Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
292f52cc
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
292f52cc
编写于
8月 19, 2020
作者:
myq406450149
提交者:
GitHub
8月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
change box_coder. test=develop (#4107)
上级
17f00635
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
228 addition
and
247 deletion
+228
-247
lite/backends/arm/math/box_coder.cc
lite/backends/arm/math/box_coder.cc
+206
-61
lite/backends/arm/math/box_coder.h
lite/backends/arm/math/box_coder.h
+8
-7
lite/kernels/arm/box_coder_compute.cc
lite/kernels/arm/box_coder_compute.cc
+14
-179
未找到文件。
lite/backends/arm/math/box_coder.cc
浏览文件 @
292f52cc
...
...
@@ -20,69 +20,214 @@ namespace lite {
namespace
arm
{
namespace
math
{
void
box_coder
(
lite
::
Tensor
*
proposals
,
const
lite
::
Tensor
*
anchors
,
const
lite
::
Tensor
*
variances
,
const
lite
::
Tensor
*
bbox_deltas
,
const
std
::
string
code_type
,
bool
box_normalized
,
int
axis
)
{
if
(
code_type
==
"decode_center_size"
)
{
float
normalized
=
!
box_normalized
?
1.
f
:
0
;
const
float
*
anchor_data
=
anchors
->
data
<
float
>
();
const
float
*
bbox_deltas_data
=
bbox_deltas
->
data
<
float
>
();
float
*
proposals_data
=
proposals
->
mutable_data
<
float
>
();
const
float
*
variances_data
=
variances
->
data
<
float
>
();
int
N
=
bbox_deltas
->
dims
()[
0
];
int
M
=
bbox_deltas
->
dims
()[
1
];
int
len
=
bbox_deltas
->
dims
()[
2
];
for
(
int64_t
row_id
=
0
;
row_id
<
N
;
++
row_id
)
{
for
(
int64_t
col_id
=
0
;
col_id
<
M
;
++
col_id
)
{
size_t
offset
=
row_id
*
M
*
len
+
col_id
*
len
;
int
prior_box_offset
=
axis
==
0
?
col_id
*
len
:
row_id
*
len
;
int
var_offset
=
axis
==
0
?
col_id
*
len
:
row_id
*
len
;
auto
anchor_data_tmp
=
anchor_data
+
prior_box_offset
;
auto
bbox_deltas_data_tmp
=
bbox_deltas_data
+
offset
;
auto
proposals_data_tmp
=
proposals_data
+
offset
;
auto
anchor_width
=
anchor_data_tmp
[
2
]
-
anchor_data_tmp
[
0
]
+
normalized
;
auto
anchor_height
=
anchor_data_tmp
[
3
]
-
anchor_data_tmp
[
1
]
+
normalized
;
auto
anchor_center_x
=
anchor_data_tmp
[
0
]
+
0.5
*
anchor_width
;
auto
anchor_center_y
=
anchor_data_tmp
[
1
]
+
0.5
*
anchor_height
;
float
bbox_center_x
=
0
,
bbox_center_y
=
0
;
float
bbox_width
=
0
,
bbox_height
=
0
;
auto
variances_data_tmp
=
variances_data
+
var_offset
;
bbox_center_x
=
variances_data_tmp
[
0
]
*
bbox_deltas_data_tmp
[
0
]
*
anchor_width
+
anchor_center_x
;
bbox_center_y
=
variances_data_tmp
[
1
]
*
bbox_deltas_data_tmp
[
1
]
*
anchor_height
+
anchor_center_y
;
bbox_width
=
std
::
exp
(
variances_data_tmp
[
2
]
*
bbox_deltas_data_tmp
[
2
])
*
anchor_width
;
bbox_height
=
std
::
exp
(
variances_data_tmp
[
3
]
*
bbox_deltas_data_tmp
[
3
])
*
anchor_height
;
proposals_data_tmp
[
0
]
=
bbox_center_x
-
bbox_width
/
2
;
proposals_data_tmp
[
1
]
=
bbox_center_y
-
bbox_height
/
2
;
proposals_data_tmp
[
2
]
=
bbox_center_x
+
bbox_width
/
2
-
normalized
;
proposals_data_tmp
[
3
]
=
bbox_center_y
+
bbox_height
/
2
-
normalized
;
void
decode_bbox_center_variance_kernel
(
const
int
batch_num
,
const
float
*
loc_data
,
const
float
*
prior_data
,
const
float
*
variance
,
const
int
num_priors
,
float
*
bbox_data
)
{
int
cnt
=
num_priors
/
4
;
//! vprior 0: xmin, 1: ymin, 2: xmax, 3: ymax
//! vloc 0: xmin, 1: ymin, 2: xmax, 3: ymax
//! vvar
float32x4_t
vhalf
=
vdupq_n_f32
(
0.5
f
);
int
len_batch
=
num_priors
*
4
;
for
(
int
n
=
0
;
n
<
batch_num
;
++
n
)
{
const
float
*
ptr_loc_batch
=
loc_data
+
n
*
len_batch
;
float
*
ptr_bbox_batch
=
bbox_data
+
n
*
len_batch
;
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
cnt
;
++
i
)
{
int
idx
=
i
*
16
;
const
float
*
ptr_loc
=
ptr_loc_batch
+
idx
;
const
float
*
ptr_prior
=
prior_data
+
idx
;
float
*
ptr_bbox
=
ptr_bbox_batch
+
idx
;
float32x4x4_t
vprior
=
vld4q_f32
(
ptr_prior
);
float32x4x4_t
vloc
=
vld4q_f32
(
ptr_loc
);
float32x4_t
vprior_width
=
vsubq_f32
(
vprior
.
