width = input->dims()[3];
......@@ -78,4 +78,3 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
} // namespace operators
} // namespace paddle_mobile
......@@ -12,10 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "fetch_op.h"
namespace paddle_mobile {
namespace operators {}
} // namespace paddle_mobile
#include "operators/fetch_op.h"
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
......@@ -27,4 +24,3 @@ REGISTER_OPERATOR_MALI_GPU(fetch, ops::FetchOp);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fetch, ops::FetchOp);
#endif
......@@ -46,4 +46,3 @@ class FetchOp : public framework::OperatorBase<DeviceType> {
} // namespace operators
} // namespace paddle_mobile
......@@ -23,16 +23,16 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
template<>
template <>
bool DequantizeKernel<CPU, float>::Init(DequantizeParam<CPU> *param) {
return true;
}
template<>
template <>
void DequantizeKernel<CPU, float>::Compute(
const DequantizeParam<CPU> &param) const {
const Tensor *input = param.input_;
Tensor *output = param.out_;
Tensor *output = param.out_;
float activation_scale = param.activation_scale_->data<float>()[0];
float weight_scale = param.weight_scale_;
const int32_t *x = input->data<const int32_t>();
......@@ -70,7 +70,7 @@ void DequantizeKernel<CPU, float>::Compute(
}
}
} // namespace paddle_mobile
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -28,14 +28,12 @@ float32_t vmaxvq_f32(float32x4_t r) {
}
#endif
int32x4_t vrnd_towards_zero(float32x4_t r) {
return vcvtq_s32_f32(r);
}
int32x4_t vrnd_towards_zero(float32x4_t r) { return vcvtq_s32_f32(r); }
int32x4_t vrnd_away_zero(float32x4_t r) {
float32x4_t plus = vdupq_n_f32(0.5);
float32x4_t plus = vdupq_n_f32(0.5);
float32x4_t minus = vdupq_n_f32(-0.5);
float32x4_t zero = vdupq_n_f32(0);
float32x4_t zero = vdupq_n_f32(0);
uint32x4_t more_than_zero = vcgtq_f32(r, zero);
float32x4_t temp = vbslq_f32(more_than_zero, plus, minus);
temp = vaddq_f32(r, temp);
......@@ -62,7 +60,7 @@ int32x4_t vrnd_to_even(float32x4_t r) {
}
}
return ret;
#else
#else
float32x4_t point5 = vdupq_n_f32(0.5);
int32x4_t one = vdupq_n_s32(1);
int32x4_t zero = vdupq_n_s32(0);
......@@ -83,9 +81,9 @@ int32x4_t vrnd_to_even(float32x4_t r) {
mask = vaddq_u32(more_than_zero, mask);
int32x4_t smask = vreinterpretq_s32_u32(mask);
smask = vsubq_s32(smask, one);
rnd = vaddq_s32(rnd, smask);
rnd = vaddq_s32(rnd, smask);
return rnd;
#endif
#endif
}
#endif
......@@ -93,7 +91,7 @@ namespace paddle_mobile {
namespace operators {
static float find_abs_max(const Tensor *input) {
float max_abs = float(0);
float max_abs = 0.f;
const float *x = input->data<const float>();
size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
......@@ -130,8 +128,7 @@ static float find_abs_max(const Tensor *input) {
return max_abs;
}
static void quantize_round_to_even(const Tensor *input,
const float scale,
static void quantize_round_to_even(const Tensor *input, const float scale,
Tensor *output) {
const float *x = input->data<const float>();
int8_t *y = output->data<int8_t>();
......@@ -183,9 +180,8 @@ static void quantize_round_to_even(const Tensor *input,
}
}
static void quantize_round_to_zero(const Tensor *input,
const float scale,
Tensor *output) {
static void quantize_round_to_zero(const Tensor *input, const float scale,
Tensor *output) {
const float *x = input->data<const float>();
int8_t *y = output->data<int8_t>();
size_t size = input->numel();
......@@ -225,9 +221,8 @@ static void quantize_round_to_zero(const Tensor *input,
}
}
static void quantize_round_to_nearest(const Tensor *input,
const float scale,
Tensor *output) {
static void quantize_round_to_nearest(const Tensor *input, const float scale,
Tensor *output) {
const float *x = input->data<const float>();
int8_t *y = output->data<int8_t>();
size_t size = input->numel();
......@@ -267,15 +262,14 @@ static void quantize_round_to_nearest(const Tensor *input,
}
}
template<>
template <>
bool QuantizeKernel<CPU, float>::Init(QuantizeParam<CPU> *param) {
return true;
}
template<>
template <>
void QuantizeKernel<CPU, float>::Compute(
const QuantizeParam<CPU> &param) const {
// TODO
float max_abs = 0.f;
const Tensor *input = param.input_;
Tensor *output = param.out_;
......@@ -306,7 +300,7 @@ void QuantizeKernel<CPU, float>::Compute(
}
}
} // namespace paddle_mobile
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/quantize_op.h"
#include <vector>
namespace paddle_mobile {
namespace operators {
......@@ -32,4 +33,3 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(quantize, ops::QuantizeOp);
#endif
......@@ -45,19 +45,19 @@
* \todo Use size_t consistently.
*/
#include <stdlib.h> /* for malloc, free */
#include <string.h> /* for strcmp, strlen, memcpy, memmove, memset */
#include <stdlib.h> /* for malloc, free */
#include <string.h> /* for strcmp, strlen, memcpy, memmove, memset */
#include "protobuf-c.h"
#define TRUE 1
#define FALSE 0
#define TRUE 1
#define FALSE 0
#define PROTOBUF_C__ASSERT_NOT_REACHED() assert(0)
/* Workaround for Microsoft compilers. */
#ifdef _MSC_VER
# define inline __inline
#define inline __inline
#endif
/**
......@@ -78,10 +78,10 @@
*/
/** The maximum length of a 64-bit integer in varint encoding. */
#define MAX_UINT64_ENCODED_SIZE 10
#define MAX_UINT64_ENCODED_SIZE 10
#ifndef PROTOBUF_C_UNPACK_ERROR
# define PROTOBUF_C_UNPACK_ERROR(...)
#define PROTOBUF_C_UNPACK_ERROR(...)
#endif
const char protobuf_c_empty_string[] = "";
......@@ -93,7 +93,7 @@ const char protobuf_c_empty_string[] = "";
* STRUCT_MEMBER_PTR().
*/
#define STRUCT_MEMBER_P(struct_p, struct_offset) \
((void *) ((uint8_t *) (struct_p) + (struct_offset)))
((void *)((uint8_t *)(struct_p) + (struct_offset)))
/**
* Return field in a `ProtobufCMessage` based on offset.
......@@ -102,7 +102,7 @@ const char protobuf_c_empty_string[] = "";
* Cast it to the passed type.
*/
#define STRUCT_MEMBER(member_type, struct_p, struct_offset) \
(*(member_type *) STRUCT_MEMBER_P((struct_p), (struct_offset)))
(*(member_type *)STRUCT_MEMBER_P((struct_p), (struct_offset)))
/**
* Return field in a `ProtobufCMessage` based on offset.
......@@ -111,63 +111,44 @@ const char protobuf_c_empty_string[] = "";
* it to a pointer to the passed type.
*/
#define STRUCT_MEMBER_PTR(member_type, struct_p, struct_offset) \
((member_type *) STRUCT_MEMBER_P((struct_p), (struct_offset)))
((member_type *)STRUCT_MEMBER_P((struct_p), (struct_offset)))
/* Assertions for magic numbers. */
#define ASSERT_IS_ENUM_DESCRIPTOR(desc) \
assert((desc)->magic == PROTOBUF_C__ENUM_DESCRIPTOR_MAGIC)
assert((desc)->magic == PROTOBUF_C__ENUM_DESCRIPTOR_MAGIC)
#define ASSERT_IS_MESSAGE_DESCRIPTOR(desc) \
assert((desc)->magic == PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC)
assert((desc)->magic == PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC)
#define ASSERT_IS_MESSAGE(message) \
ASSERT_IS_MESSAGE_DESCRIPTOR((message)->descriptor)
ASSERT_IS_MESSAGE_DESCRIPTOR((message)->descriptor)
#define ASSERT_IS_SERVICE_DESCRIPTOR(desc) \
assert((desc)->magic == PROTOBUF_C__SERVICE_DESCRIPTOR_MAGIC)
assert((desc)->magic == PROTOBUF_C__SERVICE_DESCRIPTOR_MAGIC)
/**@}*/
/* --- version --- */
const char *
protobuf_c_version(void)
{
return PROTOBUF_C_VERSION;
}
const char *protobuf_c_version(void) { return PROTOBUF_C_VERSION; }
uint32_t
protobuf_c_version_number(void)
{
return PROTOBUF_C_VERSION_NUMBER;
}
uint32_t protobuf_c_version_number(void) { return PROTOBUF_C_VERSION_NUMBER; }
/* --- allocator --- */
static void *
system_alloc(void *allocator_data, size_t size)
{
return malloc(size);
static void *system_alloc(void *allocator_data, size_t size) {
return malloc(size);
}
static void
system_free(void *allocator_data, void *data)
{
free(data);
}
static void system_free(void *allocator_data, void *data) { free(data); }
static inline void *
do_alloc(ProtobufCAllocator *allocator, size_t size)
{
return allocator->alloc(allocator->allocator_data, size);
static inline void *do_alloc(ProtobufCAllocator *allocator, size_t size) {
return allocator->alloc(allocator->allocator_data, size);
}
static inline void
do_free(ProtobufCAllocator *allocator, void *data)
{
if (data != NULL)
allocator->free(allocator->allocator_data, data);
static inline void do_free(ProtobufCAllocator *allocator, void *data) {
if (data != NULL) allocator->free(allocator->allocator_data, data);
}
/*
......@@ -176,42 +157,37 @@ do_free(ProtobufCAllocator *allocator, void *data)
* function.
*/
static ProtobufCAllocator protobuf_c__allocator = {
.alloc = &system_alloc,
.free = &system_free,
.allocator_data = NULL,
.alloc = &system_alloc,
.free = &system_free,
.allocator_data = NULL,
};
/* === buffer-simple === */
void
protobuf_c_buffer_simple_append(ProtobufCBuffer *buffer,
size_t len, const uint8_t *data)
{
ProtobufCBufferSimple *simp = (ProtobufCBufferSimple *) buffer;
size_t new_len = simp->len + len;
if (new_len > simp->alloced) {
ProtobufCAllocator *allocator = simp->allocator;
size_t new_alloced = simp->alloced * 2;
uint8_t *new_data;
if (allocator == NULL)
allocator = &protobuf_c__allocator;
while (new_alloced < new_len)
new_alloced += new_alloced;
new_data = do_alloc(allocator, new_alloced);
if (!new_data)
return;
memcpy(new_data, simp->data, simp->len);
if (simp->must_free_data)
do_free(allocator, simp->data);
else
simp->must_free_data = TRUE;
simp->data = new_data;
simp->alloced = new_alloced;
}
memcpy(simp->data + simp->len, data, len);
simp->len = new_len;
void protobuf_c_buffer_simple_append(ProtobufCBuffer *buffer, size_t len,
const uint8_t *data) {
ProtobufCBufferSimple *simp = (ProtobufCBufferSimple *)buffer;
size_t new_len = simp->len + len;
if (new_len > simp->alloced) {
ProtobufCAllocator *allocator = simp->allocator;
size_t new_alloced = simp->alloced * 2;
uint8_t *new_data;
if (allocator == NULL) allocator = &protobuf_c__allocator;
while (new_alloced < new_len) new_alloced += new_alloced;
new_data = do_alloc(allocator, new_alloced);
if (!new_data) return;
memcpy(new_data, simp->data, simp->len);
if (simp->must_free_data)
do_free(allocator, simp->data);
else
simp->must_free_data = TRUE;
simp->data = new_data;
simp->alloced = new_alloced;
}
memcpy(simp->data + simp->len, data, len);
simp->len = new_len;
}
/**
......@@ -232,20 +208,18 @@ protobuf_c_buffer_simple_append(ProtobufCBuffer *buffer,
* \return
* Number of bytes required.
*/
static inline size_t
get_tag_size(uint32_t number)
{
if (number < (1UL << 4)) {
return 1;
} else if (number < (1UL << 11)) {
return 2;
} else if (number < (1UL << 18)) {
return 3;
} else if (number < (1UL << 25)) {
return 4;
} else {
return 5;
}
static inline size_t get_tag_size(uint32_t number) {
if (number < (1UL << 4)) {
return 1;
} else if (number < (1UL << 11)) {
return 2;
} else if (number < (1UL << 18)) {
return 3;
} else if (number < (1UL << 25)) {
return 4;
} else {
return 5;
}
}
/**
......@@ -257,20 +231,18 @@ get_tag_size(uint32_t number)
* \return
* Number of bytes required.
*/
static inline size_t
uint32_size(uint32_t v)
{
if (v < (1UL << 7)) {
return 1;
} else if (v < (1UL << 14)) {
return 2;
} else if (v < (1UL << 21)) {
return 3;
} else if (v < (1UL << 28)) {
return 4;
} else {
return 5;
}
static inline size_t uint32_size(uint32_t v) {
if (v < (1UL << 7)) {
return 1;
} else if (v < (1UL << 14)) {
return 2;
} else if (v < (1UL << 21)) {
return 3;
} else if (v < (1UL << 28)) {
return 4;
} else {
return 5;
}
}
/**
......@@ -282,22 +254,20 @@ uint32_size(uint32_t v)
* \return
* Number of bytes required.
*/
static inline size_t
int32_size(int32_t v)
{
if (v < 0) {
return 10;
} else if (v < (1L << 7)) {
return 1;
} else if (v < (1L << 14)) {
return 2;
} else if (v < (1L << 21)) {
return 3;
} else if (v < (1L << 28)) {
return 4;
} else {
return 5;
}
static inline size_t int32_size(int32_t v) {
if (v < 0) {
return 10;
} else if (v < (1L << 7)) {
return 1;
} else if (v < (1L << 14)) {
return 2;
} else if (v < (1L << 21)) {
return 3;
} else if (v < (1L << 28)) {
return 4;
} else {
return 5;
}
}
/**
......@@ -309,13 +279,11 @@ int32_size(int32_t v)
* \return
* ZigZag encoded integer.
*/
static inline uint32_t
zigzag32(int32_t v)
{
if (v < 0)
return (-(uint32_t)v) * 2 - 1;
else
return (uint32_t)(v) * 2;
static inline uint32_t zigzag32(int32_t v) {
if (v < 0)
return (-(uint32_t)v) * 2 - 1;
else
return (uint32_t)(v)*2;
}
/**
......@@ -328,11 +296,7 @@ zigzag32(int32_t v)
* \return
* Number of bytes required.
*/
static inline size_t
sint32_size(int32_t v)
{
return uint32_size(zigzag32(v));
}
static inline size_t sint32_size(int32_t v) { return uint32_size(zigzag32(v)); }
/**
* Return the number of bytes required to store a 64-bit unsigned integer in
......@@ -343,26 +307,24 @@ sint32_size(int32_t v)
* \return
* Number of bytes required.
*/
static inline size_t
uint64_size(uint64_t v)
{
uint32_t upper_v = (uint32_t) (v >> 32);
if (upper_v == 0) {
return uint32_size((uint32_t) v);
} else if (upper_v < (1UL << 3)) {
return 5;
} else if (upper_v < (1UL << 10)) {
return 6;
} else if (upper_v < (1UL << 17)) {
return 7;
} else if (upper_v < (1UL << 24)) {
return 8;
} else if (upper_v < (1UL << 31)) {
return 9;
} else {
return 10;
}
static inline size_t uint64_size(uint64_t v) {
uint32_t upper_v = (uint32_t)(v >> 32);
if (upper_v == 0) {
return uint32_size((uint32_t)v);
} else if (upper_v < (1UL << 3)) {
return 5;
} else if (upper_v < (1UL << 10)) {
return 6;
} else if (upper_v < (1UL << 17)) {
return 7;
} else if (upper_v < (1UL << 24)) {
return 8;
} else if (upper_v < (1UL << 31)) {
return 9;
} else {
return 10;
}
}
/**
......@@ -374,13 +336,11 @@ uint64_size(uint64_t v)
* \return
* ZigZag encoded integer.
*/
static inline uint64_t
zigzag64(int64_t v)
{
if (v < 0)
return (-(uint64_t)v) * 2 - 1;
else
return (uint64_t)(v) * 2;
static inline uint64_t zigzag64(int64_t v) {
if (v < 0)
return (-(uint64_t)v) * 2 - 1;
else
return (uint64_t)(v)*2;
}
/**
......@@ -393,11 +353,7 @@ zigzag64(int64_t v)
* \return
* Number of bytes required.
*/
static inline size_t
sint64_size(int64_t v)
{
return uint64_size(zigzag64(v));
}
static inline size_t sint64_size(int64_t v) { return uint64_size(zigzag64(v)); }
/**
* Calculate the serialized size of a single required message field, including
......@@ -410,54 +366,52 @@ sint64_size(int64_t v)
* \return
* Number of bytes required.
*/
static size_t
required_field_get_packed_size(const ProtobufCFieldDescriptor *field,
const void *member)
{
size_t rv = get_tag_size(field->id);
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
return rv + sint32_size(*(const int32_t *) member);
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
return rv + int32_size(*(const int32_t *) member);
case PROTOBUF_C_TYPE_UINT32:
return rv + uint32_size(*(const uint32_t *) member);
case PROTOBUF_C_TYPE_SINT64:
return rv + sint64_size(*(const int64_t *) member);
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
return rv + uint64_size(*(const uint64_t *) member);
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
return rv + 4;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
return rv + 8;
case PROTOBUF_C_TYPE_BOOL:
return rv + 1;
case PROTOBUF_C_TYPE_FLOAT:
return rv + 4;
case PROTOBUF_C_TYPE_DOUBLE:
return rv + 8;
case PROTOBUF_C_TYPE_STRING: {
const char *str = *(char * const *) member;
size_t len = str ? strlen(str) : 0;
return rv + uint32_size(len) + len;
}
case PROTOBUF_C_TYPE_BYTES: {
size_t len = ((const ProtobufCBinaryData *) member)->len;
return rv + uint32_size(len) + len;
}
case PROTOBUF_C_TYPE_MESSAGE: {
const ProtobufCMessage *msg = *(ProtobufCMessage * const *) member;
size_t subrv = msg ? protobuf_c_message_get_packed_size(msg) : 0;
return rv + uint32_size(subrv) + subrv;
}
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
static size_t required_field_get_packed_size(
const ProtobufCFieldDescriptor *field, const void *member) {
size_t rv = get_tag_size(field->id);
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
return rv + sint32_size(*(const int32_t *)member);
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
return rv + int32_size(*(const int32_t *)member);
case PROTOBUF_C_TYPE_UINT32:
return rv + uint32_size(*(const uint32_t *)member);
case PROTOBUF_C_TYPE_SINT64:
return rv + sint64_size(*(const int64_t *)member);
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
return rv + uint64_size(*(const uint64_t *)member);
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
return rv + 4;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
return rv + 8;
case PROTOBUF_C_TYPE_BOOL:
return rv + 1;
case PROTOBUF_C_TYPE_FLOAT:
return rv + 4;
case PROTOBUF_C_TYPE_DOUBLE:
return rv + 8;
case PROTOBUF_C_TYPE_STRING: {
const char *str = *(char *const *)member;
size_t len = str ? strlen(str) : 0;
return rv + uint32_size(len) + len;
}
case PROTOBUF_C_TYPE_BYTES: {
size_t len = ((const ProtobufCBinaryData *)member)->len;
return rv + uint32_size(len) + len;
}
case PROTOBUF_C_TYPE_MESSAGE: {
const ProtobufCMessage *msg = *(ProtobufCMessage *const *)member;
size_t subrv = msg ? protobuf_c_message_get_packed_size(msg) : 0;
return rv + uint32_size(subrv) + subrv;
}
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
}
/**
......@@ -474,22 +428,18 @@ required_field_get_packed_size(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes required.
