Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
285066f5
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
285066f5
编写于
10月 14, 2018
作者:
L
liuruilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
commit cl code
上级
c655b46c
变更
20
显示空白变更内容
内联
并排
Showing
20 changed file
with
436 addition
and
346 deletion
+436
-346
src/common/common.h
src/common/common.h
+4
-0
src/framework/cl/cl_engine.h
src/framework/cl/cl_engine.h
+1
-1
src/framework/cl/cl_image.cpp
src/framework/cl/cl_image.cpp
+99
-102
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+92
-36
src/framework/cl/cl_scope.h
src/framework/cl/cl_scope.h
+2
-1
src/framework/cl/cl_tool.h
src/framework/cl/cl_tool.h
+7
-6
src/framework/executor.cpp
src/framework/executor.cpp
+8
-5
src/operators/feed_op.h
src/operators/feed_op.h
+2
-2
src/operators/kernel/cl/cl_kernel/cl_common.h
src/operators/kernel/cl/cl_kernel/cl_common.h
+3
-3
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+31
-24
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+25
-18
src/operators/kernel/cl/conv_kernel.cpp
src/operators/kernel/cl/conv_kernel.cpp
+57
-51
src/operators/kernel/cl/depthwise_conv_kernel.cpp
src/operators/kernel/cl/depthwise_conv_kernel.cpp
+29
-21
src/operators/kernel/cl/feed_kernel.cpp
src/operators/kernel/cl/feed_kernel.cpp
+36
-35
src/operators/kernel/cl/relu_kernel.cpp
src/operators/kernel/cl/relu_kernel.cpp
+4
-4
src/operators/kernel/cl/reshape_kernel.cpp
src/operators/kernel/cl/reshape_kernel.cpp
+12
-13
src/operators/kernel/cl/softmax_kernel.cpp
src/operators/kernel/cl/softmax_kernel.cpp
+6
-6
src/operators/kernel/feed_kernel.h
src/operators/kernel/feed_kernel.h
+10
-10
test/net/test_googlenet.cpp
test/net/test_googlenet.cpp
+2
-2
test/net/test_mobilenet_GPU.cpp
test/net/test_mobilenet_GPU.cpp
+6
-6
未找到文件。
src/common/common.h
浏览文件 @
285066f5
...
...
@@ -15,6 +15,8 @@ limitations under the License. */
#pragma once
#include <chrono>
namespace
paddle_mobile
{
using
Time
=
decltype
(
std
::
chrono
::
high_resolution_clock
::
now
());
inline
Time
time
()
{
return
std
::
chrono
::
high_resolution_clock
::
now
();
}
...
...
@@ -25,3 +27,5 @@ inline double time_diff(Time t1, Time t2) {
ms
counter
=
std
::
chrono
::
duration_cast
<
ms
>
(
diff
);
return
counter
.
count
()
/
1000.0
;
}
}
src/framework/cl/cl_engine.h
浏览文件 @
285066f5
...
...
@@ -18,8 +18,8 @@ limitations under the License. */
#include <string>
#include "CL/cl.h"
#include "common/log.h"
#include "common/enforce.h"
#include "common/log.h"
#include "framework/cl/cl_deleter.h"
#include "framework/cl/cl_tool.h"
...
...
src/framework/cl/cl_image.cpp
浏览文件 @
285066f5
...
...
@@ -14,20 +14,20 @@ limitations under the License. */
#include "cl_image.h"
namespace
paddle_mobile
{
namespace
framework
{
void
CLImageToTensor
(
CLImage
*
cl_image
,
Tensor
*
tensor
,
cl_command_queue
commandQueue
){
namespace
framework
{
void
CLImageToTensor
(
CLImage
*
cl_image
,
Tensor
*
tensor
,
cl_command_queue
commandQueue
)
{
DDim
ddim
=
cl_image
->
dims
();
size_t
N
,
C
,
H
,
W
;
if
(
ddim
.
size
()
==
4
)
{
size_t
N
,
C
,
H
,
W
;
if
(
ddim
.
size
()
==
4
)
{
N
=
ddim
[
0
];
if
(
N
<
0
)
{
if
(
N
<
0
)
{
N
=
1
;
}
C
=
ddim
[
1
];
H
=
ddim
[
2
];
W
=
ddim
[
3
];
}
else
if
(
ddim
.
size
()
==
1
)
{
}
else
if
(
ddim
.
size
()
==
1
)
{
N
=
1
;
C
=
ddim
[
0
];
H
=
1
;
...