val
[
2
],
vprior
.
val
[
0
]);
float32x4_t
vprior_height
=
vsubq_f32
(
vprior
.
val
[
3
],
vprior
.
val
[
1
]);
float32x4_t
vprior_cx
=
vmulq_f32
(
vaddq_f32
(
vprior
.
val
[
0
],
vprior
.
val
[
2
]),
vhalf
);
float32x4_t
vprior_cy
=
vmulq_f32
(
vaddq_f32
(
vprior
.
val
[
1
],
vprior
.
val
[
3
]),
vhalf
);
float32x4_t
vdec_bbx_cx
=
vaddq_f32
(
vmulq_f32
(
vloc
.
val
[
0
],
vprior_width
),
vprior_cx
);
float32x4_t
vdec_bbx_cy
=
vaddq_f32
(
vmulq_f32
(
vloc
.
val
[
1
],
vprior_height
),
vprior_cy
);
float32x4_t
vdec_bbx_w
=
exp_ps
(
vloc
.
val
[
2
]);
float32x4_t
vdec_bbx_h
=
exp_ps
(
vloc
.
val
[
3
]);
vprior_width
=
vmulq_f32
(
vprior_width
,
vhalf
);
vprior_height
=
vmulq_f32
(
vprior_height
,
vhalf
);
vdec_bbx_w
=
vmulq_f32
(
vdec_bbx_w
,
vprior_width
);
vdec_bbx_h
=
vmulq_f32
(
vdec_bbx_h
,
vprior_height
);
vloc
.
val
[
0
]
=
vsubq_f32
(
vdec_bbx_cx
,
vdec_bbx_w
);
vloc
.
val
[
1
]
=
vsubq_f32
(
vdec_bbx_cy
,
vdec_bbx_h
);
vloc
.
val
[
2
]
=
vaddq_f32
(
vdec_bbx_cx
,
vdec_bbx_w
);
vloc
.
val
[
3
]
=
vaddq_f32
(
vdec_bbx_cy
,
vdec_bbx_h
);
vst4q_f32
(
ptr_bbox
,
vloc
);
}
#pragma omp parallel for
for
(
int
i
=
cnt
*
4
;
i
<
num_priors
;
i
++
)
{
int
idx
=
i
*
4
;
float
p_xmin
=
prior_data
[
idx
];
float
p_ymin
=
prior_data
[
idx
+
1
];
float
p_xmax
=
prior_data
[
idx
+
2
];
float
p_ymax
=
prior_data
[
idx
+
3
];
float
prior_width
=
p_xmax
-
p_xmin
;
float
prior_height
=
p_ymax
-
p_ymin
;
float
prior_center_x
=
(
p_xmin
+
p_xmax
)
/
2.
f
;
float
prior_center_y
=
(
p_ymin
+
p_ymax
)
/
2.
f
;
float
xmin
=
ptr_loc_batch
[
idx
];
float
ymin
=
ptr_loc_batch
[
idx
+
1
];
float
xmax
=
ptr_loc_batch
[
idx
+
2
];
float
ymax
=
ptr_loc_batch
[
idx
+
3
];
//! variance is encoded in target, we simply need to retore the offset
//! predictions.
