Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
1fe37df3
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1fe37df3
编写于
2月 13, 2020
作者:
S
Santa An
提交者:
GitHub
2月 13, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
* [lite][bm] support inception&vgg&darknet&mobilenet,test=develop (#2867)
* [LITE][BM] support VGG,Inception,Mobilenet,Darknet, test=develop
上级
25dfe6b1
变更
15
显示空白变更内容
内联
并排
Showing
15 changed file
with
838 addition
and
42 deletion
+838
-42
lite/kernels/bm/bridges/CMakeLists.txt
lite/kernels/bm/bridges/CMakeLists.txt
+12
-1
lite/kernels/bm/bridges/act_op.cc
lite/kernels/bm/bridges/act_op.cc
+12
-2
lite/kernels/bm/bridges/concat_op.cc
lite/kernels/bm/bridges/concat_op.cc
+87
-0
lite/kernels/bm/bridges/conv_op.cc
lite/kernels/bm/bridges/conv_op.cc
+5
-4
lite/kernels/bm/bridges/dropout_op.cc
lite/kernels/bm/bridges/dropout_op.cc
+74
-0
lite/kernels/bm/bridges/elementwise_ops.cc
lite/kernels/bm/bridges/elementwise_ops.cc
+58
-30
lite/kernels/bm/bridges/mul_op.cc
lite/kernels/bm/bridges/mul_op.cc
+4
-2
lite/kernels/bm/bridges/norm_op.cc
lite/kernels/bm/bridges/norm_op.cc
+75
-0
lite/kernels/bm/bridges/paddle_use_bridges.h
lite/kernels/bm/bridges/paddle_use_bridges.h
+14
-0
lite/kernels/bm/bridges/pool_op.cc
lite/kernels/bm/bridges/pool_op.cc
+6
-0
lite/kernels/bm/bridges/prior_box_op.cc
lite/kernels/bm/bridges/prior_box_op.cc
+340
-0
lite/kernels/bm/bridges/reshape_op.cc
lite/kernels/bm/bridges/reshape_op.cc
+73
-0
lite/kernels/bm/bridges/softmax_op.cc
lite/kernels/bm/bridges/softmax_op.cc
+4
-1
lite/kernels/bm/bridges/transpose_op.cc
lite/kernels/bm/bridges/transpose_op.cc
+73
-0
lite/kernels/bm/subgraph_compute.cc
lite/kernels/bm/subgraph_compute.cc
+1
-2
未找到文件。
lite/kernels/bm/bridges/CMakeLists.txt
浏览文件 @
1fe37df3
...
...
@@ -15,7 +15,12 @@ lite_cc_library(subgraph_bridge_softmax_op_bm SRCS softmax_op.cc DEPS ${subgraph
lite_cc_library
(
subgraph_bridge_mul_op_bm SRCS mul_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_batch_norm_op_bm SRCS batch_norm_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_scale_op_bm SRCS scale_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_concat_op_bm SRCS concat_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_dropout_op_bm SRCS dropout_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_transpose_op_bm SRCS transpose_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_reshape_op_bm SRCS reshape_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_norm_op_bm SRCS norm_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_prior_box_op_bm SRCS prior_box_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
set
(
bm_subgraph_bridges
subgraph_bridge_registry
subgraph_bridge_engine
...
...
@@ -28,4 +33,10 @@ set(bm_subgraph_bridges
subgraph_bridge_mul_op_bm
subgraph_bridge_batch_norm_op_bm
subgraph_bridge_scale_op_bm
subgraph_bridge_concat_op_bm
subgraph_bridge_dropout_op_bm
subgraph_bridge_transpose_op_bm
subgraph_bridge_reshape_op_bm
subgraph_bridge_norm_op_bm
subgraph_bridge_prior_box_op_bm
CACHE INTERNAL
"bm_subgraph_bridges"
)
lite/kernels/bm/bridges/act_op.cc
浏览文件 @
1fe37df3
...
...
@@ -45,7 +45,14 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int
>
(
output_shape_data
[
i
]);
}
CHECK_EQ
(
op_type
,
"relu"
);
float
alpha
=
0.
f
;
if
(
op_type
==
"relu"
)
{
}
else
if
(
op_type
==
"leaky_relu"
)
{
alpha
=
op_info
->
GetAttr
<
float
>
(
"alpha"
);
}
else
{
LOG
(
FATAL
)
<<
"[BM] unsupport act type"
;
return
FAILED
;
}
add_relu_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_x_shape_data
[
0
]),
x_dims
.
size
(),
...