...
@@ -41,15 +41,16 @@ namespace paddle_mobile {
half
imageData
[
width
*
height
*
4
];
cl_int
err
;
cl_mem
image
=
cl_image
->
GetCLImage
();
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
region
[
3
]
=
{
width
,
height
,
1
};
err
=
clEnqueueReadImage
(
commandQueue
,
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
region
[
3
]
=
{
width
,
height
,
1
};
err
=
clEnqueueReadImage
(
commandQueue
,
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
size_t
i0
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
size_t
i1
=
i0
;
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
*
p
=
half2float
(
imageData
[
i2
]);
i2
+=
4
;
...
...
@@ -61,25 +62,23 @@ namespace paddle_mobile {
i0
+=
width
*
H
;
}
if
(
err
!=
CL_SUCCESS
)
{
// TODO: error handling
}
}
void
TensorToCLImage
(
const
Tensor
*
tensor
,
CLImage
*
cl_image
,
cl_command_queue
commandQueue
){
}
void
TensorToCLImage
(
const
Tensor
*
tensor
,
CLImage
*
cl_image
,
cl_command_queue
commandQueue
)
{
DDim
ddim
=
cl_image
->
dims
();
size_t
N
,
C
,
H
,
W
;
if
(
ddim
.
size
()
==
4
)
{
size_t
N
,
C
,
H
,
W
;
if
(
ddim
.
size
()
==
4
)
{
N
=
ddim
[
0
];
if
(
N
<
0
)
{
if
(
N
<
0
)
{
N
=
1
;
}
C
=
ddim
[
1
];
H
=
ddim
[
2
];
W
=
ddim
[
3
];
}
else
if
(
ddim
.
size
()
==
1
)
{
}
else
if
(
ddim
.
size
()
==
1
)
{
N
=
1
;
C
=
ddim
[
0
];
H
=
1
;
...
...
@@ -92,10 +91,11 @@ namespace paddle_mobile {
const
float
*
p
=
tensor
->
data
<
float
>
();
half
imageData
[
width
*
height
*
4
];
cl_mem
image
=
cl_image
->
GetCLImage
();
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
region
[
3
]
=
{
width
,
height
,
1
};
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
region
[
3
]
=
{
width
,
height
,
1
};
cl_int
err
;
err
=
clEnqueueReadImage
(
commandQueue
,
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
err
=
clEnqueueReadImage
(
commandQueue
,
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
if
(
err
!=
CL_SUCCESS
)
{
// TODO: error handling
}
...
...
@@ -104,7 +104,7 @@ namespace paddle_mobile {
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
size_t
i1
=
i0
;
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
imageData
[
i2
]
=
float2half
(
*
p
);
i2
+=
4
;
...
...
@@ -115,9 +115,6 @@ namespace paddle_mobile {
}
i0
+=
width
*
H
;
}
}
}
}
}
// namespace framework
}
// namespace paddle_mobile
src/framework/cl/cl_image.h
浏览文件 @
285066f5
...
...