float
decode_bbox_center_x
=
xmin
*
prior_width
+
prior_center_x
;
float
decode_bbox_center_y
=
ymin
*
prior_height
+
prior_center_y
;
float
decode_bbox_width
=
expf
(
xmax
)
*
prior_width
;
float
decode_bbox_height
=
expf
(
ymax
)
*
prior_height
;
ptr_bbox_batch
[
idx
]
=
decode_bbox_center_x
-
decode_bbox_width
/
2.
f
;
ptr_bbox_batch
[
idx
+
1
]
=
decode_bbox_center_y
-
decode_bbox_height
/
2.
f
;
ptr_bbox_batch
[
idx
+
2
]
=
decode_bbox_center_x
+
decode_bbox_width
/
2.
f
;
ptr_bbox_batch
[
idx
+
3
]
=
decode_bbox_center_y
+
decode_bbox_height
/
2.
f
;
}
}
}
void
decode_bbox_center_no_variance_kernel
(
const
int
batch_num
,
const
float
*
loc_data
,
const
float
*
prior_data
,
const
float
*
variance
,
const
int
num_priors
,
const
bool
normalized
,
float
*
bbox_data
)
{
int
cnt
=
num_priors
/
4
;
//! vprior 0: xmin, 1: ymin, 2: xmax, 3: ymax
//! vloc 0: xmin, 1: ymin, 2: xmax, 3: ymax
//! vvar
float32x4_t
vhalf
=
vdupq_n_f32
(
0.5
f
);
float
norm_value
=
(
normalized
==
false
);
float32x4_t
vnormalized
=
vdupq_n_f32
(
norm_value
);
int
len_batch
=
num_priors
*
4
;
for
(
int
n
=
0
;
n
<
batch_num
;
++
n
)
{
const
float
*
ptr_loc_batch
=
loc_data
+
n
*
len_batch
;
float
*
ptr_bbox_batch
=
bbox_data
+
n
*
len_batch
;
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
cnt
;
++
i
)
{
int
idx
=
i
*
16
;
const
float
*
ptr_loc
=
ptr_loc_batch
+
idx
;
const
float
*
ptr_prior
=
prior_data
+
idx
;
const
float
*
ptr_var
=
variance
+
idx
;
float
*
ptr_bbox
=
ptr_bbox_batch
+
idx
;
float32x4x4_t
vprior
=
vld4q_f32
(
ptr_prior
);
float32x4x4_t
vloc
=
vld4q_f32
(
ptr_loc
);
float32x4x4_t
vvar
=
vld4q_f32
(
ptr_var
);
float32x4_t
vprior_width1
=
vsubq_f32
(
vprior
.
val
[
2
],
vprior
.
val
[
0
]);
float32x4_t
vprior_height1
=
vsubq_f32
(
vprior
.
val
[
3
],
vprior
.
val
[
1
]);
float32x4_t
vprior_width
=
vaddq_f32
(
vprior_width1
,
vnormalized
);
float32x4_t
vprior_height
=
vaddq_f32
(
vprior_height1
,
vnormalized
);
float32x4_t
vprior_cx
=
vaddq_f32
(
vprior
.
val
[
0
],
vmulq_f32
(
vprior_width
,
vhalf
));
float32x4_t
vprior_cy
=
vaddq_f32
(
vprior
.
val
[
1
],
vmulq_f32
(
vprior_height
,
vhalf
));
vloc
.
val
[
0
]
=
vmulq_f32
(
vloc
.
val
[
0
],
vvar
.
val
[
0
]);
vloc
.
val
[
1
]
=
vmulq_f32
(
vloc
.
val
[
1
],
vvar
.
val
[
1
]);
vloc
.
val
[
2
]
=
vmulq_f32
(
vloc
.
val
[
2
],
vvar
.
val
[
2
]);
vloc
.
val
[
3
]
=
vmulq_f32
(
vloc
.
val
[
3
],
vvar
.
val
[
3
]);
float32x4_t
vdec_bbx_cx
=
vaddq_f32
(
vmulq_f32
(
vloc
.
val
[
0
],
vprior_width
),
vprior_cx
);
float32x4_t
vdec_bbx_cy
=
vaddq_f32
(
vmulq_f32
(
vloc
.
val
[
1
],
vprior_height
),
vprior_cy
);
float32x4_t
vdec_bbx_w
=
exp_ps
(
vloc
.