*/
static size_t
oneof_field_get_packed_size(const ProtobufCFieldDescriptor *field,
uint32_t oneof_case,
const void *member)
{
if (oneof_case != field->id) {
return 0;
}
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void * const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
}
return required_field_get_packed_size(field, member);
static size_t oneof_field_get_packed_size(const ProtobufCFieldDescriptor *field,
uint32_t oneof_case,
const void *member) {
if (oneof_case != field->id) {
return 0;
}
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING) {
const void *ptr = *(const void *const *)member;
if (ptr == NULL || ptr == field->default_value) return 0;
}
return required_field_get_packed_size(field, member);
}
/**
......@@ -506,69 +456,62 @@ oneof_field_get_packed_size(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes required.
*/
static size_t
optional_field_get_packed_size(const ProtobufCFieldDescriptor *field,
const protobuf_c_boolean has,
const void *member)
{
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void * const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
} else {
if (!has)
return 0;
}
return required_field_get_packed_size(field, member);
}
static protobuf_c_boolean
field_is_zeroish(const ProtobufCFieldDescriptor *field,
const void *member)
{
protobuf_c_boolean ret = FALSE;
switch (field->type) {
case PROTOBUF_C_TYPE_BOOL:
ret = (0 == *(const protobuf_c_boolean *) member);
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
ret = (0 == *(const uint32_t *) member);
break;
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
ret = (0 == *(const uint64_t *) member);
break;
case PROTOBUF_C_TYPE_FLOAT:
ret = (0 == *(const float *) member);
break;
case PROTOBUF_C_TYPE_DOUBLE:
ret = (0 == *(const double *) member);
break;
case PROTOBUF_C_TYPE_STRING:
ret = (NULL == *(const char * const *) member) ||
('\0' == **(const char * const *) member);
break;
case PROTOBUF_C_TYPE_BYTES:
case PROTOBUF_C_TYPE_MESSAGE:
ret = (NULL == *(const void * const *) member);
break;
default:
ret = TRUE;
break;
}
return ret;
static size_t optional_field_get_packed_size(
const ProtobufCFieldDescriptor *field, const protobuf_c_boolean has,
const void *member) {
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING) {
const void *ptr = *(const void *const *)member;
if (ptr == NULL || ptr == field->default_value) return 0;
} else {
if (!has) return 0;
}
return required_field_get_packed_size(field, member);
}
static protobuf_c_boolean field_is_zeroish(
const ProtobufCFieldDescriptor *field, const void *member) {
protobuf_c_boolean ret = FALSE;
switch (field->type) {
case PROTOBUF_C_TYPE_BOOL:
ret = (0 == *(const protobuf_c_boolean *)member);
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
ret = (0 == *(const uint32_t *)member);
break;
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
ret = (0 == *(const uint64_t *)member);
break;
case PROTOBUF_C_TYPE_FLOAT:
ret = (0 == *(const float *)member);
break;
case PROTOBUF_C_TYPE_DOUBLE:
ret = (0 == *(const double *)member);
break;
case PROTOBUF_C_TYPE_STRING:
ret = (NULL == *(const char *const *)member) ||
('\0' == **(const char *const *)member);
break;
case PROTOBUF_C_TYPE_BYTES:
case PROTOBUF_C_TYPE_MESSAGE:
ret = (NULL == *(const void *const *)member);
break;
default:
ret = TRUE;
break;
}
return ret;
}
/**
......@@ -584,13 +527,10 @@ field_is_zeroish(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes required.
*/
static size_t
unlabeled_field_get_packed_size(const ProtobufCFieldDescriptor *field,
const void *member)
{
if (field_is_zeroish(field, member))
return 0;
return required_field_get_packed_size(field, member);
static size_t unlabeled_field_get_packed_size(
const ProtobufCFieldDescriptor *field, const void *member) {
if (field_is_zeroish(field, member)) return 0;
return required_field_get_packed_size(field, member);
}
/**
......@@ -607,81 +547,72 @@ unlabeled_field_get_packed_size(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes required.
*/
static size_t
repeated_field_get_packed_size(const ProtobufCFieldDescriptor *field,
size_t count, const void *member)
{
size_t header_size;
size_t rv = 0;
unsigned i;
void *array = *(void * const *) member;
if (count == 0)
return 0;
header_size = get_tag_size(field->id);
if (0 == (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED))
header_size *= count;
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
for (i = 0; i < count; i++)
rv += sint32_size(((int32_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
for (i = 0; i < count; i++)
rv += int32_size(((int32_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_UINT32:
for (i = 0; i < count; i++)
rv += uint32_size(((uint32_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_SINT64:
for (i = 0; i < count; i++)
rv += sint64_size(((int64_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
for (i = 0; i < count; i++)
rv += uint64_size(((uint64_t *) array)[i]);
break;
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
rv += 4 * count;
break;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
rv += 8 * count;
break;
case PROTOBUF_C_TYPE_BOOL:
rv += count;
break;
case PROTOBUF_C_TYPE_STRING:
for (i = 0; i < count; i++) {
size_t len = strlen(((char **) array)[i]);
rv += uint32_size(len) + len;
}
break;
case PROTOBUF_C_TYPE_BYTES:
for (i = 0; i < count; i++) {
size_t len = ((ProtobufCBinaryData *) array)[i].len;
rv += uint32_size(len) + len;
}
break;
case PROTOBUF_C_TYPE_MESSAGE:
for (i = 0; i < count; i++) {
size_t len = protobuf_c_message_get_packed_size(
((ProtobufCMessage **) array)[i]);
rv += uint32_size(len) + len;
}
break;
}
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED))
header_size += uint32_size(rv);
return header_size + rv;
static size_t repeated_field_get_packed_size(
const ProtobufCFieldDescriptor *field, size_t count, const void *member) {
size_t header_size;
size_t rv = 0;
unsigned i;
void *array = *(void *const *)member;
if (count == 0) return 0;
header_size = get_tag_size(field->id);
if (0 == (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED)) header_size *= count;
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
for (i = 0; i < count; i++) rv += sint32_size(((int32_t *)array)[i]);
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
for (i = 0; i < count; i++) rv += int32_size(((int32_t *)array)[i]);
break;
case PROTOBUF_C_TYPE_UINT32:
for (i = 0; i < count; i++) rv += uint32_size(((uint32_t *)array)[i]);
break;
case PROTOBUF_C_TYPE_SINT64:
for (i = 0; i < count; i++) rv += sint64_size(((int64_t *)array)[i]);
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
for (i = 0; i < count; i++) rv += uint64_size(((uint64_t *)array)[i]);
break;
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
rv += 4 * count;
break;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
rv += 8 * count;
break;
case PROTOBUF_C_TYPE_BOOL:
rv += count;
break;
case PROTOBUF_C_TYPE_STRING:
for (i = 0; i < count; i++) {
size_t len = strlen(((char **)array)[i]);
rv += uint32_size(len) + len;
}
break;
case PROTOBUF_C_TYPE_BYTES:
for (i = 0; i < count; i++) {
size_t len = ((ProtobufCBinaryData *)array)[i].len;
rv += uint32_size(len) + len;
}
break;
case PROTOBUF_C_TYPE_MESSAGE:
for (i = 0; i < count; i++) {
size_t len =
protobuf_c_message_get_packed_size(((ProtobufCMessage **)array)[i]);
rv += uint32_size(len) + len;
}
break;
}
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED))
header_size += uint32_size(rv);
return header_size + rv;
}
/**
......@@ -694,10 +625,9 @@ repeated_field_get_packed_size(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes required.
*/
static inline size_t
unknown_field_get_packed_size(const ProtobufCMessageUnknownField *field)
{
return get_tag_size(field->tag) + field->len;
static inline size_t unknown_field_get_packed_size(
const ProtobufCMessageUnknownField *field) {
return get_tag_size(field->tag) + field->len;
}
/**@}*/
......@@ -705,52 +635,36 @@ unknown_field_get_packed_size(const ProtobufCMessageUnknownField *field)
/*
* Calculate the serialized size of the message.
*/
size_t protobuf_c_message_get_packed_size(const ProtobufCMessage *message)
{
unsigned i;
size_t rv = 0;
ASSERT_IS_MESSAGE(message);
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *field =
message->descriptor->fields + i;
const void *member =
((const char *) message) + field->offset;
const void *qmember =
((const char *) message) + field->quantifier_offset;
if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
rv += required_field_get_packed_size(field, member);
} else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
field->label == PROTOBUF_C_LABEL_NONE) &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
rv += oneof_field_get_packed_size(
field,
*(const uint32_t *) qmember,
member
);
} else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
rv += optional_field_get_packed_size(
field,
*(protobuf_c_boolean *) qmember,
member
);
} else if (field->label == PROTOBUF_C_LABEL_NONE) {
rv += unlabeled_field_get_packed_size(
field,
member
);
} else {
rv += repeated_field_get_packed_size(
field,
*(const size_t *) qmember,
member
);
}
}
for (i = 0; i < message->n_unknown_fields; i++)
rv += unknown_field_get_packed_size(&message->unknown_fields[i]);
return rv;
size_t protobuf_c_message_get_packed_size(const ProtobufCMessage *message) {
unsigned i;
size_t rv = 0;
ASSERT_IS_MESSAGE(message);
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *field = message->descriptor->fields + i;
const void *member = ((const char *)message) + field->offset;
const void *qmember = ((const char *)message) + field->quantifier_offset;
if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
rv += required_field_get_packed_size(field, member);
} else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
field->label == PROTOBUF_C_LABEL_NONE) &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
rv += oneof_field_get_packed_size(field, *(const uint32_t *)qmember,
member);
} else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
rv += optional_field_get_packed_size(
field, *(protobuf_c_boolean *)qmember, member);
} else if (field->label == PROTOBUF_C_LABEL_NONE) {
rv += unlabeled_field_get_packed_size(field, member);
} else {
rv += repeated_field_get_packed_size(field, *(const size_t *)qmember,
member);
}
}
for (i = 0; i < message->n_unknown_fields; i++)
rv += unknown_field_get_packed_size(&message->unknown_fields[i]);
return rv;
}
/**
......@@ -773,30 +687,28 @@ size_t protobuf_c_message_get_packed_size(const ProtobufCMessage *message)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
uint32_pack(uint32_t value, uint8_t *out)
{
unsigned rv = 0;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
}
}
}
}
/* assert: value<128 */
out[rv++] = value;
return rv;
static inline size_t uint32_pack(uint32_t value, uint8_t *out) {
unsigned rv = 0;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
if (value >= 0x80) {
out[rv++] = value | 0x80;
value >>= 7;
}
}
}
}
/* assert: value<128 */
out[rv++] = value;
return rv;
}
/**
......@@ -810,21 +722,19 @@ uint32_pack(uint32_t value, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
int32_pack(int32_t value, uint8_t *out)
{
if (value < 0) {
out[0] = value | 0x80;
out[1] = (value >> 7) | 0x80;
out[2] = (value >> 14) | 0x80;
out[3] = (value >> 21) | 0x80;
out[4] = (value >> 28) | 0x80;
out[5] = out[6] = out[7] = out[8] = 0xff;
out[9] = 0x01;
return 10;
} else {
return uint32_pack(value, out);
}
static inline size_t int32_pack(int32_t value, uint8_t *out) {
if (value < 0) {
out[0] = value | 0x80;
out[1] = (value >> 7) | 0x80;
out[2] = (value >> 14) | 0x80;
out[3] = (value >> 21) | 0x80;
out[4] = (value >> 28) | 0x80;
out[5] = out[6] = out[7] = out[8] = 0xff;
out[9] = 0x01;
return 10;
} else {
return uint32_pack(value, out);
}
}
/**
......@@ -838,10 +748,8 @@ int32_pack(int32_t value, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
sint32_pack(int32_t value, uint8_t *out)
{
return uint32_pack(zigzag32(value), out);
static inline size_t sint32_pack(int32_t value, uint8_t *out) {
return uint32_pack(zigzag32(value), out);
}
/**
......@@ -855,33 +763,30 @@ sint32_pack(int32_t value, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static size_t
uint64_pack(uint64_t value, uint8_t *out)
{
uint32_t hi = (uint32_t) (value >> 32);
uint32_t lo = (uint32_t) value;
unsigned rv;
if (hi == 0)
return uint32_pack((uint32_t) lo, out);
out[0] = (lo) | 0x80;
out[1] = (lo >> 7) | 0x80;
out[2] = (lo >> 14) | 0x80;
out[3] = (lo >> 21) | 0x80;
if (hi < 8) {
out[4] = (hi << 4) | (lo >> 28);
return 5;
} else {
out[4] = ((hi & 7) << 4) | (lo >> 28) | 0x80;
hi >>= 3;
}
rv = 5;
while (hi >= 128) {
out[rv++] = hi | 0x80;
hi >>= 7;
}
out[rv++] = hi;
return rv;
static size_t uint64_pack(uint64_t value, uint8_t *out) {
uint32_t hi = (uint32_t)(value >> 32);
uint32_t lo = (uint32_t)value;
unsigned rv;
if (hi == 0) return uint32_pack((uint32_t)lo, out);
out[0] = (lo) | 0x80;
out[1] = (lo >> 7) | 0x80;
out[2] = (lo >> 14) | 0x80;
out[3] = (lo >> 21) | 0x80;
if (hi < 8) {
out[4] = (hi << 4) | (lo >> 28);
return 5;
} else {
out[4] = ((hi & 7) << 4) | (lo >> 28) | 0x80;
hi >>= 3;
}
rv = 5;
while (hi >= 128) {
out[rv++] = hi | 0x80;
hi >>= 7;
}
out[rv++] = hi;
return rv;
}
/**
......@@ -895,10 +800,8 @@ uint64_pack(uint64_t value, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
sint64_pack(int64_t value, uint8_t *out)
{
return uint64_pack(zigzag64(value), out);
static inline size_t sint64_pack(int64_t value, uint8_t *out) {
return uint64_pack(zigzag64(value), out);
}
/**
......@@ -912,20 +815,18 @@ sint64_pack(int64_t value, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
fixed32_pack(uint32_t value, void *out)
{
static inline size_t fixed32_pack(uint32_t value, void *out) {
#if !defined(WORDS_BIGENDIAN)
memcpy(out, &value, 4);
memcpy(out, &value, 4);
#else
uint8_t *buf = out;
uint8_t *buf = out;
buf[0] = value;
buf[1] = value >> 8;
buf[2] = value >> 16;
buf[3] = value >> 24;
buf[0] = value;
buf[1] = value >> 8;
buf[2] = value >> 16;
buf[3] = value >> 24;
#endif
return 4;
return 4;
}
/**
......@@ -943,16 +844,14 @@ fixed32_pack(uint32_t value, void *out)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
fixed64_pack(uint64_t value, void *out)
{
static inline size_t fixed64_pack(uint64_t value, void *out) {
#if !defined(WORDS_BIGENDIAN)
memcpy(out, &value, 8);
memcpy(out, &value, 8);
#else
fixed32_pack(value, out);
fixed32_pack(value >> 32, ((char *) out) + 4);
fixed32_pack(value, out);
fixed32_pack(value >> 32, ((char *)out) + 4);
#endif
return 8;
return 8;
}
/**
......@@ -968,11 +867,9 @@ fixed64_pack(uint64_t value, void *out)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
boolean_pack(protobuf_c_boolean value, uint8_t *out)
{
*out = value ? TRUE : FALSE;
return 1;
static inline size_t boolean_pack(protobuf_c_boolean value, uint8_t *out) {
*out = value ? TRUE : FALSE;
return 1;
}
/**
......@@ -990,18 +887,16 @@ boolean_pack(protobuf_c_boolean value, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
string_pack(const char *str, uint8_t *out)
{
if (str == NULL) {
out[0] = 0;
return 1;
} else {
size_t len = strlen(str);
size_t rv = uint32_pack(len, out);
memcpy(out + rv, str, len);
return rv + len;
}
static inline size_t string_pack(const char *str, uint8_t *out) {
if (str == NULL) {
out[0] = 0;
return 1;
} else {
size_t len = strlen(str);
size_t rv = uint32_pack(len, out);
memcpy(out + rv, str, len);
return rv + len;
}
}
/**
......@@ -1015,13 +910,12 @@ string_pack(const char *str, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
binary_data_pack(const ProtobufCBinaryData *bd, uint8_t *out)
{
size_t len = bd->len;
size_t rv = uint32_pack(len, out);
memcpy(out + rv, bd->data, len);
return rv + len;
static inline size_t binary_data_pack(const ProtobufCBinaryData *bd,
uint8_t *out) {
size_t len = bd->len;
size_t rv = uint32_pack(len, out);
memcpy(out + rv, bd->data, len);
return rv + len;
}
/**
......@@ -1035,19 +929,17 @@ binary_data_pack(const ProtobufCBinaryData *bd, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static inline size_t
prefixed_message_pack(const ProtobufCMessage *message, uint8_t *out)
{
if (message == NULL) {
out[0] = 0;
return 1;
} else {
size_t rv = protobuf_c_message_pack(message, out + 1);
uint32_t rv_packed_size = uint32_size(rv);
if (rv_packed_size != 1)
memmove(out + rv_packed_size, out + 1, rv);
return uint32_pack(rv, out) + rv;
}
static inline size_t prefixed_message_pack(const ProtobufCMessage *message,
uint8_t *out) {
if (message == NULL) {
out[0] = 0;
return 1;
} else {
size_t rv = protobuf_c_message_pack(message, out + 1);
uint32_t rv_packed_size = uint32_size(rv);
if (rv_packed_size != 1) memmove(out + rv_packed_size, out + 1, rv);
return uint32_pack(rv, out) + rv;
}
}
/**
......@@ -1064,13 +956,11 @@ prefixed_message_pack(const ProtobufCMessage *message, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static size_t
tag_pack(uint32_t id, uint8_t *out)
{
if (id < (1UL << (32 - 3)))
return uint32_pack(id << 3, out);
else
return uint64_pack(((uint64_t) id) << 3, out);
static size_t tag_pack(uint32_t id, uint8_t *out) {
if (id < (1UL << (32 - 3)))
return uint32_pack(id << 3, out);
else
return uint64_pack(((uint64_t)id) << 3, out);
}
/**
......@@ -1085,55 +975,55 @@ tag_pack(uint32_t id, uint8_t *out)
* \return
* Number of bytes written to `out`.
*/
static size_t
required_field_pack(const ProtobufCFieldDescriptor *field,
const void *member, uint8_t *out)
{
size_t rv = tag_pack(field->id, out);
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + sint32_pack(*(const int32_t *) member, out + rv);
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + int32_pack(*(const int32_t *) member, out + rv);
case PROTOBUF_C_TYPE_UINT32:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + uint32_pack(*(const uint32_t *) member, out + rv);
case PROTOBUF_C_TYPE_SINT64:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + sint64_pack(*(const int64_t *) member, out + rv);
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + uint64_pack(*(const uint64_t *) member, out + rv);
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
out[0] |= PROTOBUF_C_WIRE_TYPE_32BIT;
return rv + fixed32_pack(*(const uint32_t *) member, out + rv);
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
out[0] |= PROTOBUF_C_WIRE_TYPE_64BIT;
return rv + fixed64_pack(*(const uint64_t *) member, out + rv);
case PROTOBUF_C_TYPE_BOOL:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + boolean_pack(*(const protobuf_c_boolean *) member, out + rv);
case PROTOBUF_C_TYPE_STRING:
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
return rv + string_pack(*(char *const *) member, out + rv);
case PROTOBUF_C_TYPE_BYTES:
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
return rv + binary_data_pack((const ProtobufCBinaryData *) member, out + rv);
case PROTOBUF_C_TYPE_MESSAGE:
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
return rv + prefixed_message_pack(*(ProtobufCMessage * const *) member, out + rv);
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
static size_t required_field_pack(const ProtobufCFieldDescriptor *field,
const void *member, uint8_t *out) {
size_t rv = tag_pack(field->id, out);
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + sint32_pack(*(const int32_t *)member, out + rv);
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + int32_pack(*(const int32_t *)member, out + rv);
case PROTOBUF_C_TYPE_UINT32:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + uint32_pack(*(const uint32_t *)member, out + rv);
case PROTOBUF_C_TYPE_SINT64:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + sint64_pack(*(const int64_t *)member, out + rv);
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + uint64_pack(*(const uint64_t *)member, out + rv);
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
out[0] |= PROTOBUF_C_WIRE_TYPE_32BIT;
return rv + fixed32_pack(*(const uint32_t *)member, out + rv);
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
out[0] |= PROTOBUF_C_WIRE_TYPE_64BIT;
return rv + fixed64_pack(*(const uint64_t *)member, out + rv);
case PROTOBUF_C_TYPE_BOOL:
out[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
return rv + boolean_pack(*(const protobuf_c_boolean *)member, out + rv);
case PROTOBUF_C_TYPE_STRING:
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
return rv + string_pack(*(char *const *)member, out + rv);
case PROTOBUF_C_TYPE_BYTES:
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
return rv +
binary_data_pack((const ProtobufCBinaryData *)member, out + rv);
case PROTOBUF_C_TYPE_MESSAGE:
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
return rv + prefixed_message_pack(*(ProtobufCMessage *const *)member,
out + rv);
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
}
/**
......@@ -1151,22 +1041,18 @@ required_field_pack(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes written to `out`.