@@ -28,8 +28,93 @@ class CLImage {
public:
CLImage
()
=
default
;
void
Init
(
cl_context
context
,
float
*
tensorInput
,
DDim
ddim
)
{
tensor_dims_
=
ddim
;
/*
* will not hold input tensor data, memcpy in this method
* */
void
SetTensorData
(
float
*
tensorData
,
const
DDim
&
dim
)
{
int
numel
=
product
(
dim
);
if
(
tensor_data_
!=
nullptr
)
{
delete
[](
tensor_data_
);
}
tensor_data_
=
new
float
[
numel
];
memcpy
(
tensor_data_
,
tensorData
,
numel
);
tensor_dims_
=
dim
;
}
/*
* need call SetTensorData first
* */
void
InitCLImage
(
cl_context
context
)
{
if
(
tensor_data_
==
nullptr
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" need call SetTensorData first"
);
}
InitCLImage
(
context
,
tensor_data_
,
tensor_dims_
);
delete
[](
tensor_data_
);
tensor_data_
=
nullptr
;
initialized_
=
true
;
}
void
InitEmptyImage
(
cl_context
context
,
const
DDim
&
dim
)
{
if
(
tensor_data_
!=
nullptr
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" empty image tensor data shouldn't have value"
);
}
InitCLImage
(
context
,
nullptr
,
dim
);
initialized_
=
true
;
}
cl_mem
GetCLImage
()
const
{
return
cl_image_
;
}
const
DDim
&
ImageDims
()
{
return
image_dims_
;
}
inline
size_t
ImageWidth
()
const
{
return
image_width_
;
}
inline
size_t
ImageHeight
()
const
{
return
image_height_
;
}
/*
* block of channels, 4 channel one block
* */
inline
size_t
CBlock
()
const
{
return
c_block_
;
}
/*
* width of original tensor
* */
inline
size_t
WidthOfOneBlock
()
const
{
return
width_of_one_block_
;
}
/*
* height of original tensor
* */
inline
size_t
HeightOfOneBlock
()
const
{
return
height_of_one_block_
;
}
/*
* resize original tensor dim
* */
inline
CLImage
&
Resize
(
const
DDim
&
dims
)
{
tensor_dims_
=
dims
;
return
*
this
;
}
template
<
typename
T
>
T
*
data
()
const
{
if
(
initialized_
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" cl image has initialized, tensor data has been deleted "
);
}
return
reinterpret_cast
<
T
*>
(
tensor_data_
);
}
/*
* numel of tensor dim
* */
inline
int64_t
numel
()
const
{
return
product
(
tensor_dims_
);
}
/*
* original tensor dim
* */
const
DDim
&
dims
()
const
{
return
tensor_dims_
;
}
private:
void
InitCLImage
(
cl_context
context
,
float
*
tensor_data
,
const
DDim
&
dim
)
{
cl_image_format
cf
=
{.
image_channel_order
=
CL_RGBA
,
.
image_channel_data_type
=
CL_HALF_FLOAT
};
// NCHW -> [W * (C+3)/4, H * N]
...
...
@@ -62,12 +147,13 @@ class CLImage {
image_width_
=
width
;
image_height_
=
height
;
image_dims_
=
make_ddim
({
image_width_
,
image_height_
});
std
::
unique_ptr
<
half_t
[]
>
imageData
{};
int
count
=
0
;
if
(
tensor
Input
!=
nullptr
)
{
if
(
tensor
_data
!=
nullptr
)
{
imageData
.
reset
(
new
half_t
[
width
*
height
*
4
]);
float
*
p
=
tensor
Input
;
float
*
p
=
tensor
_data
;
size_t
i0
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
...
...
@@ -108,39 +194,8 @@ class CLImage {
// TODO(HaiPeng): error handling
PADDLE_MOBILE_THROW_EXCEPTION
(
" create image 2d error "
);
}
initialized_
=
true
;
}
void
Init
(
cl_context
context
,
DDim
ddim
)
{
Init
(
context
,
nullptr
,
ddim
);
}
inline
CLImage
&
Resize
(
const
DDim
&
dims
)
{
tensor_dims_
=
dims
;
return
*
this
;
}
const
DDim
&
dims
()
const
{
return
tensor_dims_
;
}
cl_mem
GetCLImage
()
const
{
return
cl_image_
;
}
template
<
typename
T
>
T
*
data
()
const
{
return
reinterpret_cast
<
T
*>
(
tensor_input_
);
}
inline
int64_t
numel
()
const
{
return
product
(
tensor_dims_
);
}
inline
size_t
ImageWidth
()
const
{
return
image_width_
;
}
inline
size_t
ImageHeight
()
const
{
return
image_height_
;
}
inline
size_t
CBlock
()
const
{
return
c_block_
;
}
inline
size_t
WidthOfOneBlock
()
const
{
return
width_of_one_block_
;
}
inline
size_t
HeightOfOneBlock
()
const
{
return
height_of_one_block_
;
}
private:
bool
initialized_
=
false
;
cl_mem
cl_image_
;
size_t
image_width_
;
...
...
@@ -149,7 +204,8 @@ class CLImage {
size_t
image_height_
;
size_t
c_block_
;
DDim
tensor_dims_
;
float
*
tensor_input_
;
DDim
image_dims_
;
float
*
tensor_data_
;
cl_context
context_
;
};
...
