Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
2b460663
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2b460663
编写于
10月 19, 2018
作者:
L
liuruilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
commit event
上级
ccb9de67
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
50 addition
and
76 deletion
+50
-76
src/framework/cl/cl_deleter.h
src/framework/cl/cl_deleter.h
+7
-0
src/framework/cl/cl_engine.h
src/framework/cl/cl_engine.h
+6
-0
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+6
-0
src/framework/executor.cpp
src/framework/executor.cpp
+2
-6
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+18
-15
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+4
-1
src/operators/kernel/cl/conv_kernel.cpp
src/operators/kernel/cl/conv_kernel.cpp
+3
-44
src/operators/kernel/cl/depthwise_conv_kernel.cpp
src/operators/kernel/cl/depthwise_conv_kernel.cpp
+4
-1
src/operators/kernel/cl/softmax_kernel.cpp
src/operators/kernel/cl/softmax_kernel.cpp
+0
-9
未找到文件。
src/framework/cl/cl_deleter.h
浏览文件 @
2b460663
...
@@ -30,6 +30,13 @@ struct CLMemDeleter {
...
@@ -30,6 +30,13 @@ struct CLMemDeleter {
}
}
};
};
struct
CLEventDeleter
{
template
<
class
T
>
void
operator
()(
T
*
clEventObj
)
{
clReleaseEvent
(
clEventObj
);
}
};
struct
CLCommQueueDeleter
{
struct
CLCommQueueDeleter
{
template
<
class
T
>
template
<
class
T
>
void
operator
()(
T
*
clQueueObj
)
{
void
operator
()(
T
*
clQueueObj
)
{
...
...
src/framework/cl/cl_engine.h
浏览文件 @
2b460663
...
@@ -81,6 +81,12 @@ class CLEngine {
...
@@ -81,6 +81,12 @@ class CLEngine {
return
std
::
move
(
program_ptr
);
return
std
::
move
(
program_ptr
);
}
}
std
::
unique_ptr
<
_cl_event
,
CLEventDeleter
>
CreateEvent
(
cl_context
context
)
{
cl_event
event
=
clCreateUserEvent
(
context
,
status_
);
std
::
unique_ptr
<
_cl_event
,
CLEventDeleter
>
event_ptr
(
event
);
return
std
::
move
(
event_ptr
);
}
bool
BuildProgram
(
cl_program
program
)
{
bool
BuildProgram
(
cl_program
program
)
{
cl_int
status
;
cl_int
status
;
status
=
clBuildProgram
(
program
,
0
,
0
,
"-cl-fast-relaxed-math"
,
0
,
0
);
status
=
clBuildProgram
(
program
,
0
,
0
,
"-cl-fast-relaxed-math"
,
0
,
0
);
...
...
src/framework/cl/cl_image.h
浏览文件 @
2b460663
...
@@ -21,6 +21,7 @@ limitations under the License. */
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "framework/cl/cl_half.h"
#include "framework/cl/cl_half.h"
#include "framework/cl/cl_tool.h"
#include "framework/cl/cl_tool.h"
#include "framework/cl/cl_deleter.h"
#include "framework/cl/cl_deleter.h"
#include "framework/cl/cl_engine.h"
#include "framework/ddim.h"
#include "framework/ddim.h"
#include "framework/tensor.h"
#include "framework/tensor.h"
...
@@ -97,6 +98,8 @@ class CLImage {
...
@@ -97,6 +98,8 @@ class CLImage {
InitCLImage
(
context
,
command_queue
,
tensor_data_
,
tensor_dims_
);
InitCLImage
(
context
,
command_queue
,
tensor_data_
,
tensor_dims_
);
}
}
cl_event_
=
CLEngine
::
Instance
()
->
CreateEvent
(
context
);
// InitCLImage(context, command_queue, nullptr, dim);
// InitCLImage(context, command_queue, nullptr, dim);
initialized_
=
true
;
initialized_
=
true
;
...
@@ -157,6 +160,8 @@ class CLImage {
...
@@ -157,6 +160,8 @@ class CLImage {
const
ImageType
GetImageType
()
const
{
return
image_type_
;
}
const
ImageType
GetImageType
()
const
{
return
image_type_
;
}
cl_event
GetClEvent
()
const
{
return
cl_event_
.
get
();
}
private:
private:
ImageType
image_type_
=
Invalid
;
ImageType
image_type_
=
Invalid
;
void
InitCLImage2C
(
cl_context
context
,
cl_command_queue
command_queue
,
void
InitCLImage2C
(
cl_context
context
,
cl_command_queue
command_queue
,
...