*/
static size_t
oneof_field_pack(const ProtobufCFieldDescriptor *field,
uint32_t oneof_case,
const void *member, uint8_t *out)
{
if (oneof_case != field->id) {
return 0;
}
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void * const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
}
return required_field_pack(field, member, out);
static size_t oneof_field_pack(const ProtobufCFieldDescriptor *field,
uint32_t oneof_case, const void *member,
uint8_t *out) {
if (oneof_case != field->id) {
return 0;
}
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING) {
const void *ptr = *(const void *const *)member;
if (ptr == NULL || ptr == field->default_value) return 0;
}
return required_field_pack(field, member, out);
}
/**
......@@ -1183,22 +1069,17 @@ oneof_field_pack(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes written to `out`.
*/
static size_t
optional_field_pack(const ProtobufCFieldDescriptor *field,
const protobuf_c_boolean has,
const void *member, uint8_t *out)
{
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void * const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
} else {
if (!has)
return 0;
}
return required_field_pack(field, member, out);
static size_t optional_field_pack(const ProtobufCFieldDescriptor *field,
const protobuf_c_boolean has,
const void *member, uint8_t *out) {
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING) {
const void *ptr = *(const void *const *)member;
if (ptr == NULL || ptr == field->default_value) return 0;
} else {
if (!has) return 0;
}
return required_field_pack(field, member, out);
}
/**
......@@ -1213,13 +1094,10 @@ optional_field_pack(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes written to `out`.
*/
static size_t
unlabeled_field_pack(const ProtobufCFieldDescriptor *field,
const void *member, uint8_t *out)
{
if (field_is_zeroish(field, member))
return 0;
return required_field_pack(field, member, out);
static size_t unlabeled_field_pack(const ProtobufCFieldDescriptor *field,
const void *member, uint8_t *out) {
if (field_is_zeroish(field, member)) return 0;
return required_field_pack(field, member, out);
}
/**
......@@ -1232,35 +1110,33 @@ unlabeled_field_pack(const ProtobufCFieldDescriptor *field,
* \return
* Size of the field.
*/
static inline size_t
sizeof_elt_in_repeated_array(ProtobufCType type)
{
switch (type) {
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
case PROTOBUF_C_TYPE_ENUM:
return 4;
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
return 8;
case PROTOBUF_C_TYPE_BOOL:
return sizeof(protobuf_c_boolean);
case PROTOBUF_C_TYPE_STRING:
case PROTOBUF_C_TYPE_MESSAGE:
return sizeof(void *);
case PROTOBUF_C_TYPE_BYTES:
return sizeof(ProtobufCBinaryData);
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
static inline size_t sizeof_elt_in_repeated_array(ProtobufCType type) {
switch (type) {
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
case PROTOBUF_C_TYPE_ENUM:
return 4;
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
return 8;
case PROTOBUF_C_TYPE_BOOL:
return sizeof(protobuf_c_boolean);
case PROTOBUF_C_TYPE_STRING:
case PROTOBUF_C_TYPE_MESSAGE:
return sizeof(void *);
case PROTOBUF_C_TYPE_BYTES:
return sizeof(ProtobufCBinaryData);
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
}
/**
......@@ -1273,16 +1149,14 @@ sizeof_elt_in_repeated_array(ProtobufCType type)
* \param[in] n
* Number of elements in the source array.
*/
static void
copy_to_little_endian_32(void *out, const void *in, const unsigned n)
{
static void copy_to_little_endian_32(void *out, const void *in,
const unsigned n) {
#if !defined(WORDS_BIGENDIAN)
memcpy(out, in, n * 4);
memcpy(out, in, n * 4);
#else
unsigned i;
const uint32_t *ini = in;
for (i = 0; i < n; i++)
fixed32_pack(ini[i], (uint32_t *) out + i);
unsigned i;
const uint32_t *ini = in;
for (i = 0; i < n; i++) fixed32_pack(ini[i], (uint32_t *)out + i);
#endif
}
......@@ -1296,16 +1170,14 @@ copy_to_little_endian_32(void *out, const void *in, const unsigned n)
* \param[in] n
* Number of elements in the source array.
*/
static void
copy_to_little_endian_64(void *out, const void *in, const unsigned n)
{
static void copy_to_little_endian_64(void *out, const void *in,
const unsigned n) {
#if !defined(WORDS_BIGENDIAN)
memcpy(out, in, n * 8);
memcpy(out, in, n * 8);
#else
unsigned i;
const uint64_t *ini = in;
for (i = 0; i < n; i++)
fixed64_pack(ini[i], (uint64_t *) out + i);
unsigned i;
const uint64_t *ini = in;
for (i = 0; i < n; i++) fixed64_pack(ini[i], (uint64_t *)out + i);
#endif
}
......@@ -1318,22 +1190,16 @@ copy_to_little_endian_64(void *out, const void *in, const unsigned n)
* \return
* Number of bytes.
*/
static unsigned
get_type_min_size(ProtobufCType type)
{
if (type == PROTOBUF_C_TYPE_SFIXED32 ||
type == PROTOBUF_C_TYPE_FIXED32 ||
type == PROTOBUF_C_TYPE_FLOAT)
{
return 4;
}
if (type == PROTOBUF_C_TYPE_SFIXED64 ||
type == PROTOBUF_C_TYPE_FIXED64 ||
type == PROTOBUF_C_TYPE_DOUBLE)
{
return 8;
}
return 1;
static unsigned get_type_min_size(ProtobufCType type) {
if (type == PROTOBUF_C_TYPE_SFIXED32 || type == PROTOBUF_C_TYPE_FIXED32 ||
type == PROTOBUF_C_TYPE_FLOAT) {
return 4;
}
if (type == PROTOBUF_C_TYPE_SFIXED64 || type == PROTOBUF_C_TYPE_FIXED64 ||
type == PROTOBUF_C_TYPE_DOUBLE) {
return 8;
}
return 1;
}
/**
......@@ -1351,174 +1217,159 @@ get_type_min_size(ProtobufCType type)
* \return
* Number of bytes serialised to `out`.
*/
static size_t
repeated_field_pack(const ProtobufCFieldDescriptor *field,
size_t count, const void *member, uint8_t *out)
{
void *array = *(void * const *) member;
unsigned i;
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED)) {
unsigned header_len;
unsigned len_start;
unsigned min_length;
unsigned payload_len;
unsigned length_size_min;
unsigned actual_length_size;
uint8_t *payload_at;
if (count == 0)
return 0;
header_len = tag_pack(field->id, out);
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
len_start = header_len;
min_length = get_type_min_size(field->type) * count;
length_size_min = uint32_size(min_length);
header_len += length_size_min;
payload_at = out + header_len;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
copy_to_little_endian_32(payload_at, array, count);
payload_at += count * 4;
break;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
copy_to_little_endian_64(payload_at, array, count);
payload_at += count * 8;
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32: {
const int32_t *arr = (const int32_t *) array;
for (i = 0; i < count; i++)
payload_at += int32_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_SINT32: {
const int32_t *arr = (const int32_t *) array;
for (i = 0; i < count; i++)
payload_at += sint32_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_SINT64: {
const int64_t *arr = (const int64_t *) array;
for (i = 0; i < count; i++)
payload_at += sint64_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_UINT32: {
const uint32_t *arr = (const uint32_t *) array;
for (i = 0; i < count; i++)
payload_at += uint32_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64: {
const uint64_t *arr = (const uint64_t *) array;
for (i = 0; i < count; i++)
payload_at += uint64_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_BOOL: {
const protobuf_c_boolean *arr = (const protobuf_c_boolean *) array;
for (i = 0; i < count; i++)
payload_at += boolean_pack(arr[i], payload_at);
break;
}
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
payload_len = payload_at - (out + header_len);
actual_length_size = uint32_size(payload_len);
if (length_size_min != actual_length_size) {
assert(actual_length_size == length_size_min + 1);
memmove(out + header_len + 1, out + header_len,
payload_len);
header_len++;
}
uint32_pack(payload_len, out + len_start);
return header_len + payload_len;
} else {
/* not "packed" cased */
/* CONSIDER: optimize this case a bit (by putting the loop inside the switch) */
size_t rv = 0;
unsigned siz = sizeof_elt_in_repeated_array(field->type);
for (i = 0; i < count; i++) {
rv += required_field_pack(field, array, out + rv);
array = (char *)array + siz;
}
return rv;
}
}
static size_t
unknown_field_pack(const ProtobufCMessageUnknownField *field, uint8_t *out)
{
size_t rv = tag_pack(field->tag, out);
out[0] |= field->wire_type;
memcpy(out + rv, field->data, field->len);
return rv + field->len;
static size_t repeated_field_pack(const ProtobufCFieldDescriptor *field,
size_t count, const void *member,
uint8_t *out) {
void *array = *(void *const *)member;
unsigned i;
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED)) {
unsigned header_len;
unsigned len_start;
unsigned min_length;
unsigned payload_len;
unsigned length_size_min;
unsigned actual_length_size;
uint8_t *payload_at;
if (count == 0) return 0;
header_len = tag_pack(field->id, out);
out[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
len_start = header_len;
min_length = get_type_min_size(field->type) * count;
length_size_min = uint32_size(min_length);
header_len += length_size_min;
payload_at = out + header_len;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
copy_to_little_endian_32(payload_at, array, count);
payload_at += count * 4;
break;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
copy_to_little_endian_64(payload_at, array, count);
payload_at += count * 8;
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32: {
const int32_t *arr = (const int32_t *)array;
for (i = 0; i < count; i++)
payload_at += int32_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_SINT32: {
const int32_t *arr = (const int32_t *)array;
for (i = 0; i < count; i++)
payload_at += sint32_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_SINT64: {
const int64_t *arr = (const int64_t *)array;
for (i = 0; i < count; i++)
payload_at += sint64_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_UINT32: {
const uint32_t *arr = (const uint32_t *)array;
for (i = 0; i < count; i++)
payload_at += uint32_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64: {
const uint64_t *arr = (const uint64_t *)array;
for (i = 0; i < count; i++)
payload_at += uint64_pack(arr[i], payload_at);
break;
}
case PROTOBUF_C_TYPE_BOOL: {
const protobuf_c_boolean *arr = (const protobuf_c_boolean *)array;
for (i = 0; i < count; i++)
payload_at += boolean_pack(arr[i], payload_at);
break;
}
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
payload_len = payload_at - (out + header_len);
actual_length_size = uint32_size(payload_len);
if (length_size_min != actual_length_size) {
assert(actual_length_size == length_size_min + 1);
memmove(out + header_len + 1, out + header_len, payload_len);
header_len++;
}
uint32_pack(payload_len, out + len_start);
return header_len + payload_len;
} else {
/* not "packed" cased */
/* CONSIDER: optimize this case a bit (by putting the loop inside the
* switch) */
size_t rv = 0;
unsigned siz = sizeof_elt_in_repeated_array(field->type);
for (i = 0; i < count; i++) {
rv += required_field_pack(field, array, out + rv);
array = (char *)array + siz;
}
return rv;
}
}
static size_t unknown_field_pack(const ProtobufCMessageUnknownField *field,
uint8_t *out) {
size_t rv = tag_pack(field->tag, out);
out[0] |= field->wire_type;
memcpy(out + rv, field->data, field->len);
return rv + field->len;
}
/**@}*/
size_t
protobuf_c_message_pack(const ProtobufCMessage *message, uint8_t *out)
{
unsigned i;
size_t rv = 0;
ASSERT_IS_MESSAGE(message);
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *field =
message->descriptor->fields + i;
const void *member = ((const char *) message) + field->offset;
/*
* It doesn't hurt to compute qmember (a pointer to the
* quantifier field of the structure), but the pointer is only
* valid if the field is:
* - a repeated field, or
* - a field that is part of a oneof
* - an optional field that isn't a pointer type
* (Meaning: not a message or a string).
*/
const void *qmember =
((const char *) message) + field->quantifier_offset;
if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
rv += required_field_pack(field, member, out + rv);
} else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
field->label == PROTOBUF_C_LABEL_NONE) &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
rv += oneof_field_pack(
field,
*(const uint32_t *) qmember,
member,
out + rv
);
} else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
rv += optional_field_pack(
field,
*(const protobuf_c_boolean *) qmember,
member,
out + rv
);
} else if (field->label == PROTOBUF_C_LABEL_NONE) {
rv += unlabeled_field_pack(field, member, out + rv);
} else {
rv += repeated_field_pack(field, *(const size_t *) qmember,
member, out + rv);
}
}
for (i = 0; i < message->n_unknown_fields; i++)
rv += unknown_field_pack(&message->unknown_fields[i], out + rv);
return rv;
size_t protobuf_c_message_pack(const ProtobufCMessage *message, uint8_t *out) {
unsigned i;
size_t rv = 0;
ASSERT_IS_MESSAGE(message);
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *field = message->descriptor->fields + i;
const void *member = ((const char *)message) + field->offset;
/*
* It doesn't hurt to compute qmember (a pointer to the
* quantifier field of the structure), but the pointer is only
* valid if the field is:
* - a repeated field, or
* - a field that is part of a oneof
* - an optional field that isn't a pointer type
* (Meaning: not a message or a string).
*/
const void *qmember = ((const char *)message) + field->quantifier_offset;
if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
rv += required_field_pack(field, member, out + rv);
} else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
field->label == PROTOBUF_C_LABEL_NONE) &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
rv +=
oneof_field_pack(field, *(const uint32_t *)qmember, member, out + rv);
} else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
rv += optional_field_pack(field, *(const protobuf_c_boolean *)qmember,
member, out + rv);
} else if (field->label == PROTOBUF_C_LABEL_NONE) {
rv += unlabeled_field_pack(field, member, out + rv);
} else {
rv += repeated_field_pack(field, *(const size_t *)qmember, member,
out + rv);
}
}
for (i = 0; i < message->n_unknown_fields; i++)
rv += unknown_field_pack(&message->unknown_fields[i], out + rv);
return rv;
}
/**
......@@ -1542,110 +1393,110 @@ protobuf_c_message_pack(const ProtobufCMessage *message, uint8_t *out)
* \return
* Number of bytes packed.
*/
static size_t
required_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
const void *member, ProtobufCBuffer *buffer)
{
size_t rv;
uint8_t scratch[MAX_UINT64_ENCODED_SIZE * 2];
rv = tag_pack(field->id, scratch);
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += sint32_pack(*(const int32_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += int32_pack(*(const int32_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_UINT32:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += uint32_pack(*(const uint32_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_SINT64:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += sint64_pack(*(const int64_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += uint64_pack(*(const uint64_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_32BIT;
rv += fixed32_pack(*(const uint32_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_64BIT;
rv += fixed64_pack(*(const uint64_t *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_BOOL:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += boolean_pack(*(const protobuf_c_boolean *) member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_STRING: {
const char *str = *(char *const *) member;
size_t sublen = str ? strlen(str) : 0;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
rv += uint32_pack(sublen, scratch + rv);
buffer->append(buffer, rv, scratch);
buffer->append(buffer, sublen, (const uint8_t *) str);
rv += sublen;
break;
}
case PROTOBUF_C_TYPE_BYTES: {
const ProtobufCBinaryData *bd = ((const ProtobufCBinaryData *) member);
size_t sublen = bd->len;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
rv += uint32_pack(sublen, scratch + rv);
buffer->append(buffer, rv, scratch);
buffer->append(buffer, sublen, bd->data);
rv += sublen;
break;
}
case PROTOBUF_C_TYPE_MESSAGE: {
uint8_t simple_buffer_scratch[256];
size_t sublen;
const ProtobufCMessage *msg = *(ProtobufCMessage * const *) member;
ProtobufCBufferSimple simple_buffer =
PROTOBUF_C_BUFFER_SIMPLE_INIT(simple_buffer_scratch);
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
if (msg == NULL)
sublen = 0;
else
sublen = protobuf_c_message_pack_to_buffer(msg, &simple_buffer.base);
rv += uint32_pack(sublen, scratch + rv);
buffer->append(buffer, rv, scratch);
buffer->append(buffer, sublen, simple_buffer.data);
rv += sublen;
PROTOBUF_C_BUFFER_SIMPLE_CLEAR(&simple_buffer);
break;
}
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
return rv;
static size_t required_field_pack_to_buffer(
const ProtobufCFieldDescriptor *field, const void *member,
ProtobufCBuffer *buffer) {
size_t rv;
uint8_t scratch[MAX_UINT64_ENCODED_SIZE * 2];
rv = tag_pack(field->id, scratch);
switch (field->type) {
case PROTOBUF_C_TYPE_SINT32:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += sint32_pack(*(const int32_t *)member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += int32_pack(*(const int32_t *)member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_UINT32:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += uint32_pack(*(const uint32_t *)member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_SINT64:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += sint64_pack(*(const int64_t *)member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += uint64_pack(*(const uint64_t *)member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_32BIT;
rv += fixed32_pack(*(const uint32_t *)member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_64BIT;
rv += fixed64_pack(*(const uint64_t *)member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_BOOL:
scratch[0] |= PROTOBUF_C_WIRE_TYPE_VARINT;
rv += boolean_pack(*(const protobuf_c_boolean *)member, scratch + rv);
buffer->append(buffer, rv, scratch);
break;
case PROTOBUF_C_TYPE_STRING: {
const char *str = *(char *const *)member;
size_t sublen = str ? strlen(str) : 0;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
rv += uint32_pack(sublen, scratch + rv);
buffer->append(buffer, rv, scratch);
buffer->append(buffer, sublen, (const uint8_t *)str);
rv += sublen;
break;
}
case PROTOBUF_C_TYPE_BYTES: {
const ProtobufCBinaryData *bd = ((const ProtobufCBinaryData *)member);
size_t sublen = bd->len;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
rv += uint32_pack(sublen, scratch + rv);
buffer->append(buffer, rv, scratch);
buffer->append(buffer, sublen, bd->data);
rv += sublen;
break;
}
case PROTOBUF_C_TYPE_MESSAGE: {
uint8_t simple_buffer_scratch[256];
size_t sublen;
const ProtobufCMessage *msg = *(ProtobufCMessage *const *)member;
ProtobufCBufferSimple simple_buffer =
PROTOBUF_C_BUFFER_SIMPLE_INIT(simple_buffer_scratch);
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
if (msg == NULL)
sublen = 0;
else
sublen = protobuf_c_message_pack_to_buffer(msg, &simple_buffer.base);
rv += uint32_pack(sublen, scratch + rv);
buffer->append(buffer, rv, scratch);
buffer->append(buffer, sublen, simple_buffer.data);
rv += sublen;
PROTOBUF_C_BUFFER_SIMPLE_CLEAR(&simple_buffer);
break;
}
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
return rv;
}
/**
* Pack a oneof field to a buffer. Only packs the field that is selected by the case enum.
* Pack a oneof field to a buffer. Only packs the field that is selected by the
* case enum.
*
* \param field
* Field descriptor.