...
src/framework/cl/cl_scope.h
浏览文件 @
285066f5
...
...
@@ -56,7 +56,8 @@ class CLScope {
auto
program
=
CLEngine
::
Instance
()
->
CreateProgramWith
(
context_
.
get
(),
"./cl_kernel/"
+
file_name
);
status_
=
clBuildProgram
(
program
.
get
(),
0
,
0
,
"-cl-fast-relaxed-math"
,
0
,
0
);
status_
=
clBuildProgram
(
program
.
get
(),
0
,
0
,
"-cl-fast-relaxed-math"
,
0
,
0
);
CL_CHECK_ERRORS
(
status_
);
programs_
[
file_name
]
=
std
::
move
(
program
);
...
...
src/framework/cl/cl_tool.h
浏览文件 @
285066f5
...
...
@@ -26,7 +26,8 @@ const char* opencl_error_to_str(cl_int error);
printf( \
"OpenCL error with code %s happened in file %s at line %d. " \
"Exiting.\n", \
opencl_error_to_str(ERR), __FILE__, __LINE__); \
paddle_mobile::framework::opencl_error_to_str(ERR), __FILE__, \
__LINE__); \
}
}
// namespace framework
...
...
src/framework/executor.cpp
浏览文件 @
285066f5
...
...
@@ -928,7 +928,8 @@ void Executor<GPU_CL, Precision::FP32>::InitMemory() {
framework
::
DDim
ddim
=
framework
::
make_ddim
(
desc
.
Dims
());
cl_image
->
Init
(
context
,
tensorInput
,
ddim
);
// has not init
cl_image
->
SetTensorData
(
tensorInput
,
ddim
);
delete
origin_data
;
paddle_mobile
::
memory
::
Free
(
tensorInput
);
...
...
@@ -941,7 +942,7 @@ void Executor<GPU_CL, Precision::FP32>::InitMemory() {
// framework::DDim ddim = framework::make_ddim(desc.Dims());
framework
::
DDim
ddim
=
cl_image
->
dims
();
DLOG
<<
var_desc
->
Name
();
cl_image
->
Init
(
context
,
ddim
);
cl_image
->
Init
EmptyImage
(
context
,
ddim
);
}
}
}
...
...
@@ -982,7 +983,10 @@ void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
float
*
tensorInput
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
numel
));
LoadMemory
(
*
var_desc
,
tensorInput
,
&
origin_data
);
cl_image
->
Init
(
context
,
tensorInput
,
ddim
);
// has not init
cl_image
->
SetTensorData
(
tensorInput
,
ddim
);
paddle_mobile
::
memory
::
Free
(
tensorInput
);
}
else
{
auto
cl_image
=
var
->
template
GetMutable
<
framework
::
CLImage
>();
...
...
@@ -991,8 +995,7 @@ void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
const
framework
::
TensorDesc
&
desc
=
var_desc
->
Tensor_desc
();
framework
::
DDim
ddim
=
cl_image
->
dims
();
// framework::DDim ddim = framework::make_ddim(desc.Dims());
cl_image
->
Init
(
context
,
ddim
);
cl_image
->
InitEmptyImage
(
context
,
ddim
);
}
}
}
...
...
src/operators/feed_op.h
浏览文件 @
285066f5
src/operators/kernel/cl/cl_kernel/cl_common.h
浏览文件 @
285066f5
...
...
@@ -18,9 +18,10 @@ limitations under the License. */
inline
hafl4
activation
(
half4
in
#ifdef PRELU
,
half4
prelu_alpha
,
half4
prelu_alpha
#endif
)
{
)
{
half4
output
;
#ifdef PRELU
output
=
select
(
prelu_alpha
*
in
,
in
,
in
>=
(
half4
)
0
.
0
);
...
...
@@ -31,4 +32,3 @@ inline hafl4 activation(half4 in
#endif
return
output
;
}
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
285066f5
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_tool.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -56,15 +57,15 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
framework
::
CLImage
*
new_scale
=
new
framework
::
CLImage
();
new_scale
->
Init
(
this
->
cl_helper_
.