@@ -295,6 +300,7 @@ class CLImage {
...
@@ -295,6 +300,7 @@ class CLImage {
bool
initialized_
=
false
;
bool
initialized_
=
false
;
std
::
unique_ptr
<
_cl_mem
,
CLMemDeleter
>
cl_image_
;
std
::
unique_ptr
<
_cl_mem
,
CLMemDeleter
>
cl_image_
;
std
::
unique_ptr
<
_cl_event
,
CLEventDeleter
>
cl_event_
;
size_t
image_width_
;
size_t
image_width_
;
size_t
width_of_one_block_
;
size_t
width_of_one_block_
;
size_t
height_of_one_block_
;
size_t
height_of_one_block_
;
...
...
src/framework/executor.cpp
浏览文件 @
2b460663
...
@@ -37,8 +37,6 @@ limitations under the License. */
...
@@ -37,8 +37,6 @@ limitations under the License. */
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_image.h"
#endif
#endif
int
debug_to
=
32
;
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
framework
{
namespace
framework
{
...
@@ -87,7 +85,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
...
@@ -87,7 +85,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
shared_ptr
<
framework
::
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
for
(
int
j
=
0
;
j
<
debug_to
;
++
j
)
{
for
(
int
j
=
0
;
j
<
ops
.
size
()
;
++
j
)
{
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
DLOG
<<
"create op: "
<<
j
<<
" "
<<
op
->
Type
();
DLOG
<<
"create op: "
<<
j
<<
" "
<<
op
->
Type
();
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
...
@@ -416,7 +414,7 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
...
@@ -416,7 +414,7 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
}
}
}
}
#else
#else
for
(
int
i
=
0
;
i
<
debug_to
;
i
++
)
{
for
(
int
i
=
0
;
i
<
ops
.
size
()
;
i
++
)
{
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_MOBILE_PROFILE
struct
timespec
ts
;
struct
timespec
ts
;
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
...
@@ -433,8 +431,6 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
...
@@ -433,8 +431,6 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
DLOG
<<
" predict return nullptr"
;
DLOG
<<
" predict return nullptr"
;
return
nullptr
;
auto
last_op
=
ops
.
rbegin
();
auto
last_op
=
ops
.
rbegin
();
auto
output_map
=
(
*
last_op
)
->
Outputs
();
auto
output_map
=
(
*
last_op
)
->
Outputs
();
std
::
vector
<
std
::
string
>
out_keys
=
(
*
last_op
)
->
GetOutKeys
();
std
::
vector
<
std
::
string
>
out_keys
=
(
*
last_op
)
->
GetOutKeys
();
...
...
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
2b460663
...
@@ -168,20 +168,20 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
...
@@ -168,20 +168,20 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
DLOG
<<
" c block "
<<
c_block
;
//
DLOG << " c block " << c_block;
DLOG
<<
" w "
<<
w
;
//
DLOG << " w " << w;
DLOG
<<
" nh "
<<
nh
;
//
DLOG << " nh " << nh;
DLOG
<<
" stride "
<<
stride
;
//
DLOG << " stride " << stride;
DLOG
<<
" offset "
<<
offset
;
//
DLOG << " offset " << offset;
DLOG
<<
" input_c "
<<
input_c
;
//
DLOG << " input_c " << input_c;
DLOG
<<
" dilation "
<<
dilation
;
//
DLOG << " dilation " << dilation;
DLOG
<<
" input width "
<<
input_width
;
//
DLOG << " input width " << input_width;
DLOG
<<
" input height "
<<
input_height
;
//
DLOG << " input height " << input_height;
DLOG
<<
" output width "
<<
output_width
;
//
DLOG << " output width " << output_width;
DLOG
<<
" output height "
<<
output_height
;
//
DLOG << " output height " << output_height;
DLOG
<<
" input dim "
<<
param
.
Input
()
->
dims
();
//
DLOG << " input dim " << param.Input()->dims();
DLOG
<<
" output dim "
<<
param
.
Output
()
->
dims
();
//
DLOG << " output dim " << param.Output()->dims();
DLOG
<<
" filter dim "
<<
param
.
Filter
()
->
dims
();
//
DLOG << " filter dim " << param.Filter()->dims();
cl_int
status
;
cl_int
status
;
...