......@@ -1658,22 +1509,19 @@ required_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes serialised to `buffer`.
*/
static size_t
oneof_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
uint32_t oneof_case,
const void *member, ProtobufCBuffer *buffer)
{
if (oneof_case != field->id) {
return 0;
}
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void *const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
}
return required_field_pack_to_buffer(field, member, buffer);
static size_t oneof_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
uint32_t oneof_case,
const void *member,
ProtobufCBuffer *buffer) {
if (oneof_case != field->id) {
return 0;
}
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING) {
const void *ptr = *(const void *const *)member;
if (ptr == NULL || ptr == field->default_value) return 0;
}
return required_field_pack_to_buffer(field, member, buffer);
}
/**
......@@ -1690,22 +1538,17 @@ oneof_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes serialised to `buffer`.
*/
static size_t
optional_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
const protobuf_c_boolean has,
const void *member, ProtobufCBuffer *buffer)
{
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING)
{
const void *ptr = *(const void *const *) member;
if (ptr == NULL || ptr == field->default_value)
return 0;
} else {
if (!has)
return 0;
}
return required_field_pack_to_buffer(field, member, buffer);
static size_t optional_field_pack_to_buffer(
const ProtobufCFieldDescriptor *field, const protobuf_c_boolean has,
const void *member, ProtobufCBuffer *buffer) {
if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
field->type == PROTOBUF_C_TYPE_STRING) {
const void *ptr = *(const void *const *)member;
if (ptr == NULL || ptr == field->default_value) return 0;
} else {
if (!has) return 0;
}
return required_field_pack_to_buffer(field, member, buffer);
}
/**
......@@ -1720,13 +1563,11 @@ optional_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes serialised to `buffer`.
*/
static size_t
unlabeled_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
const void *member, ProtobufCBuffer *buffer)
{
if (field_is_zeroish(field, member))
return 0;
return required_field_pack_to_buffer(field, member, buffer);
static size_t unlabeled_field_pack_to_buffer(
const ProtobufCFieldDescriptor *field, const void *member,
ProtobufCBuffer *buffer) {
if (field_is_zeroish(field, member)) return 0;
return required_field_pack_to_buffer(field, member, buffer);
}
/**
......@@ -1741,60 +1582,53 @@ unlabeled_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes required.
*/
static size_t
get_packed_payload_length(const ProtobufCFieldDescriptor *field,
unsigned count, const void *array)
{
unsigned rv = 0;
unsigned i;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
return count * 4;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
return count * 8;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32: {
const int32_t *arr = (const int32_t *) array;
for (i = 0; i < count; i++)
rv += int32_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_SINT32: {
const int32_t *arr = (const int32_t *) array;
for (i = 0; i < count; i++)
rv += sint32_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_UINT32: {
const uint32_t *arr = (const uint32_t *) array;
for (i = 0; i < count; i++)
rv += uint32_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_SINT64: {
const int64_t *arr = (const int64_t *) array;
for (i = 0; i < count; i++)
rv += sint64_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64: {
const uint64_t *arr = (const uint64_t *) array;
for (i = 0; i < count; i++)
rv += uint64_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_BOOL:
return count;
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
return rv;
static size_t get_packed_payload_length(const ProtobufCFieldDescriptor *field,
unsigned count, const void *array) {
unsigned rv = 0;
unsigned i;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
return count * 4;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
return count * 8;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32: {
const int32_t *arr = (const int32_t *)array;
for (i = 0; i < count; i++) rv += int32_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_SINT32: {
const int32_t *arr = (const int32_t *)array;
for (i = 0; i < count; i++) rv += sint32_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_UINT32: {
const uint32_t *arr = (const uint32_t *)array;
for (i = 0; i < count; i++) rv += uint32_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_SINT64: {
const int64_t *arr = (const int64_t *)array;
for (i = 0; i < count; i++) rv += sint64_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64: {
const uint64_t *arr = (const uint64_t *)array;
for (i = 0; i < count; i++) rv += uint64_size(arr[i]);
break;
}
case PROTOBUF_C_TYPE_BOOL:
return count;
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
return rv;
}
/**
......@@ -1811,204 +1645,177 @@ get_packed_payload_length(const ProtobufCFieldDescriptor *field,
* \return
* Number of bytes packed.
*/
static size_t
pack_buffer_packed_payload(const ProtobufCFieldDescriptor *field,
unsigned count, const void *array,
ProtobufCBuffer *buffer)
{
uint8_t scratch[16];
size_t rv = 0;
unsigned i;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
static size_t pack_buffer_packed_payload(const ProtobufCFieldDescriptor *field,
unsigned count, const void *array,
ProtobufCBuffer *buffer) {
uint8_t scratch[16];
size_t rv = 0;
unsigned i;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
#if !defined(WORDS_BIGENDIAN)
rv = count * 4;
goto no_packing_needed;
rv = count * 4;
goto no_packing_needed;
#else
for (i = 0; i < count; i++) {
unsigned len = fixed32_pack(((uint32_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
for (i = 0; i < count; i++) {
unsigned len = fixed32_pack(((uint32_t *)array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
#endif
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
#if !defined(WORDS_BIGENDIAN)
rv = count * 8;
goto no_packing_needed;
rv = count * 8;
goto no_packing_needed;
#else
for (i = 0; i < count; i++) {
unsigned len = fixed64_pack(((uint64_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
for (i = 0; i < count; i++) {
unsigned len = fixed64_pack(((uint64_t *)array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
#endif
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
for (i = 0; i < count; i++) {
unsigned len = int32_pack(((int32_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_SINT32:
for (i = 0; i < count; i++) {
unsigned len = sint32_pack(((int32_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_UINT32:
for (i = 0; i < count; i++) {
unsigned len = uint32_pack(((uint32_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_SINT64:
for (i = 0; i < count; i++) {
unsigned len = sint64_pack(((int64_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
for (i = 0; i < count; i++) {
unsigned len = uint64_pack(((uint64_t *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_BOOL:
for (i = 0; i < count; i++) {
unsigned len = boolean_pack(((protobuf_c_boolean *) array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
return count;
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
return rv;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
for (i = 0; i < count; i++) {
unsigned len = int32_pack(((int32_t *)array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_SINT32:
for (i = 0; i < count; i++) {
unsigned len = sint32_pack(((int32_t *)array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_UINT32:
for (i = 0; i < count; i++) {
unsigned len = uint32_pack(((uint32_t *)array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_SINT64:
for (i = 0; i < count; i++) {
unsigned len = sint64_pack(((int64_t *)array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
for (i = 0; i < count; i++) {
unsigned len = uint64_pack(((uint64_t *)array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
break;
case PROTOBUF_C_TYPE_BOOL:
for (i = 0; i < count; i++) {
unsigned len = boolean_pack(((protobuf_c_boolean *)array)[i], scratch);
buffer->append(buffer, len, scratch);
rv += len;
}
return count;
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
return rv;
#if !defined(WORDS_BIGENDIAN)
no_packing_needed:
buffer->append(buffer, rv, array);
return rv;
buffer->append(buffer, rv, array);
return rv;
#endif
}
static size_t
repeated_field_pack_to_buffer(const ProtobufCFieldDescriptor *field,
unsigned count, const void *member,
ProtobufCBuffer *buffer)
{
char *array = *(char * const *) member;
if (count == 0)
return 0;
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED)) {
uint8_t scratch[MAX_UINT64_ENCODED_SIZE * 2];
size_t rv = tag_pack(field->id, scratch);
size_t payload_len = get_packed_payload_length(field, count, array);
size_t tmp;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
rv += uint32_pack(payload_len, scratch + rv);
buffer->append(buffer, rv, scratch);
tmp = pack_buffer_packed_payload(field, count, array, buffer);
assert(tmp == payload_len);
return rv + payload_len;
} else {
size_t siz;
unsigned i;
/* CONSIDER: optimize this case a bit (by putting the loop inside the switch) */
unsigned rv = 0;
siz = sizeof_elt_in_repeated_array(field->type);
for (i = 0; i < count; i++) {
rv += required_field_pack_to_buffer(field, array, buffer);
array += siz;
}
return rv;
}
}
static size_t
unknown_field_pack_to_buffer(const ProtobufCMessageUnknownField *field,
ProtobufCBuffer *buffer)
{
uint8_t header[MAX_UINT64_ENCODED_SIZE];
size_t rv = tag_pack(field->tag, header);
header[0] |= field->wire_type;
buffer->append(buffer, rv, header);
buffer->append(buffer, field->len, field->data);
return rv + field->len;
static size_t repeated_field_pack_to_buffer(
const ProtobufCFieldDescriptor *field, unsigned count, const void *member,
ProtobufCBuffer *buffer) {
char *array = *(char *const *)member;
if (count == 0) return 0;
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED)) {
uint8_t scratch[MAX_UINT64_ENCODED_SIZE * 2];
size_t rv = tag_pack(field->id, scratch);
size_t payload_len = get_packed_payload_length(field, count, array);
size_t tmp;
scratch[0] |= PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED;
rv += uint32_pack(payload_len, scratch + rv);
buffer->append(buffer, rv, scratch);
tmp = pack_buffer_packed_payload(field, count, array, buffer);
assert(tmp == payload_len);
return rv + payload_len;
} else {
size_t siz;
unsigned i;
/* CONSIDER: optimize this case a bit (by putting the loop inside the
* switch) */
unsigned rv = 0;
siz = sizeof_elt_in_repeated_array(field->type);
for (i = 0; i < count; i++) {
rv += required_field_pack_to_buffer(field, array, buffer);
array += siz;
}
return rv;
}
}
static size_t unknown_field_pack_to_buffer(
const ProtobufCMessageUnknownField *field, ProtobufCBuffer *buffer) {
uint8_t header[MAX_UINT64_ENCODED_SIZE];
size_t rv = tag_pack(field->tag, header);
header[0] |= field->wire_type;
buffer->append(buffer, rv, header);
buffer->append(buffer, field->len, field->data);
return rv + field->len;
}
/**@}*/
size_t
protobuf_c_message_pack_to_buffer(const ProtobufCMessage *message,
ProtobufCBuffer *buffer)
{
unsigned i;
size_t rv = 0;
ASSERT_IS_MESSAGE(message);
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *field =
message->descriptor->fields + i;
const void *member =
((const char *) message) + field->offset;
const void *qmember =
((const char *) message) + field->quantifier_offset;
if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
rv += required_field_pack_to_buffer(field, member, buffer);
} else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
field->label == PROTOBUF_C_LABEL_NONE) &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
rv += oneof_field_pack_to_buffer(
field,
*(const uint32_t *) qmember,
member,
buffer
);
} else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
rv += optional_field_pack_to_buffer(
field,
*(const protobuf_c_boolean *) qmember,
member,
buffer
);
} else if (field->label == PROTOBUF_C_LABEL_NONE) {
rv += unlabeled_field_pack_to_buffer(
field,
member,
buffer
);
} else {
rv += repeated_field_pack_to_buffer(
field,
*(const size_t *) qmember,
member,
buffer
);
}
}
for (i = 0; i < message->n_unknown_fields; i++)
rv += unknown_field_pack_to_buffer(&message->unknown_fields[i], buffer);
return rv;
size_t protobuf_c_message_pack_to_buffer(const ProtobufCMessage *message,
ProtobufCBuffer *buffer) {
unsigned i;
size_t rv = 0;
ASSERT_IS_MESSAGE(message);
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *field = message->descriptor->fields + i;
const void *member = ((const char *)message) + field->offset;
const void *qmember = ((const char *)message) + field->quantifier_offset;
if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
rv += required_field_pack_to_buffer(field, member, buffer);
} else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
field->label == PROTOBUF_C_LABEL_NONE) &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
rv += oneof_field_pack_to_buffer(field, *(const uint32_t *)qmember,
member, buffer);
} else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
rv += optional_field_pack_to_buffer(
field, *(const protobuf_c_boolean *)qmember, member, buffer);
} else if (field->label == PROTOBUF_C_LABEL_NONE) {
rv += unlabeled_field_pack_to_buffer(field, member, buffer);
} else {
rv += repeated_field_pack_to_buffer(field, *(const size_t *)qmember,
member, buffer);
}
}
for (i = 0; i < message->n_unknown_fields; i++)
rv += unknown_field_pack_to_buffer(&message->unknown_fields[i], buffer);
return rv;
}
/**
......@@ -2020,74 +1827,64 @@ protobuf_c_message_pack_to_buffer(const ProtobufCMessage *message,
* @{
*/
static inline int
int_range_lookup(unsigned n_ranges, const ProtobufCIntRange *ranges, int value)
{
unsigned n;
unsigned start;
if (n_ranges == 0)
return -1;
start = 0;
n = n_ranges;
while (n > 1) {
unsigned mid = start + n / 2;
if (value < ranges[mid].start_value) {
n = mid - start;
} else if (value >= ranges[mid].start_value +
(int) (ranges[mid + 1].orig_index -
ranges[mid].orig_index))
{
unsigned new_start = mid + 1;
n = start + n - new_start;
start = new_start;
} else
return (value - ranges[mid].start_value) +
ranges[mid].orig_index;
}
if (n > 0) {
unsigned start_orig_index = ranges[start].orig_index;
unsigned range_size =
ranges[start + 1].orig_index - start_orig_index;
if (ranges[start].start_value <= value &&
value < (int) (ranges[start].start_value + range_size))
{
return (value - ranges[start].start_value) +
start_orig_index;
}
}
return -1;
}
static size_t
parse_tag_and_wiretype(size_t len,
const uint8_t *data,
uint32_t *tag_out,
ProtobufCWireType *wiretype_out)
{
unsigned max_rv = len > 5 ? 5 : len;
uint32_t tag = (data[0] & 0x7f) >> 3;
unsigned shift = 4;
unsigned rv;
*wiretype_out = data[0] & 7;
if ((data[0] & 0x80) == 0) {
*tag_out = tag;
return 1;
}
for (rv = 1; rv < max_rv; rv++) {
if (data[rv] & 0x80) {
tag |= (data[rv] & 0x7f) << shift;
shift += 7;
} else {
tag |= data[rv] << shift;
*tag_out = tag;
return rv + 1;
}
}
return 0; /* error: bad header */
static inline int int_range_lookup(unsigned n_ranges,
const ProtobufCIntRange *ranges, int value) {
unsigned n;
unsigned start;
if (n_ranges == 0) return -1;
start = 0;
n = n_ranges;
while (n > 1) {
unsigned mid = start + n / 2;
if (value < ranges[mid].start_value) {
n = mid - start;
} else if (value >=
ranges[mid].start_value +
(int)(ranges[mid + 1].orig_index - ranges[mid].orig_index)) {
unsigned new_start = mid + 1;
n = start + n - new_start;
start = new_start;
} else
return (value - ranges[mid].start_value) + ranges[mid].orig_index;
}
if (n > 0) {
unsigned start_orig_index = ranges[start].orig_index;
unsigned range_size = ranges[start + 1].orig_index - start_orig_index;
if (ranges[start].start_value <= value &&
value < (int)(ranges[start].start_value + range_size)) {
return (value - ranges[start].start_value) + start_orig_index;
}
}
return -1;
}
static size_t parse_tag_and_wiretype(size_t len, const uint8_t *data,
uint32_t *tag_out,
ProtobufCWireType *wiretype_out) {
unsigned max_rv = len > 5 ? 5 : len;
uint32_t tag = (data[0] & 0x7f) >> 3;
unsigned shift = 4;
unsigned rv;
*wiretype_out = data[0] & 7;
if ((data[0] & 0x80) == 0) {
*tag_out = tag;
return 1;
}
for (rv = 1; rv < max_rv; rv++) {
if (data[rv] & 0x80) {
tag |= (data[rv] & 0x7f) << shift;
shift += 7;
} else {
tag |= data[rv] << shift;
*tag_out = tag;
return rv + 1;
}
}
return 0; /* error: bad header */
}
/* sizeof(ScannedMember) must be <= (1UL<<BOUND_SIZEOF_SCANNED_MEMBER_LOG2) */
......@@ -2095,51 +1892,46 @@ parse_tag_and_wiretype(size_t len,
typedef struct _ScannedMember ScannedMember;
/** Field as it's being read. */
struct _ScannedMember {
uint32_t tag; /**< Field tag. */
uint8_t wire_type; /**< Field type. */
uint8_t length_prefix_len; /**< Prefix length. */
const ProtobufCFieldDescriptor *field; /**< Field descriptor. */
size_t len; /**< Field length. */
const uint8_t *data; /**< Pointer to field data. */
uint32_t tag; /**< Field tag. */
uint8_t wire_type; /**< Field type. */
uint8_t length_prefix_len; /**< Prefix length. */
const ProtobufCFieldDescriptor *field; /**< Field descriptor. */
size_t len; /**< Field length. */
const uint8_t *data; /**< Pointer to field data. */
};
static inline uint32_t
scan_length_prefixed_data(size_t len, const uint8_t *data,
size_t *prefix_len_out)
{
unsigned hdr_max = len < 5 ? len : 5;
unsigned hdr_len;
uint32_t val = 0;
unsigned i;
unsigned shift = 0;
for (i = 0; i < hdr_max; i++) {
val |= (data[i] & 0x7f) << shift;
shift += 7;
if ((data[i] & 0x80) == 0)
break;
}
if (i == hdr_max) {
PROTOBUF_C_UNPACK_ERROR("error parsing length for length-prefixed data");
return 0;
}
hdr_len = i + 1;
*prefix_len_out = hdr_len;
if (hdr_len + val > len) {
PROTOBUF_C_UNPACK_ERROR("data too short after length-prefix of %u", val);
return 0;
}
return hdr_len + val;
}
static size_t
max_b128_numbers(size_t len, const uint8_t *data)
{
size_t rv = 0;
while (len--)
if ((*data++ & 0x80) == 0)
++rv;
return rv;
static inline uint32_t scan_length_prefixed_data(size_t len,
const uint8_t *data,
size_t *prefix_len_out) {
unsigned hdr_max = len < 5 ? len : 5;
unsigned hdr_len;
uint32_t val = 0;
unsigned i;
unsigned shift = 0;
for (i = 0; i < hdr_max; i++) {
val |= (data[i] & 0x7f) << shift;
shift += 7;
if ((data[i] & 0x80) == 0) break;
}
if (i == hdr_max) {
PROTOBUF_C_UNPACK_ERROR("error parsing length for length-prefixed data");
return 0;
}
hdr_len = i + 1;
*prefix_len_out = hdr_len;
if (hdr_len + val > len) {
PROTOBUF_C_UNPACK_ERROR("data too short after length-prefix of %u", val);
return 0;
}
return hdr_len + val;
}
static size_t max_b128_numbers(size_t len, const uint8_t *data) {
size_t rv = 0;
while (len--)
if ((*data++ & 0x80) == 0) ++rv;
return rv;
}
/**@}*/
......@@ -2158,178 +1950,145 @@ max_b128_numbers(size_t len, const uint8_t *data)
* some of its fields may have been reused and changed to their default
* values during the merge.