CLContext
(),
new_scale_ptr
,
variance
->
dims
());
new_scale
->
SetTensorData
(
new_scale_ptr
,
variance
->
dims
());
new_scale
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
());
framework
::
CLImage
*
new_bias
=
new
framework
::
CLImage
();
new_bias
->
Init
(
this
->
cl_helper_
.
CLContext
(),
new_bias_ptr
,
variance
->
dims
());
new_bias
->
SetTensorData
(
new_bias_ptr
,
variance
->
dims
());
new_bias
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
());
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
PADDLE_MOBILE_ENFORCE
(
...
...
@@ -115,26 +116,32 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
285066f5
...
...
@@ -65,24 +65,31 @@ void ConvAddKernel<GPU_CL, float>::Compute(
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_kernel.cpp
浏览文件 @
285066f5
...
...
@@ -21,63 +21,69 @@ namespace operators {
template
<
>
bool
ConvKernel
<
GPU_CL
,
float
>::
Init
(
ConvParam
<
GPU_CL
>
*
param
)
{
//
PADDLE_MOBILE_ENFORCE(
//
param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
//
param->Paddings()[0] == param->Paddings()[1],
//
"need equal");
// int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
// static_cast<int>(param->Paddings()[1]);
// param->SetOffset(offset
);
//
// if (param->Filter()->WidthOfOneBlock() == 1 &&
// param->Filter()->HeightOfOneBlock() == 1) {
// this->cl_helper_.AddKernel("conv_1x1", "conv_add_bn_relu_kernel.cl");
// } else if (param->Filter()->dims()[1] == 1) {
// this->cl_helper_.AddKernel("depth_conv_3x3",
//
"conv_add_bn_relu_kernel.cl");
//
} else if (param->Filter()->WidthOfOneBlock() == 3 &&
//
param->Filter()->HeightOfOneBlock() == 3) {
//
this->cl_helper_.AddKernel("conv_3x3", "conv_add_bn_relu_kernel.cl");
//
} else {
//
PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
//
}
PADDLE_MOBILE_ENFORCE
(
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
],
"need equal"
);
int
offset
=
static_cast
<
int
>
(
param
->
Filter
()
->
dims
()[
2
])
/
2
-
static_cast
<
int
>
(
param
->
Paddings
()[
1
]
);
param
->
SetOffset
(
offset
);
if
(
param
->
Filter
()
->
WidthOfOneBlock
()
==
1
&&
param
->
Filter
()
->
HeightOfOneBlock
()
==
1
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_bn_relu_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
)
{
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3"
,
"conv_add_bn_relu_kernel.cl"
);
}
else
if
(
param
->
Filter
()
->
WidthOfOneBlock
()
==
3
&&
param
->
Filter
()
->
HeightOfOneBlock
()
==
3
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_3x3"
,
"conv_add_bn_relu_kernel.cl"
);
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" not support "
);
}
return
true
;
}
template
<
>
void
ConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
// auto kernel = this->cl_helper_.KernelAt(0);
// auto default_work_size =
// this->cl_helper_.DefaultWorkSize(*param.Output()); int c_block =
// default_work_size[0]; int w = default_work_size[1]; int nh =
// default_work_size[2]; auto input = param.Input()->GetCLImage(); auto
// filter = param.Filter()->GetCLImage(); auto output = param.Output(); int
// stride = param.Strides()[0]; int offset = param.Offset(); int input_c =
// param.Input()->CBlock(); int dilation = param.Dilations()[0]; int
// input_width = param.Input()->WidthOfOneBlock(); int input_height =
// param.Input()->HeightOfOneBlock();
//
// clSetKernelArg(kernel, 0, sizeof(int), &c_block);
// clSetKernelArg(kernel, 1, sizeof(int), &w);
// clSetKernelArg(kernel, 2, sizeof(int), &nh);
// clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
// clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
// clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
// clSetKernelArg(kernel, 6, sizeof(int), &stride);
// clSetKernelArg(kernel, 7, sizeof(int), &offset);
// clSetKernelArg(kernel, 8, sizeof(int), &input_c);
// clSetKernelArg(kernel, 9, sizeof(int), &dilation);
// clSetKernelArg(kernel, 10, sizeof(int), &input_width);
// clSetKernelArg(kernel, 11, sizeof(int), &input_height);
//
// clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
// default_work_size.data(), NULL, 0, NULL, NULL);
// auto kernel = this->cl_helper_.KernelAt(0);
// size_t global_work_size[3] = {1, 2, 3};
// clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
// global_work_size, NULL, 0, NULL, NULL);
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
output
=
param
.