val
[
2
]);
float32x4_t
vdec_bbx_h
=
exp_ps
(
vloc
.
val
[
3
]);
vprior_width
=
vmulq_f32
(
vprior_width
,
vhalf
);
vprior_height
=
vmulq_f32
(
vprior_height
,
vhalf
);
vdec_bbx_w
=
vmulq_f32
(
vdec_bbx_w
,
vprior_width
);
vdec_bbx_h
=
vmulq_f32
(
vdec_bbx_h
,
vprior_height
);
vloc
.
val
[
0
]
=
vsubq_f32
(
vdec_bbx_cx
,
vdec_bbx_w
);
vloc
.
val
[
1
]
=
vsubq_f32
(
vdec_bbx_cy
,
vdec_bbx_h
);
vloc
.
val
[
2
]
=
vaddq_f32
(
vdec_bbx_cx
,
vsubq_f32
(
vdec_bbx_w
,
vnormalized
));
vloc
.
val
[
3
]
=
vaddq_f32
(
vdec_bbx_cy
,
vsubq_f32
(
vdec_bbx_h
,
vnormalized
));
vst4q_f32
(
ptr_bbox
,
vloc
);
}
#pragma omp parallel for
for
(
int
i
=
cnt
*
4
;
i
<
num_priors
;
i
++
)
{
int
idx
=
i
*
4
;
float
p_xmin
=
prior_data
[
idx
];
float
p_ymin
=
prior_data
[
idx
+
1
];
float
p_xmax
=
prior_data
[
idx
+
2
];
float
p_ymax
=
prior_data
[
idx
+
3
];
float
prior_width
=
p_xmax
-
p_xmin
+
norm_value
;
float
prior_height
=
p_ymax
-
p_ymin
+
norm_value
;
float
prior_center_x
=
p_xmin
+
prior_width
/
2.
f
;
float
prior_center_y
=
p_ymin
+
prior_height
/
2.
f
;
float
xmin
=
ptr_loc_batch
[
idx
];
float
ymin
=
ptr_loc_batch
[
idx
+
1
];
float
xmax
=
ptr_loc_batch
[
idx
+
2
];
float
ymax
=
ptr_loc_batch
[
idx
+
3
];
//! variance is encoded in target, we simply need to retore the offset
//! predictions.
float
decode_bbox_center_x
=
variance
[
idx
]
*
xmin
*
prior_width
+
prior_center_x
;
float
decode_bbox_center_y
=
variance
[
idx
+
1
]
*
ymin
*
prior_height
+
prior_center_y
;
float
decode_bbox_width
=
expf
(
variance
[
idx
+
2
]
*
xmax
)
*
prior_width
;
float
decode_bbox_height
=
expf
(
variance
[
idx
+
3
]
*
ymax
)
*
prior_height
;
ptr_bbox_batch
[
idx
]
=
decode_bbox_center_x
-
decode_bbox_width
/
2.
f
;
ptr_bbox_batch
[
idx
+
1
]
=
decode_bbox_center_y
-
decode_bbox_height
/
2.
f
;
ptr_bbox_batch
[
idx
+
2
]
=
decode_bbox_center_x
+
decode_bbox_width
/
2.
f
-
norm_value
;
ptr_bbox_batch
[
idx
+
3
]
=
decode_bbox_center_y
+
decode_bbox_height
/
2.
f
-
norm_value
;
}
}
}
else
if
(
code_type
==
"encode_center_size"
)
{
LOG
(
FATAL
)
<<
"not implemented type: "
<<
code_type
;
}
void
decode_bboxes
(
const
int
batch_num
,
const
float
*
loc_data
,
const
float
*
prior_data
,
const
float
*
variance_data
,
const
std
::
string
code_type
,
const
bool
normalized
,
const
int
num_priors
,
float
*
bbox_data
)
{
if
(
code_type
==
"encode_center_size"
)
{
decode_bbox_center_variance_kernel
(
batch_num
,
loc_data
,
prior_data
,
variance_data
,
num_priors
,
bbox_data
);
}
else
if
(
code_type
==
"decode_center_size"
)
{
decode_bbox_center_no_variance_kernel
(
batch_num
,
loc_data
,
prior_data
,
variance_data
,
num_priors
,
normalized
,
bbox_data
);
}
else
{
LOG
(
FATAL
)
<<
"
not supported
type: "
<<
code_type
;
LOG
(
FATAL
)
<<
"
box_coder don't support this code_
type: "
<<
code_type
;
}
}
...
