diff --git a/src/operators/kernel/arm/depthwise_conv_kernel.cpp b/src/operators/kernel/arm/depthwise_conv_kernel.cpp index ff622d1334015f2a09746640bd930ae6fcfced5f..1da52fa8d469bd81d043843d7bcca3a7b01f6663 100644 --- a/src/operators/kernel/arm/depthwise_conv_kernel.cpp +++ b/src/operators/kernel/arm/depthwise_conv_kernel.cpp @@ -32,7 +32,7 @@ void DepthwiseConvKernel::Compute(const ConvParam ¶m) const { std::vector paddings = param.Paddings(); std::vector dilations = param.Dilations(); -// DLOG << " compute end get Attrs " << strides[0]; + // DLOG << " compute end get Attrs " << strides[0]; const int batch_size = static_cast(input->dims()[0]); @@ -59,17 +59,17 @@ void DepthwiseConvKernel::Compute(const ConvParam ¶m) const { col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } -// DLOG << " col_shape = " << col_shape; -// DLOG << " col_matrix_shape = " << col_matrix_shape; + // DLOG << " col_shape = " << col_shape; + // DLOG << " col_matrix_shape = " << col_matrix_shape; framework::DDim input_shape = framework::slice_ddim( input->dims(), 1, static_cast(input->dims().size())); -// DLOG << " input_shape = " << input_shape; + // DLOG << " input_shape = " << input_shape; framework::DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); -// DLOG << " filter.dims() = " << filter.dims(); + // DLOG << " filter.dims() = " << filter.dims(); framework::DDim output_matrix_shape = { output->dims()[1], @@ -85,8 +85,8 @@ void DepthwiseConvKernel::Compute(const ConvParam ¶m) const { for (int i = 0; i < batch_size; i++) { Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); -// DLOG << " in_batch.dims() = " << in_batch.dims(); -// DLOG << " out_batch.dims() = " << out_batch.dims(); + // DLOG << " in_batch.dims() = " << in_batch.dims(); + // DLOG << " out_batch.dims() = " << out_batch.dims(); for (int g = 0; g < groups; g++) { Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); @@ -109,9 +109,9 @@ void DepthwiseConvKernel::Compute(const ConvParam ¶m) const { // gemm Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); -// DLOG << " out_slice " << out_slice.dims(); -// DLOG << " filter_slice " << filter_slice.dims(); -// DLOG << " col_matrix " << col_matrix.dims(); + // DLOG << " out_slice " << out_slice.dims(); + // DLOG << " filter_slice " << filter_slice.dims(); + // DLOG << " col_matrix " << col_matrix.dims(); math::matmul(filter_slice, false, col_matrix, false, static_cast(1), &out_slice, static_cast(0));