Output
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
param
.
Input
()
->
CBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
WidthOfOneBlock
();
int
input_height
=
param
.
Input
()
->
HeightOfOneBlock
();
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
template
class
ConvKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/depthwise_conv_kernel.cpp
浏览文件 @
285066f5
...
...
@@ -36,7 +36,8 @@ bool DepthwiseConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
}
template
<
>
void
DepthwiseConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
void
DepthwiseConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
...
...
@@ -54,23 +55,30 @@ void DepthwiseConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> ¶m)
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
output_width
);
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_height
);
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
template
class
DepthwiseConvKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/feed_kernel.cpp
浏览文件 @
285066f5
...
...
@@ -12,42 +12,43 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "common/log.h"
#include "operators/kernel/feed_kernel.h"
#include "common/log.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
template
<
>
bool
FeedKernel
<
GPU_CL
,
float
>::
Init
(
FeedParam
<
GPU_CL
>
*
param
)
{
DLOG
<<
"Init feed"
;
template
<
>
bool
FeedKernel
<
GPU_CL
,
float
>::
Init
(
FeedParam
<
GPU_CL
>
*
param
)
{
DLOG
<<
"Init feed"
;
this
->
cl_helper_
.
AddKernel
(
"feed"
,
"feed_kernel.cl"
);
return
true
;
}
template
<
>
void
FeedKernel
<
GPU_CL
,
float
>::
Compute
(
const
FeedParam
<
GPU_CL
>
&
param
)
{
}
DLOG
<<
"feed_kernel"
;
template
<
>
void
FeedKernel
<
GPU_CL
,
float
>::
Compute
(
const
FeedParam
<
GPU_CL
>
&
param
)
{
DLOG
<<
"feed_kernel"
;
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
cl_int
status
;
auto
output
=
param
.
Out
();
auto
input
=
param
.
InputX
();
DLOG
<<
" input: "
<<
input
;
const
float
*
input_data
=
input
->
data
<
float
>
();
cl_mem
cl_image
=
output
->
GetCLImage
();
int
height
=
output
->
dims
()[
2
];
int
width
=
output
->
dims
()[
3
];
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_data
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
cl_image
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
width
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
height
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_data
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
cl_image
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
width
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
height
);
size_t
global_work_size
[
2
]
=
{
height
,
width
};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
}
size_t
global_work_size
[
2
]
=
{
height
,
width
};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
}
template
class
FeedKernel
<
GPU_CL
,
float
>;
template
class
FeedKernel
<
GPU_CL
,
float
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/cl/relu_kernel.cpp
浏览文件 @
285066f5
...
...
@@ -19,13 +19,13 @@ namespace paddle_mobile {
namespace
operators
{
template
<
>
bool
ReluKernel
<
GPU_CL
,
float
>::
Init
(
ReluParam
<
GPU_CL
>
*
param
)
{
bool
ReluKernel
<
GPU_CL
,
float
>::
Init
(
ReluParam
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"relu"
,
"relu.cl"
);
return
true
;
}
template
<
>
void
ReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
ReluParam
<
GPU_CL
>
&
param
)
{
void
ReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
ReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
...
...
@@ -34,7 +34,7 @@ void ReluKernel<GPU_CL, float>::Compute(const ReluParam<GPU_CL> ¶m) {
auto
outputImage
=
output
->
GetCLImage
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
size_t
work_size
[
2
]
=
{
input
->
ImageWidth
(),
input
->
ImageHeight
()
};
const
size_t
work_size
[
2
]
=
{
input
->
ImageWidth
(),
input
->
ImageHeight
()
};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
}
...
...
src/operators/kernel/cl/reshape_kernel.cpp
浏览文件 @
285066f5
...
...