*/
static protobuf_c_boolean
merge_messages(ProtobufCMessage *earlier_msg,
ProtobufCMessage *latter_msg,
ProtobufCAllocator *allocator)
{
unsigned i;
const ProtobufCFieldDescriptor *fields =
latter_msg->descriptor->fields;
for (i = 0; i < latter_msg->descriptor->n_fields; i++) {
if (fields[i].label == PROTOBUF_C_LABEL_REPEATED) {
size_t *n_earlier =
STRUCT_MEMBER_PTR(size_t, earlier_msg,
fields[i].quantifier_offset);
uint8_t **p_earlier =
STRUCT_MEMBER_PTR(uint8_t *, earlier_msg,
fields[i].offset);
size_t *n_latter =
STRUCT_MEMBER_PTR(size_t, latter_msg,
fields[i].quantifier_offset);
uint8_t **p_latter =
STRUCT_MEMBER_PTR(uint8_t *, latter_msg,
fields[i].offset);
if (*n_earlier > 0) {
if (*n_latter > 0) {
/* Concatenate the repeated field */
size_t el_size =
sizeof_elt_in_repeated_array(fields[i].type);
uint8_t *new_field;
new_field = do_alloc(allocator,
(*n_earlier + *n_latter) * el_size);
if (!new_field)
return FALSE;
memcpy(new_field, *p_earlier,
*n_earlier * el_size);
memcpy(new_field +
*n_earlier * el_size,
*p_latter,
*n_latter * el_size);
do_free(allocator, *p_latter);
do_free(allocator, *p_earlier);
*p_latter = new_field;
*n_latter = *n_earlier + *n_latter;
} else {
/* Zero copy the repeated field from the earlier message */
*n_latter = *n_earlier;
*p_latter = *p_earlier;
}
/* Make sure the field does not get double freed */
*n_earlier = 0;
*p_earlier = 0;
}
} else if (fields[i].label == PROTOBUF_C_LABEL_OPTIONAL ||
fields[i].label == PROTOBUF_C_LABEL_NONE) {
const ProtobufCFieldDescriptor *field;
uint32_t *earlier_case_p = STRUCT_MEMBER_PTR(uint32_t,
earlier_msg,
fields[i].
quantifier_offset);
uint32_t *latter_case_p = STRUCT_MEMBER_PTR(uint32_t,
latter_msg,
fields[i].
quantifier_offset);
protobuf_c_boolean need_to_merge = FALSE;
void *earlier_elem;
void *latter_elem;
const void *def_val;
if (fields[i].flags & PROTOBUF_C_FIELD_FLAG_ONEOF) {
if (*latter_case_p == 0) {
/* lookup correct oneof field */
int field_index =
int_range_lookup(
latter_msg->descriptor
->n_field_ranges,
latter_msg->descriptor
->field_ranges,
*earlier_case_p);
if (field_index < 0)
return FALSE;
field = latter_msg->descriptor->fields +
field_index;
} else {
/* Oneof is present in the latter message, move on */
continue;
}
} else {
field = &fields[i];
}
earlier_elem = STRUCT_MEMBER_P(earlier_msg, field->offset);
latter_elem = STRUCT_MEMBER_P(latter_msg, field->offset);
def_val = field->default_value;
switch (field->type) {
case PROTOBUF_C_TYPE_MESSAGE: {
ProtobufCMessage *em = *(ProtobufCMessage **) earlier_elem;
ProtobufCMessage *lm = *(ProtobufCMessage **) latter_elem;
if (em != NULL) {
if (lm != NULL) {
if (!merge_messages(em, lm, allocator))
return FALSE;
/* Already merged */
need_to_merge = FALSE;
} else {
/* Zero copy the message */
need_to_merge = TRUE;
}
}
break;
}
case PROTOBUF_C_TYPE_BYTES: {
uint8_t *e_data =
((ProtobufCBinaryData *) earlier_elem)->data;
uint8_t *l_data =
((ProtobufCBinaryData *) latter_elem)->data;
const ProtobufCBinaryData *d_bd =
(ProtobufCBinaryData *) def_val;
need_to_merge =
(e_data != NULL &&
(d_bd == NULL ||
e_data != d_bd->data)) &&
(l_data == NULL ||
(d_bd != NULL &&
l_data == d_bd->data));
break;
}
case PROTOBUF_C_TYPE_STRING: {
char *e_str = *(char **) earlier_elem;
char *l_str = *(char **) latter_elem;
const char *d_str = def_val;
need_to_merge = e_str != d_str && l_str == d_str;
break;
}
default: {
/* Could be has field or case enum, the logic is
* equivalent, since 0 (FALSE) means not set for
* oneof */
need_to_merge = (*earlier_case_p != 0) &&
(*latter_case_p == 0);
break;
}
}
if (need_to_merge) {
size_t el_size =
sizeof_elt_in_repeated_array(field->type);
memcpy(latter_elem, earlier_elem, el_size);
/*
* Reset the element from the old message to 0
* to make sure earlier message deallocation
* doesn't corrupt zero-copied data in the new
* message, earlier message will be freed after
* this function is called anyway
*/
memset(earlier_elem, 0, el_size);
if (field->quantifier_offset != 0) {
/* Set the has field or the case enum,
* if applicable */
*latter_case_p = *earlier_case_p;
*earlier_case_p = 0;
}
}
}
}
return TRUE;
static protobuf_c_boolean merge_messages(ProtobufCMessage *earlier_msg,
ProtobufCMessage *latter_msg,
ProtobufCAllocator *allocator) {
unsigned i;
const ProtobufCFieldDescriptor *fields = latter_msg->descriptor->fields;
for (i = 0; i < latter_msg->descriptor->n_fields; i++) {
if (fields[i].label == PROTOBUF_C_LABEL_REPEATED) {
size_t *n_earlier =
STRUCT_MEMBER_PTR(size_t, earlier_msg, fields[i].quantifier_offset);
uint8_t **p_earlier =
STRUCT_MEMBER_PTR(uint8_t *, earlier_msg, fields[i].offset);
size_t *n_latter =
STRUCT_MEMBER_PTR(size_t, latter_msg, fields[i].quantifier_offset);
uint8_t **p_latter =
STRUCT_MEMBER_PTR(uint8_t *, latter_msg, fields[i].offset);
if (*n_earlier > 0) {
if (*n_latter > 0) {
/* Concatenate the repeated field */
size_t el_size = sizeof_elt_in_repeated_array(fields[i].type);
uint8_t *new_field;
new_field = do_alloc(allocator, (*n_earlier + *n_latter) * el_size);
if (!new_field) return FALSE;
memcpy(new_field, *p_earlier, *n_earlier * el_size);
memcpy(new_field + *n_earlier * el_size, *p_latter,
*n_latter * el_size);
do_free(allocator, *p_latter);
do_free(allocator, *p_earlier);
*p_latter = new_field;
*n_latter = *n_earlier + *n_latter;
} else {
/* Zero copy the repeated field from the earlier message */
*n_latter = *n_earlier;
*p_latter = *p_earlier;
}
/* Make sure the field does not get double freed */
*n_earlier = 0;
*p_earlier = 0;
}
} else if (fields[i].label == PROTOBUF_C_LABEL_OPTIONAL ||
fields[i].label == PROTOBUF_C_LABEL_NONE) {
const ProtobufCFieldDescriptor *field;
uint32_t *earlier_case_p =
STRUCT_MEMBER_PTR(uint32_t, earlier_msg, fields[i].quantifier_offset);
uint32_t *latter_case_p =
STRUCT_MEMBER_PTR(uint32_t, latter_msg, fields[i].quantifier_offset);
protobuf_c_boolean need_to_merge = FALSE;
void *earlier_elem;
void *latter_elem;
const void *def_val;
if (fields[i].flags & PROTOBUF_C_FIELD_FLAG_ONEOF) {
if (*latter_case_p == 0) {
/* lookup correct oneof field */
int field_index = int_range_lookup(
latter_msg->descriptor->n_field_ranges,
latter_msg->descriptor->field_ranges, *earlier_case_p);
if (field_index < 0) return FALSE;
field = latter_msg->descriptor->fields + field_index;
} else {
/* Oneof is present in the latter message, move on */
continue;
}
} else {
field = &fields[i];
}
earlier_elem = STRUCT_MEMBER_P(earlier_msg, field->offset);
latter_elem = STRUCT_MEMBER_P(latter_msg, field->offset);
def_val = field->default_value;
switch (field->type) {
case PROTOBUF_C_TYPE_MESSAGE: {
ProtobufCMessage *em = *(ProtobufCMessage **)earlier_elem;
ProtobufCMessage *lm = *(ProtobufCMessage **)latter_elem;
if (em != NULL) {
if (lm != NULL) {
if (!merge_messages(em, lm, allocator)) return FALSE;
/* Already merged */
need_to_merge = FALSE;
} else {
/* Zero copy the message */
need_to_merge = TRUE;
}
}
break;
}
case PROTOBUF_C_TYPE_BYTES: {
uint8_t *e_data = ((ProtobufCBinaryData *)earlier_elem)->data;
uint8_t *l_data = ((ProtobufCBinaryData *)latter_elem)->data;
const ProtobufCBinaryData *d_bd = (ProtobufCBinaryData *)def_val;
need_to_merge =
(e_data != NULL && (d_bd == NULL || e_data != d_bd->data)) &&
(l_data == NULL || (d_bd != NULL && l_data == d_bd->data));
break;
}
case PROTOBUF_C_TYPE_STRING: {
char *e_str = *(char **)earlier_elem;
char *l_str = *(char **)latter_elem;
const char *d_str = def_val;
need_to_merge = e_str != d_str && l_str == d_str;
break;
}
default: {
/* Could be has field or case enum, the logic is
* equivalent, since 0 (FALSE) means not set for
* oneof */
need_to_merge = (*earlier_case_p != 0) && (*latter_case_p == 0);
break;
}
}
if (need_to_merge) {
size_t el_size = sizeof_elt_in_repeated_array(field->type);
memcpy(latter_elem, earlier_elem, el_size);
/*
* Reset the element from the old message to 0
* to make sure earlier message deallocation
* doesn't corrupt zero-copied data in the new
* message, earlier message will be freed after
* this function is called anyway
*/
memset(earlier_elem, 0, el_size);
if (field->quantifier_offset != 0) {
/* Set the has field or the case enum,
* if applicable */
*latter_case_p = *earlier_case_p;
*earlier_case_p = 0;
}
}
}
}
return TRUE;
}
/**
......@@ -2340,582 +2099,502 @@ merge_messages(ProtobufCMessage *earlier_msg,
* others; the remaining error checking is done by
* parse_packed_repeated_member().
*/
static protobuf_c_boolean
count_packed_elements(ProtobufCType type,
size_t len, const uint8_t *data, size_t *count_out)
{
switch (type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
if (len % 4 != 0) {
PROTOBUF_C_UNPACK_ERROR("length must be a multiple of 4 for fixed-length 32-bit types");
return FALSE;
}
*count_out = len / 4;
return TRUE;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
if (len % 8 != 0) {
PROTOBUF_C_UNPACK_ERROR("length must be a multiple of 8 for fixed-length 64-bit types");
return FALSE;
}
*count_out = len / 8;
return TRUE;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_UINT64:
*count_out = max_b128_numbers(len, data);
return TRUE;
case PROTOBUF_C_TYPE_BOOL:
*count_out = len;
return TRUE;
case PROTOBUF_C_TYPE_STRING:
case PROTOBUF_C_TYPE_BYTES:
case PROTOBUF_C_TYPE_MESSAGE:
default:
PROTOBUF_C_UNPACK_ERROR("bad protobuf-c type %u for packed-repeated", type);
return FALSE;
}
}
static inline uint32_t
parse_uint32(unsigned len, const uint8_t *data)
{
uint32_t rv = data[0] & 0x7f;
if (len > 1) {
rv |= ((uint32_t) (data[1] & 0x7f) << 7);
if (len > 2) {
rv |= ((uint32_t) (data[2] & 0x7f) << 14);
if (len > 3) {
rv |= ((uint32_t) (data[3] & 0x7f) << 21);
if (len > 4)
rv |= ((uint32_t) (data[4]) << 28);
}
}
}
return rv;
}
static inline uint32_t
parse_int32(unsigned len, const uint8_t *data)
{
return parse_uint32(len, data);
}
static inline int32_t
unzigzag32(uint32_t v)
{
if (v & 1)
return -(v >> 1) - 1;
else
return v >> 1;
}
static inline uint32_t
parse_fixed_uint32(const uint8_t *data)
{
static protobuf_c_boolean count_packed_elements(ProtobufCType type, size_t len,
const uint8_t *data,
size_t *count_out) {
switch (type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
if (len % 4 != 0) {
PROTOBUF_C_UNPACK_ERROR(
"length must be a multiple of 4 for fixed-length 32-bit types");
return FALSE;
}
*count_out = len / 4;
return TRUE;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
if (len % 8 != 0) {
PROTOBUF_C_UNPACK_ERROR(
"length must be a multiple of 8 for fixed-length 64-bit types");
return FALSE;
}
*count_out = len / 8;
return TRUE;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_UINT64:
*count_out = max_b128_numbers(len, data);
return TRUE;
case PROTOBUF_C_TYPE_BOOL:
*count_out = len;
return TRUE;
case PROTOBUF_C_TYPE_STRING:
case PROTOBUF_C_TYPE_BYTES:
case PROTOBUF_C_TYPE_MESSAGE:
default:
PROTOBUF_C_UNPACK_ERROR("bad protobuf-c type %u for packed-repeated",
type);
return FALSE;
}
}
static inline uint32_t parse_uint32(unsigned len, const uint8_t *data) {
uint32_t rv = data[0] & 0x7f;
if (len > 1) {
rv |= ((uint32_t)(data[1] & 0x7f) << 7);
if (len > 2) {
rv |= ((uint32_t)(data[2] & 0x7f) << 14);
if (len > 3) {
rv |= ((uint32_t)(data[3] & 0x7f) << 21);
if (len > 4) rv |= ((uint32_t)(data[4]) << 28);
}
}
}
return rv;
}
static inline uint32_t parse_int32(unsigned len, const uint8_t *data) {
return parse_uint32(len, data);
}
static inline int32_t unzigzag32(uint32_t v) {
if (v & 1)
return -(v >> 1) - 1;
else
return v >> 1;
}
static inline uint32_t parse_fixed_uint32(const uint8_t *data) {
#if !defined(WORDS_BIGENDIAN)
uint32_t t;
memcpy(&t, data, 4);
return t;
uint32_t t;
memcpy(&t, data, 4);
return t;
#else
return data[0] |
((uint32_t) (data[1]) << 8) |
((uint32_t) (data[2]) << 16) |
((uint32_t) (data[3]) << 24);
return data[0] | ((uint32_t)(data[1]) << 8) | ((uint32_t)(data[2]) << 16) |
((uint32_t)(data[3]) << 24);
#endif
}
static uint64_t
parse_uint64(unsigned len, const uint8_t *data)
{
unsigned shift, i;
uint64_t rv;
if (len < 5)
return parse_uint32(len, data);
rv = ((uint64_t) (data[0] & 0x7f)) |
((uint64_t) (data[1] & 0x7f) << 7) |
((uint64_t) (data[2] & 0x7f) << 14) |
((uint64_t) (data[3] & 0x7f) << 21);
shift = 28;
for (i = 4; i < len; i++) {
rv |= (((uint64_t) (data[i] & 0x7f)) << shift);
shift += 7;
}
return rv;
}
static inline int64_t
unzigzag64(uint64_t v)
{
if (v & 1)
return -(v >> 1) - 1;
else
return v >> 1;
}
static inline uint64_t
parse_fixed_uint64(const uint8_t *data)
{
static uint64_t parse_uint64(unsigned len, const uint8_t *data) {
unsigned shift, i;
uint64_t rv;
if (len < 5) return parse_uint32(len, data);
rv = ((uint64_t)(data[0] & 0x7f)) | ((uint64_t)(data[1] & 0x7f) << 7) |
((uint64_t)(data[2] & 0x7f) << 14) | ((uint64_t)(data[3] & 0x7f) << 21);
shift = 28;
for (i = 4; i < len; i++) {
rv |= (((uint64_t)(data[i] & 0x7f)) << shift);
shift += 7;
}
return rv;
}
static inline int64_t unzigzag64(uint64_t v) {
if (v & 1)
return -(v >> 1) - 1;
else
return v >> 1;
}
static inline uint64_t parse_fixed_uint64(const uint8_t *data) {
#if !defined(WORDS_BIGENDIAN)
uint64_t t;
memcpy(&t, data, 8);
return t;
uint64_t t;
memcpy(&t, data, 8);
return t;
#else
return (uint64_t) parse_fixed_uint32(data) |
(((uint64_t) parse_fixed_uint32(data + 4)) << 32);
return (uint64_t)parse_fixed_uint32(data) |
(((uint64_t)parse_fixed_uint32(data + 4)) << 32);
#endif
}
static protobuf_c_boolean
parse_boolean(unsigned len, const uint8_t *data)
{
unsigned i;
for (i = 0; i < len; i++)
if (data[i] & 0x7f)
return TRUE;
return FALSE;
}
static protobuf_c_boolean
parse_required_member(ScannedMember *scanned_member,
void *member,
ProtobufCAllocator *allocator,
protobuf_c_boolean maybe_clear)
{
unsigned len = scanned_member->len;
const uint8_t *data = scanned_member->data;
ProtobufCWireType wire_type = scanned_member->wire_type;
switch (scanned_member->field->type) {
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(int32_t *) member = parse_int32(len, data);
return TRUE;
case PROTOBUF_C_TYPE_UINT32:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(uint32_t *) member = parse_uint32(len, data);
return TRUE;
case PROTOBUF_C_TYPE_SINT32:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(int32_t *) member = unzigzag32(parse_uint32(len, data));
return TRUE;
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
if (wire_type != PROTOBUF_C_WIRE_TYPE_32BIT)
return FALSE;
*(uint32_t *) member = parse_fixed_uint32(data);
return TRUE;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(uint64_t *) member = parse_uint64(len, data);
return TRUE;
case PROTOBUF_C_TYPE_SINT64:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT)
return FALSE;
*(int64_t *) member = unzigzag64(parse_uint64(len, data));
return TRUE;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
if (wire_type != PROTOBUF_C_WIRE_TYPE_64BIT)
return FALSE;
*(uint64_t *) member = parse_fixed_uint64(data);
return TRUE;
case PROTOBUF_C_TYPE_BOOL:
*(protobuf_c_boolean *) member = parse_boolean(len, data);
return TRUE;
case PROTOBUF_C_TYPE_STRING: {
char **pstr = member;
unsigned pref_len = scanned_member->length_prefix_len;
if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED)
return FALSE;
if (maybe_clear && *pstr != NULL) {
const char *def = scanned_member->field->default_value;
if (*pstr != NULL && *pstr != def)
do_free(allocator, *pstr);
}
*pstr = do_alloc(allocator, len - pref_len + 1);
if (*pstr == NULL)
return FALSE;
memcpy(*pstr, data + pref_len, len - pref_len);
(*pstr)[len - pref_len] = 0;
return TRUE;
}
case PROTOBUF_C_TYPE_BYTES: {
ProtobufCBinaryData *bd = member;
const ProtobufCBinaryData *def_bd;
unsigned pref_len = scanned_member->length_prefix_len;
if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED)
return FALSE;
def_bd = scanned_member->field->default_value;
if (maybe_clear &&
bd->data != NULL &&
(def_bd == NULL || bd->data != def_bd->data))
{
do_free(allocator, bd->data);
}
if (len - pref_len > 0) {
bd->data = do_alloc(allocator, len - pref_len);
if (bd->data == NULL)
return FALSE;
memcpy(bd->data, data + pref_len, len - pref_len);
} else {
bd->data = NULL;
}
bd->len = len - pref_len;
return TRUE;
}
case PROTOBUF_C_TYPE_MESSAGE: {
ProtobufCMessage **pmessage = member;
ProtobufCMessage *subm;
const ProtobufCMessage *def_mess;
protobuf_c_boolean merge_successful = TRUE;
unsigned pref_len = scanned_member->length_prefix_len;
if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED)
return FALSE;
def_mess = scanned_member->field->default_value;
subm = protobuf_c_message_unpack(scanned_member->field->descriptor,
allocator,
len - pref_len,
data + pref_len);
if (maybe_clear &&
*pmessage != NULL &&
*pmessage != def_mess)
{
if (subm != NULL)
merge_successful = merge_messages(*pmessage, subm, allocator);
/* Delete the previous message */
protobuf_c_message_free_unpacked(*pmessage, allocator);
}
*pmessage = subm;
if (subm == NULL || !merge_successful)
return FALSE;
return TRUE;
}
}
return FALSE;
}
static protobuf_c_boolean
parse_oneof_member (ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
uint32_t *oneof_case = STRUCT_MEMBER_PTR(uint32_t, message,
scanned_member->field->quantifier_offset);
/* If we have already parsed a member of this oneof, free it. */
if (*oneof_case != 0) {
/* lookup field */
int field_index =
int_range_lookup(message->descriptor->n_field_ranges,
message->descriptor->field_ranges,
*oneof_case);
if (field_index < 0)
return FALSE;
const ProtobufCFieldDescriptor *old_field =
message->descriptor->fields + field_index;
size_t el_size = sizeof_elt_in_repeated_array(old_field->type);
switch (old_field->type) {
case PROTOBUF_C_TYPE_STRING: {
char **pstr = member;
const char *def = old_field->default_value;
if (*pstr != NULL && *pstr != def)
do_free(allocator, *pstr);
break;
}
case PROTOBUF_C_TYPE_BYTES: {
ProtobufCBinaryData *bd = member;
const ProtobufCBinaryData *def_bd = old_field->default_value;
if (bd->data != NULL &&
(def_bd == NULL || bd->data != def_bd->data))
{
do_free(allocator, bd->data);
}
break;
}
case PROTOBUF_C_TYPE_MESSAGE: {
ProtobufCMessage **pmessage = member;
const ProtobufCMessage *def_mess = old_field->default_value;
if (*pmessage != NULL && *pmessage != def_mess)