...
lite/backends/arm/math/box_coder.h
浏览文件 @
292f52cc
...
...
@@ -22,13 +22,14 @@ namespace lite {
namespace
arm
{
namespace
math
{
void
box_coder
(
lite
::
Tensor
*
proposals
,
const
lite
::
Tensor
*
anchors
,
const
lite
::
Tensor
*
variances
,
const
lite
::
Tensor
*
bbox_deltas
,
void
decode_bboxes
(
const
int
batch_num
,
const
float
*
loc_data
,
const
float
*
prior_data
,
const
float
*
variance_data
,
const
std
::
string
code_type
,
bool
box_normalized
,
int
axis
);
const
bool
normalized
,
const
int
num_priors
,
float
*
bbox_data
);
}
// namespace math
}
// namespace arm
...
...
lite/kernels/arm/box_coder_compute.cc
浏览文件 @
292f52cc
...
...
@@ -22,156 +22,7 @@ namespace lite {
namespace
kernels
{
namespace
arm
{
void
EncodeCenterSize
(
const
Tensor
*
target_box
,
const
Tensor
*
prior_box
,
const
Tensor
*
prior_box_var
,
const
bool
normalized
,
const
std
::
vector
<
float
>
variance
,
float
*
output
)
{
int64_t
row
=
target_box
->
dims
()[
0
];
int64_t
col
=
prior_box
->
dims
()[
0
];
int64_t
len
=
prior_box
->
dims
()[
1
];
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
auto
*
target_box_data
=
target_box
->
data
<
float
>
();
auto
*
prior_box_data
=
prior_box
->
data
<
float
>
();
int64_t
offset
=
i
*
col
*
len
+
j
*
len
;
float
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
]
+
(
normalized
==
false
);
float
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
]
+
(
normalized
==
false
);
float
prior_box_center_x
=
prior_box_data
[
j
*
len
]
+
prior_box_width
/
2
;
float
prior_box_center_y
=
prior_box_data
[
j
*
len
+
1
]
+
prior_box_height
/
2
;
float
target_box_center_x
=
(
target_box_data
[
i
*
len
+
2
]
+
target_box_data
[
i
*
len
])
/
2
;
float
target_box_center_y
=
(
target_box_data
[
i
*
len
+
3
]
+
target_box_data
[
i
*
len
+
1
])
/
2
;
float
target_box_width
=
target_box_data
[
i
*
len
+
2
]
-
target_box_data
[
i
*
len
]
+
(
normalized
==
false
);
float
target_box_height
=
target_box_data
[
i
*
len
+
3
]
-
target_box_data
[
i
*
len
+
1
]
+
(
normalized
==
false
);
output
[
offset
]
=
(
target_box_center_x
-
prior_box_center_x
)
/
prior_box_width
;
output
[
offset
+
1
]
=
(
target_box_center_y
-
prior_box_center_y
)
/
prior_box_height
;
output
[
offset
+
2
]
=
std
::
log
(
std
::
fabs
(
target_box_width
/
prior_box_width
));
output
[
offset
+
3
]
=
std
::
log
(
std
::
fabs
(
target_box_height
/
prior_box_height
));
}
}
if
(
prior_box_var
)
{
const
float
*
prior_box_var_data
=
prior_box_var
->
data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
for
(
int
k
=
0
;
k
<
4
;
++
k
)
{
int64_t
offset
=
i
*
col
*
len
+
j
*
len
;
int64_t
prior_var_offset
=
j
*
len
;
output
[
offset
+
k
]
/=
prior_box_var_data
[
prior_var_offset
+
k
];
}
}
}
}
else
if
(
!
(
variance
.
empty
()))
{
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
for
(
int
k
=
0
;
k
<
4
;
++
k
)
{
int64_t
offset
=
i
*
col
*
len
+
j
*
len
;
output
[
offset
+
k
]
/=
static_cast
<
float
>
(
variance
[
k
]);
}
}
}
}
}
template
<
int
axis
,
int
var_size
>
void
DecodeCenterSize
(
const
Tensor
*
target_box
,
const
Tensor
*
prior_box
,
const
Tensor
*
prior_box_var
,
const
bool
normalized
,
std
::
vector
<
float
>
variance
,
float
*
output
)
{
int64_t
row
=
target_box
->
dims
()[
0
];
int64_t
col
=
target_box
->
dims
()[
1
];
int64_t
len
=
target_box
->
dims
()[
2
];
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
auto
*
target_box_data
=
target_box
->
data
<
float
>
();
auto
*
prior_box_data
=
prior_box
->
data
<
float
>
();
float
var_data
[
4
]
=
{
1.