@@ -25,30 +25,29 @@ bool ReshapeKernel<GPU_CL, float>::Init(ReshapeParam<GPU_CL> *param) {
template
<
>
void
ReshapeKernel
<
GPU_CL
,
float
>::
Compute
(
const
ReshapeParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
auto
inputImage
=
input
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
auto
&
inputDim
=
input
->
dims
();
const
auto
&
outputDim
=
output
->
dims
();
const
auto
&
inputDim
=
input
->
dims
();
const
auto
&
outputDim
=
output
->
dims
();
int
dims
[
4
]
=
{
inputDim
[
0
],
inputDim
[
1
],
inputDim
[
2
],
inputDim
[
3
]};
int
odims
[
4
]
=
{
outputDim
[
0
],
outputDim
[
1
],
outputDim
[
2
],
outputDim
[
3
]};
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
dims
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
odims
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
odims
+
1
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
odims
+
2
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
odims
+
3
);
const
size_t
work_size
[
2
]
=
{
output
->
ImageWidth
(),
output
->
ImageHeight
()
};
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
odims
+
1
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
odims
+
2
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
odims
+
3
);
const
size_t
work_size
[
2
]
=
{
output
->
ImageWidth
(),
output
->
ImageHeight
()
};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
}
template
class
ReshapeKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/softmax_kernel.cpp
浏览文件 @
285066f5
...
...
@@ -29,18 +29,18 @@ template <>
void
SoftmaxKernel
<
GPU_CL
,
float
>::
Compute
(
const
SoftmaxParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
(
param
.
Out
()));
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
auto
inputImage
=
input
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
auto
&
inputDim
=
input
->
dims
();
const
auto
&
inputDim
=
input
->
dims
();
int
dims
[
4
]
=
{
inputDim
[
0
],
inputDim
[
1
],
inputDim
[
2
],
inputDim
[
3
]};
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
dims
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
...
...
src/operators/kernel/feed_kernel.h
浏览文件 @
285066f5
...
...
@@ -18,15 +18,15 @@ limitations under the License. */
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
namespace
framework
;
template
<
typename
DeviceType
,
typename
T
>
class
FeedKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
FeedParam
<
DeviceType
>>
{
namespace
operators
{
using
namespace
framework
;
template
<
typename
DeviceType
,
typename
T
>
class
FeedKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
FeedParam
<
DeviceType
>>
{
public:
void
Compute
(
const
FeedParam
<
DeviceType
>
&
param
);
bool
Init
(
FeedParam
<
DeviceType
>
*
param
);
};
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
test/net/test_googlenet.cpp
浏览文件 @
285066f5
...
...
@@ -29,8 +29,8 @@ int main() {
bool
optimize
=
true
;
auto
time1
=
time
();
if
(
paddle_mobile
.
Load
(
g_googlenet
,
optimize
))
{
auto
time2
=
time
();
std
::
cout
<<
"load cost :"
<<
time_diff
(
time1
,
time2
)
<<
"ms"
<<
std
::
endl
;
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time2
)
<<
"ms"
<<
std
::
endl
;
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
GetInput
<
float
>
(
g_test_image_1x3x224x224
,
&
input
,
dims
);
...
...
test/net/test_mobilenet_GPU.cpp
浏览文件 @
285066f5
...
...
@@ -19,14 +19,14 @@ limitations under the License. */
int
main
()
{
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
GPU_CL
>
paddle_mobile
;
// paddle_mobile.SetThreadNum(4);
auto
time1
=
time
();
auto
time1
=
paddle_mobile
::
time
();
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
// std::string(g_mobilenet_detect) + "/params", true);
auto
isok
=
paddle_mobile
.
Load
(
g_mobilenet
,
false
);
if
(
isok
)
{
auto
time2
=
time
();
std
::
cout
<<
"load cost :"
<<
time_diff
(
time1
,
time1
)
<<
"ms"
<<
std
::
endl
;
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time1
)
<<
"ms"
<<
std
::
endl
;
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
...
...
@@ -42,13 +42,13 @@ int main() {
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
}
auto
time3
=
time
();
auto
time3
=
paddle_mobile
::
time
();
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
}
DLOG
<<
vec_result
;
auto
time4
=
time
();
std
::
cout
<<
"predict cost :"
<<
time_diff
(
time3
,
time4
)
/
10
<<
"ms"
auto
time4
=
paddle_mobile
::
time
();
std
::
cout
<<
"predict cost :"
<<
paddle_mobile
::
time_diff
(
time3
,
time4
)
/
10
<<
"ms"
<<
std
::
endl
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录