protobuf_c_message_free_unpacked(*pmessage, allocator);
break;
}
default:
break;
}
memset (member, 0, el_size);
}
if (!parse_required_member (scanned_member, member, allocator, TRUE))
return FALSE;
*oneof_case = scanned_member->tag;
return TRUE;
}
static protobuf_c_boolean
parse_optional_member(ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
if (!parse_required_member(scanned_member, member, allocator, TRUE))
return FALSE;
if (scanned_member->field->quantifier_offset != 0)
STRUCT_MEMBER(protobuf_c_boolean,
message,
scanned_member->field->quantifier_offset) = TRUE;
return TRUE;
}
static protobuf_c_boolean
parse_repeated_member(ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
const ProtobufCFieldDescriptor *field = scanned_member->field;
size_t *p_n = STRUCT_MEMBER_PTR(size_t, message, field->quantifier_offset);
size_t siz = sizeof_elt_in_repeated_array(field->type);
char *array = *(char **) member;
if (!parse_required_member(scanned_member, array + siz * (*p_n),
allocator, FALSE))
{
return FALSE;
}
*p_n += 1;
return TRUE;
}
static unsigned
scan_varint(unsigned len, const uint8_t *data)
{
unsigned i;
if (len > 10)
len = 10;
for (i = 0; i < len; i++)
if ((data[i] & 0x80) == 0)
break;
if (i == len)
return 0;
return i + 1;
}
static protobuf_c_boolean
parse_packed_repeated_member(ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message)
{
const ProtobufCFieldDescriptor *field = scanned_member->field;
size_t *p_n = STRUCT_MEMBER_PTR(size_t, message, field->quantifier_offset);
size_t siz = sizeof_elt_in_repeated_array(field->type);
void *array = *(char **) member + siz * (*p_n);
const uint8_t *at = scanned_member->data + scanned_member->length_prefix_len;
size_t rem = scanned_member->len - scanned_member->length_prefix_len;
size_t count = 0;
unsigned i;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
count = (scanned_member->len - scanned_member->length_prefix_len) / 4;
static protobuf_c_boolean parse_boolean(unsigned len, const uint8_t *data) {
unsigned i;
for (i = 0; i < len; i++)
if (data[i] & 0x7f) return TRUE;
return FALSE;
}
static protobuf_c_boolean parse_required_member(
ScannedMember *scanned_member, void *member, ProtobufCAllocator *allocator,
protobuf_c_boolean maybe_clear) {
unsigned len = scanned_member->len;
const uint8_t *data = scanned_member->data;
ProtobufCWireType wire_type = scanned_member->wire_type;
switch (scanned_member->field->type) {
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
*(int32_t *)member = parse_int32(len, data);
return TRUE;
case PROTOBUF_C_TYPE_UINT32:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
*(uint32_t *)member = parse_uint32(len, data);
return TRUE;
case PROTOBUF_C_TYPE_SINT32:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
*(int32_t *)member = unzigzag32(parse_uint32(len, data));
return TRUE;
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
if (wire_type != PROTOBUF_C_WIRE_TYPE_32BIT) return FALSE;
*(uint32_t *)member = parse_fixed_uint32(data);
return TRUE;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
*(uint64_t *)member = parse_uint64(len, data);
return TRUE;
case PROTOBUF_C_TYPE_SINT64:
if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
*(int64_t *)member = unzigzag64(parse_uint64(len, data));
return TRUE;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
if (wire_type != PROTOBUF_C_WIRE_TYPE_64BIT) return FALSE;
*(uint64_t *)member = parse_fixed_uint64(data);
return TRUE;
case PROTOBUF_C_TYPE_BOOL:
*(protobuf_c_boolean *)member = parse_boolean(len, data);
return TRUE;
case PROTOBUF_C_TYPE_STRING: {
char **pstr = member;
unsigned pref_len = scanned_member->length_prefix_len;
if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED) return FALSE;
if (maybe_clear && *pstr != NULL) {
const char *def = scanned_member->field->default_value;
if (*pstr != NULL && *pstr != def) do_free(allocator, *pstr);
}
*pstr = do_alloc(allocator, len - pref_len + 1);
if (*pstr == NULL) return FALSE;
memcpy(*pstr, data + pref_len, len - pref_len);
(*pstr)[len - pref_len] = 0;
return TRUE;
}
case PROTOBUF_C_TYPE_BYTES: {
ProtobufCBinaryData *bd = member;
const ProtobufCBinaryData *def_bd;
unsigned pref_len = scanned_member->length_prefix_len;
if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED) return FALSE;
def_bd = scanned_member->field->default_value;
if (maybe_clear && bd->data != NULL &&
(def_bd == NULL || bd->data != def_bd->data)) {
do_free(allocator, bd->data);
}
if (len - pref_len > 0) {
bd->data = do_alloc(allocator, len - pref_len);
if (bd->data == NULL) return FALSE;
memcpy(bd->data, data + pref_len, len - pref_len);
} else {
bd->data = NULL;
}
bd->len = len - pref_len;
return TRUE;
}
case PROTOBUF_C_TYPE_MESSAGE: {
ProtobufCMessage **pmessage = member;
ProtobufCMessage *subm;
const ProtobufCMessage *def_mess;
protobuf_c_boolean merge_successful = TRUE;
unsigned pref_len = scanned_member->length_prefix_len;
if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED) return FALSE;
def_mess = scanned_member->field->default_value;
subm =
protobuf_c_message_unpack(scanned_member->field->descriptor,
allocator, len - pref_len, data + pref_len);
if (maybe_clear && *pmessage != NULL && *pmessage != def_mess) {
if (subm != NULL)
merge_successful = merge_messages(*pmessage, subm, allocator);
/* Delete the previous message */
protobuf_c_message_free_unpacked(*pmessage, allocator);
}
*pmessage = subm;
if (subm == NULL || !merge_successful) return FALSE;
return TRUE;
}
}
return FALSE;
}
static protobuf_c_boolean parse_oneof_member(ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator) {
uint32_t *oneof_case = STRUCT_MEMBER_PTR(
uint32_t, message, scanned_member->field->quantifier_offset);
/* If we have already parsed a member of this oneof, free it. */
if (*oneof_case != 0) {
/* lookup field */
int field_index =
int_range_lookup(message->descriptor->n_field_ranges,
message->descriptor->field_ranges, *oneof_case);
if (field_index < 0) return FALSE;
const ProtobufCFieldDescriptor *old_field =
message->descriptor->fields + field_index;
size_t el_size = sizeof_elt_in_repeated_array(old_field->type);
switch (old_field->type) {
case PROTOBUF_C_TYPE_STRING: {
char **pstr = member;
const char *def = old_field->default_value;
if (*pstr != NULL && *pstr != def) do_free(allocator, *pstr);
break;
}
case PROTOBUF_C_TYPE_BYTES: {
ProtobufCBinaryData *bd = member;
const ProtobufCBinaryData *def_bd = old_field->default_value;
if (bd->data != NULL && (def_bd == NULL || bd->data != def_bd->data)) {
do_free(allocator, bd->data);
}
break;
}
case PROTOBUF_C_TYPE_MESSAGE: {
ProtobufCMessage **pmessage = member;
const ProtobufCMessage *def_mess = old_field->default_value;
if (*pmessage != NULL && *pmessage != def_mess)
protobuf_c_message_free_unpacked(*pmessage, allocator);
break;
}
default:
break;
}
memset(member, 0, el_size);
}
if (!parse_required_member(scanned_member, member, allocator, TRUE))
return FALSE;
*oneof_case = scanned_member->tag;
return TRUE;
}
static protobuf_c_boolean parse_optional_member(ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator) {
if (!parse_required_member(scanned_member, member, allocator, TRUE))
return FALSE;
if (scanned_member->field->quantifier_offset != 0)
STRUCT_MEMBER(protobuf_c_boolean, message,
scanned_member->field->quantifier_offset) = TRUE;
return TRUE;
}
static protobuf_c_boolean parse_repeated_member(ScannedMember *scanned_member,
void *member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator) {
const ProtobufCFieldDescriptor *field = scanned_member->field;
size_t *p_n = STRUCT_MEMBER_PTR(size_t, message, field->quantifier_offset);
size_t siz = sizeof_elt_in_repeated_array(field->type);
char *array = *(char **)member;
if (!parse_required_member(scanned_member, array + siz * (*p_n), allocator,
FALSE)) {
return FALSE;
}
*p_n += 1;
return TRUE;
}
static unsigned scan_varint(unsigned len, const uint8_t *data) {
unsigned i;
if (len > 10) len = 10;
for (i = 0; i < len; i++)
if ((data[i] & 0x80) == 0) break;
if (i == len) return 0;
return i + 1;
}
static protobuf_c_boolean parse_packed_repeated_member(
ScannedMember *scanned_member, void *member, ProtobufCMessage *message) {
const ProtobufCFieldDescriptor *field = scanned_member->field;
size_t *p_n = STRUCT_MEMBER_PTR(size_t, message, field->quantifier_offset);
size_t siz = sizeof_elt_in_repeated_array(field->type);
void *array = *(char **)member + siz * (*p_n);
const uint8_t *at = scanned_member->data + scanned_member->length_prefix_len;
size_t rem = scanned_member->len - scanned_member->length_prefix_len;
size_t count = 0;
unsigned i;
switch (field->type) {
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
count = (scanned_member->len - scanned_member->length_prefix_len) / 4;
#if !defined(WORDS_BIGENDIAN)
goto no_unpacking_needed;
goto no_unpacking_needed;
#else
for (i = 0; i < count; i++) {
((uint32_t *) array)[i] = parse_fixed_uint32(at);
at += 4;
}
break;
for (i = 0; i < count; i++) {
((uint32_t *)array)[i] = parse_fixed_uint32(at);
at += 4;
}
break;
#endif
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
count = (scanned_member->len - scanned_member->length_prefix_len) / 8;
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
count = (scanned_member->len - scanned_member->length_prefix_len) / 8;
#if !defined(WORDS_BIGENDIAN)
goto no_unpacking_needed;
goto no_unpacking_needed;
#else
for (i = 0; i < count; i++) {
((uint64_t *) array)[i] = parse_fixed_uint64(at);
at += 8;
}
break;
for (i = 0; i < count; i++) {
((uint64_t *)array)[i] = parse_fixed_uint64(at);
at += 8;
}
break;
#endif
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated int32 value");
return FALSE;
}
((int32_t *) array)[count++] = parse_int32(s, at);
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_SINT32:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated sint32 value");
return FALSE;
}
((int32_t *) array)[count++] = unzigzag32(parse_uint32(s, at));
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_UINT32:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated enum or uint32 value");
return FALSE;
}
((uint32_t *) array)[count++] = parse_uint32(s, at);
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_SINT64:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated sint64 value");
return FALSE;
}
((int64_t *) array)[count++] = unzigzag64(parse_uint64(s, at));
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated int64/uint64 value");
return FALSE;
}
((int64_t *) array)[count++] = parse_uint64(s, at);
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_BOOL:
count = rem;
for (i = 0; i < count; i++) {
if (at[i] > 1) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated boolean value");
return FALSE;
}
((protobuf_c_boolean *) array)[i] = at[i];
}
break;
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
*p_n += count;
return TRUE;
case PROTOBUF_C_TYPE_ENUM:
case PROTOBUF_C_TYPE_INT32:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated int32 value");
return FALSE;
}
((int32_t *)array)[count++] = parse_int32(s, at);
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_SINT32:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated sint32 value");
return FALSE;
}
((int32_t *)array)[count++] = unzigzag32(parse_uint32(s, at));
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_UINT32:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated enum or uint32 value");
return FALSE;
}
((uint32_t *)array)[count++] = parse_uint32(s, at);
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_SINT64:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated sint64 value");
return FALSE;
}
((int64_t *)array)[count++] = unzigzag64(parse_uint64(s, at));
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_UINT64:
while (rem > 0) {
unsigned s = scan_varint(rem, at);
if (s == 0) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated int64/uint64 value");
return FALSE;
}
((int64_t *)array)[count++] = parse_uint64(s, at);
at += s;
rem -= s;
}
break;
case PROTOBUF_C_TYPE_BOOL:
count = rem;
for (i = 0; i < count; i++) {
if (at[i] > 1) {
PROTOBUF_C_UNPACK_ERROR("bad packed-repeated boolean value");
return FALSE;
}
((protobuf_c_boolean *)array)[i] = at[i];
}
break;
default:
PROTOBUF_C__ASSERT_NOT_REACHED();
}
*p_n += count;
return TRUE;
#if !defined(WORDS_BIGENDIAN)
no_unpacking_needed:
memcpy(array, at, count * siz);
*p_n += count;
return TRUE;
memcpy(array, at, count * siz);
*p_n += count;
return TRUE;
#endif
}
static protobuf_c_boolean
is_packable_type(ProtobufCType type)
{
return
type != PROTOBUF_C_TYPE_STRING &&
type != PROTOBUF_C_TYPE_BYTES &&
type != PROTOBUF_C_TYPE_MESSAGE;
}
static protobuf_c_boolean
parse_member(ScannedMember *scanned_member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
const ProtobufCFieldDescriptor *field = scanned_member->field;
void *member;
if (field == NULL) {
ProtobufCMessageUnknownField *ufield =
message->unknown_fields +
(message->n_unknown_fields++);
ufield->tag = scanned_member->tag;
ufield->wire_type = scanned_member->wire_type;
ufield->len = scanned_member->len;
ufield->data = do_alloc(allocator, scanned_member->len);
if (ufield->data == NULL)
return FALSE;
memcpy(ufield->data, scanned_member->data, ufield->len);
return TRUE;
}
member = (char *) message + field->offset;
switch (field->label) {
case PROTOBUF_C_LABEL_REQUIRED:
return parse_required_member(scanned_member, member,
allocator, TRUE);
case PROTOBUF_C_LABEL_OPTIONAL:
case PROTOBUF_C_LABEL_NONE:
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF)) {
return parse_oneof_member(scanned_member, member,
message, allocator);
} else {
return parse_optional_member(scanned_member, member,
message, allocator);
}
case PROTOBUF_C_LABEL_REPEATED:
if (scanned_member->wire_type ==
PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED) ||
is_packable_type(field->type)))
{
return parse_packed_repeated_member(scanned_member,
member, message);
} else {
return parse_repeated_member(scanned_member,
member, message,
allocator);
}
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
static protobuf_c_boolean is_packable_type(ProtobufCType type) {
return type != PROTOBUF_C_TYPE_STRING && type != PROTOBUF_C_TYPE_BYTES &&
type != PROTOBUF_C_TYPE_MESSAGE;
}
static protobuf_c_boolean parse_member(ScannedMember *scanned_member,
ProtobufCMessage *message,
ProtobufCAllocator *allocator) {
const ProtobufCFieldDescriptor *field = scanned_member->field;
void *member;
if (field == NULL) {
ProtobufCMessageUnknownField *ufield =
message->unknown_fields + (message->n_unknown_fields++);
ufield->tag = scanned_member->tag;
ufield->wire_type = scanned_member->wire_type;
ufield->len = scanned_member->len;
ufield->data = do_alloc(allocator, scanned_member->len);
if (ufield->data == NULL) return FALSE;
memcpy(ufield->data, scanned_member->data, ufield->len);
return TRUE;
}
member = (char *)message + field->offset;
switch (field->label) {
case PROTOBUF_C_LABEL_REQUIRED:
return parse_required_member(scanned_member, member, allocator, TRUE);
case PROTOBUF_C_LABEL_OPTIONAL:
case PROTOBUF_C_LABEL_NONE:
if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF)) {
return parse_oneof_member(scanned_member, member, message, allocator);
} else {
return parse_optional_member(scanned_member, member, message,
allocator);
}
case PROTOBUF_C_LABEL_REPEATED:
if (scanned_member->wire_type == PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED) ||
is_packable_type(field->type))) {
return parse_packed_repeated_member(scanned_member, member, message);
} else {
return parse_repeated_member(scanned_member, member, message,
allocator);
}
}
PROTOBUF_C__ASSERT_NOT_REACHED();
return 0;
}
/**
......@@ -2925,58 +2604,54 @@ parse_member(ScannedMember *scanned_member,
* for old code, and which would be useful to support allocating
* descriptors dynamically).
*/
static void
message_init_generic(const ProtobufCMessageDescriptor *desc,
ProtobufCMessage *message)
{
unsigned i;
memset(message, 0, desc->sizeof_message);
message->descriptor = desc;
for (i = 0; i < desc->n_fields; i++) {
if (desc->fields[i].default_value != NULL &&
desc->fields[i].label != PROTOBUF_C_LABEL_REPEATED)
{
void *field =
STRUCT_MEMBER_P(message, desc->fields[i].offset);
const void *dv = desc->fields[i].default_value;
switch (desc->fields[i].type) {
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
case PROTOBUF_C_TYPE_ENUM:
memcpy(field, dv, 4);
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_UINT64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
memcpy(field, dv, 8);
break;
case PROTOBUF_C_TYPE_BOOL:
memcpy(field, dv, sizeof(protobuf_c_boolean));
break;
case PROTOBUF_C_TYPE_BYTES:
memcpy(field, dv, sizeof(ProtobufCBinaryData));
break;
case PROTOBUF_C_TYPE_STRING:
case PROTOBUF_C_TYPE_MESSAGE:
/*
* The next line essentially implements a cast
* from const, which is totally unavoidable.
*/
*(const void **) field = dv;
break;
}
}
}
static void message_init_generic(const ProtobufCMessageDescriptor *desc,
ProtobufCMessage *message) {
unsigned i;
memset(message, 0, desc->sizeof_message);
message->descriptor = desc;
for (i = 0; i < desc->n_fields; i++) {
if (desc->fields[i].default_value != NULL &&
desc->fields[i].label != PROTOBUF_C_LABEL_REPEATED) {
void *field = STRUCT_MEMBER_P(message, desc->fields[i].offset);
const void *dv = desc->fields[i].default_value;
switch (desc->fields[i].type) {
case PROTOBUF_C_TYPE_INT32:
case PROTOBUF_C_TYPE_SINT32:
case PROTOBUF_C_TYPE_SFIXED32:
case PROTOBUF_C_TYPE_UINT32:
case PROTOBUF_C_TYPE_FIXED32:
case PROTOBUF_C_TYPE_FLOAT:
case PROTOBUF_C_TYPE_ENUM:
memcpy(field, dv, 4);
break;
case PROTOBUF_C_TYPE_INT64:
case PROTOBUF_C_TYPE_SINT64:
case PROTOBUF_C_TYPE_SFIXED64:
case PROTOBUF_C_TYPE_UINT64:
case PROTOBUF_C_TYPE_FIXED64:
case PROTOBUF_C_TYPE_DOUBLE:
memcpy(field, dv, 8);
break;
case PROTOBUF_C_TYPE_BOOL:
memcpy(field, dv, sizeof(protobuf_c_boolean));
break;
case PROTOBUF_C_TYPE_BYTES:
memcpy(field, dv, sizeof(ProtobufCBinaryData));
break;
case PROTOBUF_C_TYPE_STRING:
case PROTOBUF_C_TYPE_MESSAGE:
/*
* The next line essentially implements a cast
* from const, which is totally unavoidable.