@@ -236,9 +236,12 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
...
@@ -236,9 +236,12 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
cl_event
out_event
=
param
.
Output
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
Input
()
->
GetClEvent
();
status
=
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
}
}
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
2b460663
...
@@ -117,9 +117,12 @@ void ConvAddKernel<GPU_CL, float>::Compute(
...
@@ -117,9 +117,12 @@ void ConvAddKernel<GPU_CL, float>::Compute(
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
cl_event
out_event
=
param
.
Output
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
Input
()
->
GetClEvent
();
status
=
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
}
}
...
...
src/operators/kernel/cl/conv_kernel.cpp
浏览文件 @
2b460663
...
@@ -62,27 +62,15 @@ bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
...
@@ -62,27 +62,15 @@ bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
template
<
>
template
<
>
void
ConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
void
ConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
DLOG
<<
" Compute helper: "
<<
&
cl_helper_
;
DLOG
<<
" begin compute "
;
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
DLOG
<<
" get work size "
;
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
DLOG
<<
" end work size "
;
int
c_block
=
default_work_size
[
0
];
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
input
=
param
.
Input
()
->
GetCLImage
();
DLOG
<<
" get Input "
;
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
DLOG
<<
" get Filter "
;
auto
output
=
param
.
Output
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
DLOG
<<
" get Output "
;
int
stride
=
param
.
Strides
()[
0
];
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
offset
=
param
.
Offset
();
int
input_c
=
param
.
Input
()
->
CBlock
();
int
input_c
=
param
.
Input
()
->
CBlock
();
...
@@ -109,56 +97,27 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> ¶m) {
...
@@ -109,56 +97,27 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> ¶m) {
DLOG
<<
" output height "
<<
output_height
;
DLOG
<<
" output height "
<<
output_height
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_height
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
DLOG
<<
" end set kernel arg "
;
DLOG
<<
" begin enqueue "
;
cl_event
out_event
=
param
.
Output
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
Input
()
->
GetClEvent
();
status
=
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
DLOG
<<
" end enqueue "
;
}
}
template
class
ConvKernel
<
GPU_CL
,
float
>;
template
class
ConvKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/depthwise_conv_kernel.cpp
浏览文件 @
2b460663
...
@@ -76,9 +76,12 @@ void DepthwiseConvKernel<GPU_CL, float>::Compute(
...
@@ -76,9 +76,12 @@ void DepthwiseConvKernel<GPU_CL, float>::Compute(
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
cl_event
out_event
=
param
.
Output
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
Input
()
->
GetClEvent
();
status
=
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
}
}
...
...
src/operators/kernel/cl/softmax_kernel.cpp
浏览文件 @
2b460663
...
@@ -34,21 +34,13 @@ void SoftmaxKernel<GPU_CL, float>::Compute(const SoftmaxParam<GPU_CL> ¶m) {
...
@@ -34,21 +34,13 @@ void SoftmaxKernel<GPU_CL, float>::Compute(const SoftmaxParam<GPU_CL> ¶m) {
auto
inputImage
=
input
->
GetCLImage
();
auto
inputImage
=
input
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
DLOG
<<
" softmax - output image dim "
<<
output
->
ImageDims
();
DLOG
<<
" softmax - output image tensor dim "
<<
output
->
dims
();
int
group
=
output
->
ImageWidth
();
int
group
=
output
->
ImageWidth
();
cl_int
status
;
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
group
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
group
);
CL_CHECK_ERRORS
(
status
);
// const auto &inputDim = input->dims();
// const auto &inputDim = input->dims();
//
//
...
@@ -62,7 +54,6 @@ void SoftmaxKernel<GPU_CL, float>::Compute(const SoftmaxParam<GPU_CL> ¶m) {
...
@@ -62,7 +54,6 @@ void SoftmaxKernel<GPU_CL, float>::Compute(const SoftmaxParam<GPU_CL> ¶m) {
// clSetKernelArg(kernel, 3, sizeof(int), &dims[1]);
// clSetKernelArg(kernel, 3, sizeof(int), &dims[1]);
// clSetKernelArg(kernel, 4, sizeof(int), &dims[2]);
// clSetKernelArg(kernel, 4, sizeof(int), &dims[2]);
// clSetKernelArg(kernel, 5, sizeof(int), &dims[3]);
// clSetKernelArg(kernel, 5, sizeof(int), &dims[3]);
DLOG
<<
"default_work_size: "
<<
default_work_size
;
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录