,
1.
,
1.
,
1.
};
float
*
var_ptr
=
var_data
;
int64_t
offset
=
i
*
col
*
len
+
j
*
len
;
int64_t
prior_box_offset
=
axis
==
0
?
j
*
len
:
i
*
len
;
float
prior_box_width
=
prior_box_data
[
prior_box_offset
+
2
]
-
prior_box_data
[
prior_box_offset
]
+
(
normalized
==
false
);
float
prior_box_height
=
prior_box_data
[
prior_box_offset
+
3
]
-
prior_box_data
[
prior_box_offset
+
1
]
+
(
normalized
==
false
);
float
prior_box_center_x
=
prior_box_data
[
prior_box_offset
]
+
prior_box_width
/
2
;
float
prior_box_center_y
=
prior_box_data
[
prior_box_offset
+
1
]
+
prior_box_height
/
2
;
float
target_box_center_x
=
0
,
target_box_center_y
=
0
;
float
target_box_width
=
0
,
target_box_height
=
0
;
int64_t
prior_var_offset
=
axis
==
0
?
j
*
len
:
i
*
len
;
if
(
var_size
==
2
)
{
std
::
memcpy
(
var_ptr
,
prior_box_var
->
data
<
float
>
()
+
prior_var_offset
,
4
*
sizeof
(
float
));
}
else
if
(
var_size
==
1
)
{
var_ptr
=
reinterpret_cast
<
float
*>
(
variance
.
data
());
}
float
box_var_x
=
*
var_ptr
;
float
box_var_y
=
*
(
var_ptr
+
1
);
float
box_var_w
=
*
(
var_ptr
+
2
);
float
box_var_h
=
*
(
var_ptr
+
3
);
target_box_center_x
=
box_var_x
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
box_var_y
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
box_var_w
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
box_var_h
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
output
[
offset
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
offset
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
output
[
offset
+
2
]
=
target_box_center_x
+
target_box_width
/
2
-
(
normalized
==
false
);
output
[
offset
+
3
]
=
target_box_center_y
+
target_box_height
/
2
-
(
normalized
==
false
);
}
}
}
void
BoxCoderCompute
::
Run
()
{
/*
auto& param = Param<operators::BoxCoderParam>();
int axis = param.axis;
bool box_normalized = param.box_normalized;
std::string code_type = param.code_type;
lite::arm::math::box_coder(param.proposals,
param.prior_box,
param.prior_box_var,
param.target_box,
code_type,
box_normalized,
axis);
*/
auto
&
param
=
Param
<
operators
::
BoxCoderParam
>
();
auto
*
prior_box
=
param
.
prior_box
;
auto
*
prior_box_var
=
param
.
prior_box_var
;
...
...
@@ -191,36 +42,20 @@ void BoxCoderCompute::Run() {
output_box
->
Resize
({
row
,
col
,
len
});
auto
*
output
=
output_box
->
mutable_data
<
float
>
();
if
(
code_type
==
"encode_center_size"
)
{
EncodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
if
(
code_type
==
"decode_center_size"
)
{
if
(
prior_box_var
)
{
if
(
axis
==
0
)
{
DecodeCenterSize
<
0
,
2
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
{
DecodeCenterSize
<
1
,
2
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
}
else
if
(
!
(
variance
.
empty
()))
{
if
(
axis
==
0
)
{
DecodeCenterSize
<
0
,
1
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
{
DecodeCenterSize
<
1
,
1
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
}
else
{
if
(
axis
==
0
)
{
DecodeCenterSize
<
0
,
0
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
{
DecodeCenterSize
<
1
,
0
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
}
}
int
num
=
target_box
->
dims
()[
0
];
const
float
*
loc_data
=
target_box
->
data
<
float
>
();
const
float
*
prior_data
=
prior_box
->
data
<
float
>
();
const
float
*
variance_data
=
prior_box_var
->
data
<
float
>
();
int
_num_priors
=
prior_box
->
numel
()
/
4
;
bool
_share_location
=
true
;
lite
::
arm
::
math
::
decode_bboxes
(
num
,
loc_data
,
prior_data
,
variance_data
,
code_type
,
normalized
,
_num_priors
,
output
);
}
}
// namespace arm
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录