*/
*(const void **)field = dv;
break;
}
}
}
}
/**@}*/
......@@ -2997,650 +2672,573 @@ message_init_generic(const ProtobufCMessageDescriptor *desc,
* The number of slabs, including the stack-allocated ones; choose the number so
* that we would overflow if we needed a slab larger than provided.
*/
#define MAX_SCANNED_MEMBER_SLAB \
(sizeof(unsigned int)*8 - 1 \
- BOUND_SIZEOF_SCANNED_MEMBER_LOG2 \
- FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2)
#define REQUIRED_FIELD_BITMAP_SET(index) \
(required_fields_bitmap[(index)/8] |= (1UL<<((index)%8)))
#define REQUIRED_FIELD_BITMAP_IS_SET(index) \
(required_fields_bitmap[(index)/8] & (1UL<<((index)%8)))
ProtobufCMessage *
protobuf_c_message_unpack(const ProtobufCMessageDescriptor *desc,
ProtobufCAllocator *allocator,
size_t len, const uint8_t *data)
{
ProtobufCMessage *rv;
size_t rem = len;
const uint8_t *at = data;
const ProtobufCFieldDescriptor *last_field = desc->fields + 0;
ScannedMember first_member_slab[1UL <<
FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2];
/*
* scanned_member_slabs[i] is an array of arrays of ScannedMember.
* The first slab (scanned_member_slabs[0] is just a pointer to
* first_member_slab), above. All subsequent slabs will be allocated
* using the allocator.
*/
ScannedMember *scanned_member_slabs[MAX_SCANNED_MEMBER_SLAB + 1];
unsigned which_slab = 0; /* the slab we are currently populating */
unsigned in_slab_index = 0; /* number of members in the slab */
size_t n_unknown = 0;
unsigned f;
unsigned j;
unsigned i_slab;
unsigned last_field_index = 0;
unsigned required_fields_bitmap_len;
unsigned char required_fields_bitmap_stack[16];
unsigned char *required_fields_bitmap = required_fields_bitmap_stack;
protobuf_c_boolean required_fields_bitmap_alloced = FALSE;
ASSERT_IS_MESSAGE_DESCRIPTOR(desc);
if (allocator == NULL)
allocator = &protobuf_c__allocator;
rv = do_alloc(allocator, desc->sizeof_message);
if (!rv)
return (NULL);
scanned_member_slabs[0] = first_member_slab;
required_fields_bitmap_len = (desc->n_fields + 7) / 8;
if (required_fields_bitmap_len > sizeof(required_fields_bitmap_stack)) {
required_fields_bitmap = do_alloc(allocator, required_fields_bitmap_len);
if (!required_fields_bitmap) {
do_free(allocator, rv);
return (NULL);
}
required_fields_bitmap_alloced = TRUE;
}
memset(required_fields_bitmap, 0, required_fields_bitmap_len);
/*
* Generated code always defines "message_init". However, we provide a
* fallback for (1) users of old protobuf-c generated-code that do not
* provide the function, and (2) descriptors constructed from some other
* source (most likely, direct construction from the .proto file).
*/
if (desc->message_init != NULL)
protobuf_c_message_init(desc, rv);
else
message_init_generic(desc, rv);
while (rem > 0) {
uint32_t tag;
ProtobufCWireType wire_type;
size_t used = parse_tag_and_wiretype(rem, at, &tag, &wire_type);
const ProtobufCFieldDescriptor *field;
ScannedMember tmp;
if (used == 0) {
PROTOBUF_C_UNPACK_ERROR("error parsing tag/wiretype at offset %u",
(unsigned) (at - data));
goto error_cleanup_during_scan;
}
/*
* \todo Consider optimizing for field[1].id == tag, if field[1]
* exists!
*/
if (last_field == NULL || last_field->id != tag) {
/* lookup field */
int field_index =
int_range_lookup(desc->n_field_ranges,
desc->field_ranges,
tag);
if (field_index < 0) {
field = NULL;
n_unknown++;
} else {
field = desc->fields + field_index;
last_field = field;
last_field_index = field_index;
}
} else {
field = last_field;
}
if (field != NULL && field->label == PROTOBUF_C_LABEL_REQUIRED)
REQUIRED_FIELD_BITMAP_SET(last_field_index);
at += used;
rem -= used;
tmp.tag = tag;
tmp.wire_type = wire_type;
tmp.field = field;
tmp.data = at;
tmp.length_prefix_len = 0;
switch (wire_type) {
case PROTOBUF_C_WIRE_TYPE_VARINT: {
unsigned max_len = rem < 10 ? rem : 10;
unsigned i;
for (i = 0; i < max_len; i++)
if ((at[i] & 0x80) == 0)
break;
if (i == max_len) {
PROTOBUF_C_UNPACK_ERROR("unterminated varint at offset %u",
(unsigned) (at - data));
goto error_cleanup_during_scan;
}
tmp.len = i + 1;
break;
}
case PROTOBUF_C_WIRE_TYPE_64BIT:
if (rem < 8) {
PROTOBUF_C_UNPACK_ERROR("too short after 64bit wiretype at offset %u",
(unsigned) (at - data));
goto error_cleanup_during_scan;
}
tmp.len = 8;
break;
case PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED: {
size_t pref_len;
tmp.len = scan_length_prefixed_data(rem, at, &pref_len);
if (tmp.len == 0) {
/* NOTE: scan_length_prefixed_data calls UNPACK_ERROR */
goto error_cleanup_during_scan;
}
tmp.length_prefix_len = pref_len;
break;
}
case PROTOBUF_C_WIRE_TYPE_32BIT:
if (rem < 4) {
PROTOBUF_C_UNPACK_ERROR("too short after 32bit wiretype at offset %u",
(unsigned) (at - data));
goto error_cleanup_during_scan;
}
tmp.len = 4;
break;
default:
PROTOBUF_C_UNPACK_ERROR("unsupported tag %u at offset %u",
wire_type, (unsigned) (at - data));
goto error_cleanup_during_scan;
}
if (in_slab_index == (1UL <<
(which_slab + FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2)))
{
size_t size;
in_slab_index = 0;
if (which_slab == MAX_SCANNED_MEMBER_SLAB) {
PROTOBUF_C_UNPACK_ERROR("too many fields");
goto error_cleanup_during_scan;
}
which_slab++;
size = sizeof(ScannedMember)
<< (which_slab + FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2);
scanned_member_slabs[which_slab] = do_alloc(allocator, size);
if (scanned_member_slabs[which_slab] == NULL)
goto error_cleanup_during_scan;
}
scanned_member_slabs[which_slab][in_slab_index++] = tmp;
if (field != NULL && field->label == PROTOBUF_C_LABEL_REPEATED) {
size_t *n = STRUCT_MEMBER_PTR(size_t, rv,
field->quantifier_offset);
if (wire_type == PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED) ||
is_packable_type(field->type)))
{
size_t count;
if (!count_packed_elements(field->type,
tmp.len -
tmp.length_prefix_len,
tmp.data +
tmp.length_prefix_len,
&count))
{
PROTOBUF_C_UNPACK_ERROR("counting packed elements");
goto error_cleanup_during_scan;
}
*n += count;
} else {
*n += 1;
}
}
at += tmp.len;
rem -= tmp.len;
}
/* allocate space for repeated fields, also check that all required fields have been set */
for (f = 0; f < desc->n_fields; f++) {
const ProtobufCFieldDescriptor *field = desc->fields + f;
if (field->label == PROTOBUF_C_LABEL_REPEATED) {
size_t siz =
sizeof_elt_in_repeated_array(field->type);
size_t *n_ptr =
STRUCT_MEMBER_PTR(size_t, rv,
field->quantifier_offset);
if (*n_ptr != 0) {
unsigned n = *n_ptr;
void *a;
*n_ptr = 0;
assert(rv->descriptor != NULL);
#define CLEAR_REMAINING_N_PTRS() \
for(f++;f < desc->n_fields; f++) \
{ \
field = desc->fields + f; \
if (field->label == PROTOBUF_C_LABEL_REPEATED) \
STRUCT_MEMBER (size_t, rv, field->quantifier_offset) = 0; \
}
a = do_alloc(allocator, siz * n);
if (!a) {
CLEAR_REMAINING_N_PTRS();
goto error_cleanup;
}
STRUCT_MEMBER(void *, rv, field->offset) = a;
}
} else if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
if (field->default_value == NULL &&
!REQUIRED_FIELD_BITMAP_IS_SET(f))
{
CLEAR_REMAINING_N_PTRS();
PROTOBUF_C_UNPACK_ERROR("message '%s': missing required field '%s'",
desc->name, field->name);
goto error_cleanup;
}
}
}
#define MAX_SCANNED_MEMBER_SLAB \
(sizeof(unsigned int) * 8 - 1 - BOUND_SIZEOF_SCANNED_MEMBER_LOG2 - \
FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2)
#define REQUIRED_FIELD_BITMAP_SET(index) \
(required_fields_bitmap[(index) / 8] |= (1UL << ((index) % 8)))
#define REQUIRED_FIELD_BITMAP_IS_SET(index) \
(required_fields_bitmap[(index) / 8] & (1UL << ((index) % 8)))
ProtobufCMessage *protobuf_c_message_unpack(
const ProtobufCMessageDescriptor *desc, ProtobufCAllocator *allocator,
size_t len, const uint8_t *data) {
ProtobufCMessage *rv;
size_t rem = len;
const uint8_t *at = data;
const ProtobufCFieldDescriptor *last_field = desc->fields + 0;
ScannedMember first_member_slab[1UL << FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2];
/*
* scanned_member_slabs[i] is an array of arrays of ScannedMember.
* The first slab (scanned_member_slabs[0] is just a pointer to
* first_member_slab), above. All subsequent slabs will be allocated
* using the allocator.
*/
ScannedMember *scanned_member_slabs[MAX_SCANNED_MEMBER_SLAB + 1];
unsigned which_slab = 0; /* the slab we are currently populating */
unsigned in_slab_index = 0; /* number of members in the slab */
size_t n_unknown = 0;
unsigned f;
unsigned j;
unsigned i_slab;
unsigned last_field_index = 0;
unsigned required_fields_bitmap_len;
unsigned char required_fields_bitmap_stack[16];
unsigned char *required_fields_bitmap = required_fields_bitmap_stack;
protobuf_c_boolean required_fields_bitmap_alloced = FALSE;
ASSERT_IS_MESSAGE_DESCRIPTOR(desc);
if (allocator == NULL) allocator = &protobuf_c__allocator;
rv = do_alloc(allocator, desc->sizeof_message);
if (!rv) return (NULL);
scanned_member_slabs[0] = first_member_slab;
required_fields_bitmap_len = (desc->n_fields + 7) / 8;
if (required_fields_bitmap_len > sizeof(required_fields_bitmap_stack)) {
required_fields_bitmap = do_alloc(allocator, required_fields_bitmap_len);
if (!required_fields_bitmap) {
do_free(allocator, rv);
return (NULL);
}
required_fields_bitmap_alloced = TRUE;
}
memset(required_fields_bitmap, 0, required_fields_bitmap_len);
/*
* Generated code always defines "message_init". However, we provide a
* fallback for (1) users of old protobuf-c generated-code that do not
* provide the function, and (2) descriptors constructed from some other
* source (most likely, direct construction from the .proto file).
*/
if (desc->message_init != NULL)
protobuf_c_message_init(desc, rv);
else
message_init_generic(desc, rv);
while (rem > 0) {
uint32_t tag;
ProtobufCWireType wire_type;
size_t used = parse_tag_and_wiretype(rem, at, &tag, &wire_type);
const ProtobufCFieldDescriptor *field;
ScannedMember tmp;
if (used == 0) {
PROTOBUF_C_UNPACK_ERROR("error parsing tag/wiretype at offset %u",
(unsigned)(at - data));
goto error_cleanup_during_scan;
}
/*
* \todo Consider optimizing for field[1].id == tag, if field[1]
* exists!
*/
if (last_field == NULL || last_field->id != tag) {
/* lookup field */
int field_index =
int_range_lookup(desc->n_field_ranges, desc->field_ranges, tag);
if (field_index < 0) {
field = NULL;
n_unknown++;
} else {
field = desc->fields + field_index;
last_field = field;
last_field_index = field_index;
}
} else {
field = last_field;
}
if (field != NULL && field->label == PROTOBUF_C_LABEL_REQUIRED)
REQUIRED_FIELD_BITMAP_SET(last_field_index);
at += used;
rem -= used;
tmp.tag = tag;
tmp.wire_type = wire_type;
tmp.field = field;
tmp.data = at;
tmp.length_prefix_len = 0;
switch (wire_type) {
case PROTOBUF_C_WIRE_TYPE_VARINT: {
unsigned max_len = rem < 10 ? rem : 10;
unsigned i;
for (i = 0; i < max_len; i++)
if ((at[i] & 0x80) == 0) break;
if (i == max_len) {
PROTOBUF_C_UNPACK_ERROR("unterminated varint at offset %u",
(unsigned)(at - data));
goto error_cleanup_during_scan;
}
tmp.len = i + 1;
break;
}
case PROTOBUF_C_WIRE_TYPE_64BIT:
if (rem < 8) {
PROTOBUF_C_UNPACK_ERROR("too short after 64bit wiretype at offset %u",
(unsigned)(at - data));
goto error_cleanup_during_scan;
}
tmp.len = 8;
break;
case PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED: {
size_t pref_len;
tmp.len = scan_length_prefixed_data(rem, at, &pref_len);
if (tmp.len == 0) {
/* NOTE: scan_length_prefixed_data calls UNPACK_ERROR */
goto error_cleanup_during_scan;
}
tmp.length_prefix_len = pref_len;
break;
}
case PROTOBUF_C_WIRE_TYPE_32BIT:
if (rem < 4) {
PROTOBUF_C_UNPACK_ERROR("too short after 32bit wiretype at offset %u",
(unsigned)(at - data));
goto error_cleanup_during_scan;
}
tmp.len = 4;
break;
default:
PROTOBUF_C_UNPACK_ERROR("unsupported tag %u at offset %u", wire_type,
(unsigned)(at - data));
goto error_cleanup_during_scan;
}
if (in_slab_index ==
(1UL << (which_slab + FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2))) {
size_t size;
in_slab_index = 0;
if (which_slab == MAX_SCANNED_MEMBER_SLAB) {
PROTOBUF_C_UNPACK_ERROR("too many fields");
goto error_cleanup_during_scan;
}
which_slab++;
size = sizeof(ScannedMember)
<< (which_slab + FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2);
scanned_member_slabs[which_slab] = do_alloc(allocator, size);
if (scanned_member_slabs[which_slab] == NULL)
goto error_cleanup_during_scan;
}
scanned_member_slabs[which_slab][in_slab_index++] = tmp;
if (field != NULL && field->label == PROTOBUF_C_LABEL_REPEATED) {
size_t *n = STRUCT_MEMBER_PTR(size_t, rv, field->quantifier_offset);
if (wire_type == PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED &&
(0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED) ||
is_packable_type(field->type))) {
size_t count;
if (!count_packed_elements(field->type, tmp.len - tmp.length_prefix_len,
tmp.data + tmp.length_prefix_len, &count)) {
PROTOBUF_C_UNPACK_ERROR("counting packed elements");
goto error_cleanup_during_scan;
}
*n += count;
} else {
*n += 1;
}
}
at += tmp.len;
rem -= tmp.len;
}
/* allocate space for repeated fields, also check that all required fields
* have been set */
for (f = 0; f < desc->n_fields; f++) {
const ProtobufCFieldDescriptor *field = desc->fields + f;
if (field->label == PROTOBUF_C_LABEL_REPEATED) {
size_t siz = sizeof_elt_in_repeated_array(field->type);
size_t *n_ptr = STRUCT_MEMBER_PTR(size_t, rv, field->quantifier_offset);
if (*n_ptr != 0) {
unsigned n = *n_ptr;
void *a;
*n_ptr = 0;
assert(rv->descriptor != NULL);
#define CLEAR_REMAINING_N_PTRS() \
for (f++; f < desc->n_fields; f++) { \
field = desc->fields + f; \
if (field->label == PROTOBUF_C_LABEL_REPEATED) \
STRUCT_MEMBER(size_t, rv, field->quantifier_offset) = 0; \
}
a = do_alloc(allocator, siz * n);
if (!a) {
CLEAR_REMAINING_N_PTRS();
goto error_cleanup;
}
STRUCT_MEMBER(void *, rv, field->offset) = a;
}
} else if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
if (field->default_value == NULL && !REQUIRED_FIELD_BITMAP_IS_SET(f)) {
CLEAR_REMAINING_N_PTRS();
PROTOBUF_C_UNPACK_ERROR("message '%s': missing required field '%s'",
desc->name, field->name);
goto error_cleanup;
}
}
}
#undef CLEAR_REMAINING_N_PTRS
/* allocate space for unknown fields */
if (n_unknown) {
rv->unknown_fields = do_alloc(allocator,
n_unknown * sizeof(ProtobufCMessageUnknownField));
if (rv->unknown_fields == NULL)
goto error_cleanup;
}
/* do real parsing */
for (i_slab = 0; i_slab <= which_slab; i_slab++) {
unsigned max = (i_slab == which_slab) ?
in_slab_index : (1UL << (i_slab + 4));
ScannedMember *slab = scanned_member_slabs[i_slab];
for (j = 0; j < max; j++) {
if (!parse_member(slab + j, rv, allocator)) {
PROTOBUF_C_UNPACK_ERROR("error parsing member %s of %s",
slab->field ? slab->field->name : "*unknown-field*",
desc->name);
goto error_cleanup;
}
}
}
/* cleanup */
for (j = 1; j <= which_slab; j++)
do_free(allocator, scanned_member_slabs[j]);
if (required_fields_bitmap_alloced)
do_free(allocator, required_fields_bitmap);
return rv;
/* allocate space for unknown fields */
if (n_unknown) {
rv->unknown_fields =
do_alloc(allocator, n_unknown * sizeof(ProtobufCMessageUnknownField));
if (rv->unknown_fields == NULL) goto error_cleanup;
}
/* do real parsing */
for (i_slab = 0; i_slab <= which_slab; i_slab++) {
unsigned max =
(i_slab == which_slab) ? in_slab_index : (1UL << (i_slab + 4));
ScannedMember *slab = scanned_member_slabs[i_slab];
for (j = 0; j < max; j++) {
if (!parse_member(slab + j, rv, allocator)) {
PROTOBUF_C_UNPACK_ERROR(
"error parsing member %s of %s",
slab->field ? slab->field->name : "*unknown-field*", desc->name);
goto error_cleanup;
}
}
}
/* cleanup */
for (j = 1; j <= which_slab; j++) do_free(allocator, scanned_member_slabs[j]);
if (required_fields_bitmap_alloced)
do_free(allocator, required_fields_bitmap);
return rv;
error_cleanup:
protobuf_c_message_free_unpacked(rv, allocator);
for (j = 1; j <= which_slab; j++)
do_free(allocator, scanned_member_slabs[j]);
if (required_fields_bitmap_alloced)
do_free(allocator, required_fields_bitmap);
return NULL;
protobuf_c_message_free_unpacked(rv, allocator);
for (j = 1; j <= which_slab; j++) do_free(allocator, scanned_member_slabs[j]);
if (required_fields_bitmap_alloced)
do_free(allocator, required_fields_bitmap);
return NULL;
error_cleanup_during_scan:
do_free(allocator, rv);
for (j = 1; j <= which_slab; j++)
do_free(allocator, scanned_member_slabs[j]);
if (required_fields_bitmap_alloced)
do_free(allocator, required_fields_bitmap);
return NULL;
}
void
protobuf_c_message_free_unpacked(ProtobufCMessage *message,
ProtobufCAllocator *allocator)
{
const ProtobufCMessageDescriptor *desc;
unsigned f;
if (message == NULL)
return;
desc = message->descriptor;
ASSERT_IS_MESSAGE(message);
if (allocator == NULL)
allocator = &protobuf_c__allocator;
message->descriptor = NULL;
for (f = 0; f < desc->n_fields; f++) {
if (0 != (desc->fields[f].flags & PROTOBUF_C_FIELD_FLAG_ONEOF) &&
desc->fields[f].id !=
STRUCT_MEMBER(uint32_t, message, desc->fields[f].quantifier_offset))
{
/* This is not the selected oneof, skip it */
continue;
}
if (desc->fields[f].label == PROTOBUF_C_LABEL_REPEATED) {
size_t n = STRUCT_MEMBER(size_t,
message,
desc->fields[f].quantifier_offset);
void *arr = STRUCT_MEMBER(void *,
message,
desc->fields[f].offset);
if (arr != NULL) {
if (desc->fields[f].type == PROTOBUF_C_TYPE_STRING) {
unsigned i;
for (i = 0; i < n; i++)
do_free(allocator, ((char **) arr)[i]);
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_BYTES) {
unsigned i;
for (i = 0; i < n; i++)
do_free(allocator, ((ProtobufCBinaryData *) arr)[i].data);
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_MESSAGE) {
unsigned i;
for (i = 0; i < n; i++)
protobuf_c_message_free_unpacked(
((ProtobufCMessage **) arr)[i],
allocator
);
}
do_free(allocator, arr);
}
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_STRING) {
char *str = STRUCT_MEMBER(char *, message,
desc->fields[f].offset);
if (str && str != desc->fields[f].default_value)
do_free(allocator, str);
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_BYTES) {
void *data = STRUCT_MEMBER(ProtobufCBinaryData, message,
desc->fields[f].offset).data;
const ProtobufCBinaryData *default_bd;
default_bd = desc->fields[f].default_value;
if (data != NULL &&
(default_bd == NULL ||
default_bd->data != data))
{
do_free(allocator, data);
}
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_MESSAGE) {
ProtobufCMessage *sm;
sm = STRUCT_MEMBER(ProtobufCMessage *, message,
desc->fields[f].offset);
if (sm && sm != desc->fields[f].default_value)
protobuf_c_message_free_unpacked(sm, allocator);
}
}
for (f = 0; f < message->n_unknown_fields; f++)
do_free(allocator, message->unknown_fields[f].data);
if (message->unknown_fields != NULL)
do_free(allocator, message->unknown_fields);
do_free(allocator, message);
}
void
protobuf_c_message_init(const ProtobufCMessageDescriptor * descriptor,
void *message)
{
descriptor->message_init((ProtobufCMessage *) (message));
}
protobuf_c_boolean
protobuf_c_message_check(const ProtobufCMessage *message)
{
unsigned i;
if (!message ||
!message->descriptor ||
message->descriptor->magic != PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC)
{
return FALSE;
}
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *f = message->descriptor->fields + i;
ProtobufCType type = f->type;
ProtobufCLabel label = f->label;
void *field = STRUCT_MEMBER_P (message, f->offset);
if (label == PROTOBUF_C_LABEL_REPEATED) {
size_t *quantity = STRUCT_MEMBER_P (message, f->quantifier_offset);
if (*quantity > 0 && *(void **) field == NULL) {
return FALSE;
}
if (type == PROTOBUF_C_TYPE_MESSAGE) {
ProtobufCMessage **submessage = *(ProtobufCMessage ***) field;
unsigned j;
for (j = 0; j < *quantity; j++) {
if (!protobuf_c_message_check(submessage[j]))
return FALSE;
}
} else if (type == PROTOBUF_C_TYPE_STRING) {
char **string = *(char ***) field;
unsigned j;
for (j = 0; j < *quantity; j++) {
if (!string[j])
return FALSE;
}
} else if (type == PROTOBUF_C_TYPE_BYTES) {
ProtobufCBinaryData *bd = *(ProtobufCBinaryData **) field;
unsigned j;
for (j = 0; j < *quantity; j++) {
if (bd[j].len > 0 && bd[j].data == NULL)
return FALSE;
}
}
} else { /* PROTOBUF_C_LABEL_REQUIRED or PROTOBUF_C_LABEL_OPTIONAL */
if (type == PROTOBUF_C_TYPE_MESSAGE) {
ProtobufCMessage *submessage = *(ProtobufCMessage **) field;
if (label == PROTOBUF_C_LABEL_REQUIRED || submessage != NULL) {
if (!protobuf_c_message_check(submessage))
return FALSE;
}
} else if (type == PROTOBUF_C_TYPE_STRING) {
char *string = *(char **) field;
if (label == PROTOBUF_C_LABEL_REQUIRED && string == NULL)
return FALSE;
} else if (type == PROTOBUF_C_TYPE_BYTES) {
protobuf_c_boolean *has = STRUCT_MEMBER_P (message, f->quantifier_offset);
ProtobufCBinaryData *bd = field;
if (label == PROTOBUF_C_LABEL_REQUIRED || *has == TRUE) {
if (bd->len > 0 && bd->data == NULL)
return FALSE;
}
}
}
}
return TRUE;
do_free(allocator, rv);
for (j = 1; j <= which_slab; j++) do_free(allocator, scanned_member_slabs[j]);
if (required_fields_bitmap_alloced)
do_free(allocator, required_fields_bitmap);
return NULL;
}
void protobuf_c_message_free_unpacked(ProtobufCMessage *message,
ProtobufCAllocator *allocator) {
const ProtobufCMessageDescriptor *desc;
unsigned f;
if (message == NULL) return;
desc = message->descriptor;
ASSERT_IS_MESSAGE(message);
if (allocator == NULL) allocator = &protobuf_c__allocator;
message->descriptor = NULL;
for (f = 0; f < desc->n_fields; f++) {
if (0 != (desc->fields[f].flags & PROTOBUF_C_FIELD_FLAG_ONEOF) &&
desc->fields[f].id !=
STRUCT_MEMBER(uint32_t, message,
desc->fields[f].quantifier_offset)) {
/* This is not the selected oneof, skip it */
continue;
}
if (desc->fields[f].label == PROTOBUF_C_LABEL_REPEATED) {
size_t n =
STRUCT_MEMBER(size_t, message, desc->fields[f].quantifier_offset);
void *arr = STRUCT_MEMBER(void *, message, desc->fields[f].offset);
if (arr != NULL) {
if (desc->fields[f].type == PROTOBUF_C_TYPE_STRING) {
unsigned i;
for (i = 0; i < n; i++) do_free(allocator, ((char **)arr)[i]);
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_BYTES) {
unsigned i;
for (i = 0; i < n; i++)
do_free(allocator, ((ProtobufCBinaryData *)arr)[i].data);
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_MESSAGE) {
unsigned i;
for (i = 0; i < n; i++)
protobuf_c_message_free_unpacked(((ProtobufCMessage **)arr)[i],
allocator);
}
do_free(allocator, arr);
}
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_STRING) {
char *str = STRUCT_MEMBER(char *, message, desc->fields[f].offset);
if (str && str != desc->fields[f].default_value) do_free(allocator, str);
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_BYTES) {
void *data =
STRUCT_MEMBER(ProtobufCBinaryData, message, desc->fields[f].offset)
.data;
const ProtobufCBinaryData *default_bd;
default_bd = desc->fields[f].default_value;
if (data != NULL && (default_bd == NULL || default_bd->data != data)) {
do_free(allocator, data);
}
} else if (desc->fields[f].type == PROTOBUF_C_TYPE_MESSAGE) {
ProtobufCMessage *sm;
sm = STRUCT_MEMBER(ProtobufCMessage *, message, desc->fields[f].offset);
if (sm && sm != desc->fields[f].default_value)
protobuf_c_message_free_unpacked(sm, allocator);
}
}
for (f = 0; f < message->n_unknown_fields; f++)
do_free(allocator, message->unknown_fields[f].data);
if (message->unknown_fields != NULL)
do_free(allocator, message->unknown_fields);
do_free(allocator, message);
}
void protobuf_c_message_init(const ProtobufCMessageDescriptor *descriptor,
void *message) {
descriptor->message_init((ProtobufCMessage *)(message));
}
protobuf_c_boolean protobuf_c_message_check(const ProtobufCMessage *message) {
unsigned i;
if (!message || !message->descriptor ||
message->descriptor->magic != PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC) {
return FALSE;
}
for (i = 0; i < message->descriptor->n_fields; i++) {
const ProtobufCFieldDescriptor *f = message->descriptor->fields + i;
ProtobufCType type = f->type;
ProtobufCLabel label = f->label;
void *field = STRUCT_MEMBER_P(message, f->offset);
if (label == PROTOBUF_C_LABEL_REPEATED) {
size_t *quantity = STRUCT_MEMBER_P(message, f->quantifier_offset);
if (*quantity > 0 && *(void **)field == NULL) {
return FALSE;
}
if (type == PROTOBUF_C_TYPE_MESSAGE) {
ProtobufCMessage **submessage = *(ProtobufCMessage ***)field;
unsigned j;
for (j = 0; j < *quantity; j++) {
if (!protobuf_c_message_check(submessage[j])) return FALSE;
}
} else if (type == PROTOBUF_C_TYPE_STRING) {
char **string = *(char ***)field;
unsigned j;
for (j = 0; j < *quantity; j++) {
if (!string[j]) return FALSE;
}
} else if (type == PROTOBUF_C_TYPE_BYTES) {
ProtobufCBinaryData *bd = *(ProtobufCBinaryData **)field;
unsigned j;
for (j = 0; j < *quantity; j++) {
if (bd[j].len > 0 && bd[j].data == NULL) return FALSE;
}
}
} else { /* PROTOBUF_C_LABEL_REQUIRED or PROTOBUF_C_LABEL_OPTIONAL */
if (type == PROTOBUF_C_TYPE_MESSAGE) {
ProtobufCMessage *submessage = *(ProtobufCMessage **)field;
if (label == PROTOBUF_C_LABEL_REQUIRED || submessage != NULL) {
if (!protobuf_c_message_check(submessage)) return FALSE;
}
} else if (type == PROTOBUF_C_TYPE_STRING) {
char *string = *(char **)field;
if (label == PROTOBUF_C_LABEL_REQUIRED && string == NULL) return FALSE;
} else if (type == PROTOBUF_C_TYPE_BYTES) {
protobuf_c_boolean *has =
STRUCT_MEMBER_P(message, f->quantifier_offset);
ProtobufCBinaryData *bd = field;
if (label == PROTOBUF_C_LABEL_REQUIRED || *has == TRUE) {
if (bd->len > 0 && bd->data == NULL) return FALSE;
}
}
}
}
return TRUE;
}
/* === services === */
typedef void (*GenericHandler) (void *service,
const ProtobufCMessage *input,
ProtobufCClosure closure,
void *closure_data);
void
protobuf_c_service_invoke_internal(ProtobufCService *service,
unsigned method_index,
const ProtobufCMessage *input,
ProtobufCClosure closure,
void *closure_data)
{
GenericHandler *handlers;
GenericHandler handler;
/*
* Verify that method_index is within range. If this fails, you are
* likely invoking a newly added method on an old service. (Although
* other memory corruption bugs can cause this assertion too.)
*/
assert(method_index < service->descriptor->n_methods);
/*
* Get the array of virtual methods (which are enumerated by the
* generated code).
*/
handlers = (GenericHandler *) (service + 1);
/*
* Get our method and invoke it.
* \todo Seems like handler == NULL is a situation that needs handling.
*/
handler = handlers[method_index];
(*handler)(service, input, closure, closure_data);
}
void
protobuf_c_service_generated_init(ProtobufCService *service,
const ProtobufCServiceDescriptor *descriptor,
ProtobufCServiceDestroy destroy)
{
ASSERT_IS_SERVICE_DESCRIPTOR(descriptor);
service->descriptor = descriptor;
service->destroy = destroy;
service->invoke = protobuf_c_service_invoke_internal;
memset(service + 1, 0, descriptor->n_methods * sizeof(GenericHandler));
}
void protobuf_c_service_destroy(ProtobufCService *service)
{
service->destroy(service);
typedef void (*GenericHandler)(void *service, const ProtobufCMessage *input,
ProtobufCClosure closure, void *closure_data);
void protobuf_c_service_invoke_internal(ProtobufCService *service,
unsigned method_index,
const ProtobufCMessage *input,
ProtobufCClosure closure,
void *closure_data) {
GenericHandler *handlers;
GenericHandler handler;
/*
* Verify that method_index is within range. If this fails, you are
* likely invoking a newly added method on an old service. (Although
* other memory corruption bugs can cause this assertion too.)
*/
assert(method_index < service->descriptor->n_methods);
/*
* Get the array of virtual methods (which are enumerated by the
* generated code).
*/
handlers = (GenericHandler *)(service + 1);
/*
* Get our method and invoke it.
* \todo Seems like handler == NULL is a situation that needs handling.
*/
handler = handlers[method_index];
(*handler)(service, input, closure, closure_data);
}
void protobuf_c_service_generated_init(
ProtobufCService *service, const ProtobufCServiceDescriptor *descriptor,
ProtobufCServiceDestroy destroy) {
ASSERT_IS_SERVICE_DESCRIPTOR(descriptor);
service->descriptor = descriptor;
service->destroy = destroy;
service->invoke = protobuf_c_service_invoke_internal;
memset(service + 1, 0, descriptor->n_methods * sizeof(GenericHandler));
}
void protobuf_c_service_destroy(ProtobufCService *service) {
service->destroy(service);
}
/* --- querying the descriptors --- */
const ProtobufCEnumValue *
protobuf_c_enum_descriptor_get_value_by_name(const ProtobufCEnumDescriptor *desc,
const char *name)
{
unsigned start = 0;
unsigned count;
if (desc == NULL || desc->values_by_name == NULL)
return NULL;
count = desc->n_value_names;
while (count > 1) {
unsigned mid = start + count / 2;
int rv = strcmp(desc->values_by_name[mid].name, name);
if (rv == 0)
return desc->values + desc->values_by_name[mid].index;
else if (rv < 0) {
count = start + count - (mid + 1);
start = mid + 1;
} else
count = mid - start;
}
if (count == 0)
return NULL;
if (strcmp(desc->values_by_name[start].name, name) == 0)
return desc->values + desc->values_by_name[start].index;
return NULL;
}
const ProtobufCEnumValue *
protobuf_c_enum_descriptor_get_value(const ProtobufCEnumDescriptor *desc,
int value)
{
int rv = int_range_lookup(desc->n_value_ranges, desc->value_ranges, value);
if (rv < 0)
return NULL;
return desc->values + rv;
}
const ProtobufCFieldDescriptor *
protobuf_c_message_descriptor_get_field_by_name(const ProtobufCMessageDescriptor *desc,
const char *name)
{
unsigned start = 0;
unsigned count;
const ProtobufCFieldDescriptor *field;
if (desc == NULL || desc->fields_sorted_by_name == NULL)
return NULL;
count = desc->n_fields;
while (count > 1) {
unsigned mid = start + count / 2;
int rv;
field = desc->fields + desc->fields_sorted_by_name[mid];
rv = strcmp(field->name, name);
if (rv == 0)
return field;
else if (rv < 0) {
count = start + count - (mid + 1);
start = mid + 1;
} else
count = mid - start;
}
if (count == 0)
return NULL;
field = desc->fields + desc->fields_sorted_by_name[start];
if (strcmp(field->name, name) == 0)
return field;
return NULL;
}
const ProtobufCFieldDescriptor *
protobuf_c_message_descriptor_get_field(const ProtobufCMessageDescriptor *desc,
unsigned value)
{
int rv = int_range_lookup(desc->n_field_ranges,desc->field_ranges, value);
if (rv < 0)
return NULL;
return desc->fields + rv;
const ProtobufCEnumValue *protobuf_c_enum_descriptor_get_value_by_name(
const ProtobufCEnumDescriptor *desc, const char *name) {
unsigned start = 0;
unsigned count;
if (desc == NULL || desc->values_by_name == NULL) return NULL;
count = desc->n_value_names;
while (count > 1) {
unsigned mid = start + count / 2;
int rv = strcmp(desc->values_by_name[mid].name, name);
if (rv == 0)
return desc->values + desc->values_by_name[mid].index;
else if (rv < 0) {
count = start + count - (mid + 1);
start = mid + 1;
} else
count = mid - start;
}
if (count == 0) return NULL;
if (strcmp(desc->values_by_name[start].name, name) == 0)
return desc->values + desc->values_by_name[start].index;
return NULL;
}
const ProtobufCEnumValue *protobuf_c_enum_descriptor_get_value(
const ProtobufCEnumDescriptor *desc, int value) {
int rv = int_range_lookup(desc->n_value_ranges, desc->value_ranges, value);
if (rv < 0) return NULL;
return desc->values + rv;
}
const ProtobufCFieldDescriptor *protobuf_c_message_descriptor_get_field_by_name(
const ProtobufCMessageDescriptor *desc, const char *name) {
unsigned start = 0;
unsigned count;
const ProtobufCFieldDescriptor *field;
if (desc == NULL || desc->fields_sorted_by_name == NULL) return NULL;
count = desc->n_fields;
while (count > 1) {
unsigned mid = start + count / 2;
int rv;
field = desc->fields + desc->fields_sorted_by_name[mid];
rv = strcmp(field->name, name);
if (rv == 0)
return field;
else if (rv < 0) {
count = start + count - (mid + 1);
start = mid + 1;
} else
count = mid - start;
}
if (count == 0) return NULL;
field = desc->fields + desc->fields_sorted_by_name[start];
if (strcmp(field->name, name) == 0) return field;
return NULL;
}
const ProtobufCFieldDescriptor *protobuf_c_message_descriptor_get_field(
const ProtobufCMessageDescriptor *desc, unsigned value) {
int rv = int_range_lookup(desc->n_field_ranges, desc->field_ranges, value);
if (rv < 0) return NULL;
return desc->fields + rv;
}
const ProtobufCMethodDescriptor *
protobuf_c_service_descriptor_get_method_by_name(const ProtobufCServiceDescriptor *desc,
const char *name)
{
unsigned start = 0;
unsigned count;
if (desc == NULL || desc->method_indices_by_name == NULL)
return NULL;
count = desc->n_methods;
while (count > 1) {
unsigned mid = start + count / 2;
unsigned mid_index = desc->method_indices_by_name[mid];
const char *mid_name = desc->methods[mid_index].name;
int rv = strcmp(mid_name, name);
if (rv == 0)
return desc->methods + desc->method_indices_by_name[mid];
if (rv < 0) {
count = start + count - (mid + 1);
start = mid + 1;
} else {
count = mid - start;
}
}
if (count == 0)
return NULL;
if (strcmp(desc->methods[desc->method_indices_by_name[start]].name, name) == 0)
return desc->methods + desc->method_indices_by_name[start];
return NULL;
protobuf_c_service_descriptor_get_method_by_name(
const ProtobufCServiceDescriptor *desc, const char *name) {
unsigned start = 0;
unsigned count;
if (desc == NULL || desc->method_indices_by_name == NULL) return NULL;
count = desc->n_methods;
while (count > 1) {
unsigned mid = start + count / 2;
unsigned mid_index = desc->method_indices_by_name[mid];
const char *mid_name = desc->methods[mid_index].name;
int rv = strcmp(mid_name, name);
if (rv == 0) return desc->methods + desc->method_indices_by_name[mid];
if (rv < 0) {
count = start + count - (mid + 1);
start = mid + 1;
} else {
count = mid - start;
}
}
if (count == 0) return NULL;
if (strcmp(desc->methods[desc->method_indices_by_name[start]].name, name) ==
0)
return desc->methods + desc->method_indices_by_name[start];
return NULL;
}
......@@ -3,7 +3,7 @@
TOTAL_ERRORS=0
# The trick to remove deleted files: https://stackoverflow.com/a/2413151
for file in $(git diff --cached --name-status | awk '$1 != "D" {print $2}' | grep -v ".pb.cpp" | grep -v ".pb.h"); do
for file in $(git diff --cached --name-status | awk '$1 != "D" {print $2}' | grep -v ".pb.cpp" | grep -v ".pb.h" | grep -v "protobuf-c.*"); do
cpplint $file;
TOTAL_ERRORS=$(expr $TOTAL_ERRORS + $?);
done
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册