...
@@ -53,7 +60,7 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
output_dims
.
size
(),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
0.
f
,
alpha
,
-
1.
f
);
graph
->
AddNode
(
output_var_name
);
return
SUCCESS
;
...
...
@@ -65,3 +72,6 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
relu
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
leaky_relu
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ActConverter
);
lite/kernels/bm/bridges/concat_op.cc
0 → 100644
浏览文件 @
1fe37df3
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
int
ConcatConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
// input
auto
x_names
=
op_info
->
Input
(
"X"
);
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
// output
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
output_dims
=
output
->
dims
();
const
int64_t
*
output_shape_data
=
const_cast
<
const
int64_t
*>
(
&
output_dims
.
data
()[
0
]);
std
::
vector
<
int32_t
>
i_output_shape_data
(
output_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int
>
(
output_shape_data
[
i
]);
}
const
int32_t
input_num
=
x_names
.
size
();
int32_t
**
shape
=
new
int32_t
*
[
input_num
];
int32_t
*
dim
=
new
int32_t
[
input_num
];
const
char
**
name
=
new
const
char
*
[
input_num
];
for
(
size_t
i
=
0
;
i
<
x_names
.
size
();
i
++
)
{
auto
x
=
scope
->
FindMutableTensor
(
x_names
[
i
]);
name
[
i
]
=
x_names
[
i
].
c_str
();
auto
x_dims
=
x
->
dims
();
dim
[
i
]
=
x_dims
.
size
();
const
int64_t
*
x_shape_data
=
const_cast
<
const
int64_t
*>
(
&
x_dims
.
data
()[
0
]);
shape
[
i
]
=
new
int32_t
[
x_dims
.
size
()];
for
(
size_t
j
=
0
;
j
<
x_dims
.
size
();
j
++
)
{
shape
[
i
][
j
]
=
static_cast
<
int32_t
>
(
x_shape_data
[
j
]);
}
}
auto
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
add_concat_layer
(
graph
->
GetCompilerHandle
(),
input_num
,
shape
,
dim
,
name
,
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
output_dims
.
size
(),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
axis
);
for
(
size_t
i
=
0
;
i
<
x_names
.
size
();
i
++
)
{
delete
[]
shape
[
i
];
}
delete
[]
shape
;
delete
[]
name
;
delete
[]
dim
;
graph
->
AddNode
(
output_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
concat
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ConcatConverter
);
lite/kernels/bm/bridges/conv_op.cc
浏览文件 @
1fe37df3
...
...
@@ -12,7 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/conv_op.h"
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
...
...
@@ -58,10 +57,10 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
std
::
vector
<
int32_t
>
i_output_shape_data
(
output_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
i_input_shape_data
[
i
]
=
static_cast
<
int
>
(
input_shape_data
[
i
]);
i_input_shape_data
[
i
]
=
static_cast
<
int
32_t
>
(
input_shape_data
[
i
]);
}
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int
>
(
output_shape_data
[
i
]);
i_output_shape_data
[
i
]
=
static_cast
<
int
32_t
>
(
output_shape_data
[
i
]);
}
const
float
*
filter_data
=
const_cast
<
const
float
*>
(
filter
->
mutable_data
<
float
>
());
...
...
@@ -69,7 +68,6 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
paddings
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
auto
strides
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
auto
dilations
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"dilations"
);
add_conv_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_input_shape_data
[
0
]),
input_dims
.
size
(),
...
...
@@ -104,3 +102,6 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
REGISTER_SUBGRAPH_BRIDGE
(
conv2d
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ConvConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
depthwise_conv2d
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ConvConverter
);
lite/kernels/bm/bridges/dropout_op.cc
0 → 100644
浏览文件 @
1fe37df3
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include <bmcompiler_op_code.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
int
DropoutConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
// input
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
x_dims
=
x
->
dims
();
const
int64_t
*
x_shape_data
=
const_cast
<
const
int64_t
*>
(
&
x_dims
.
data
()[
0
]);
std
::
vector
<
int32_t
>
i_x_shape_data
(
x_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
i_x_shape_data
[
i
]
=
static_cast
<
int
>
(
x_shape_data
[
i
]);
}
// output
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
output_dims
=
output
->
dims
();
const
int64_t
*
output_shape_data
=
const_cast
<
const
int64_t
*>
(
&
output_dims
.
data
()[
0
]);
std
::
vector
<
int32_t
>
i_output_shape_data
(
output_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int
>
(
output_shape_data
[
i
]);
}
auto
dropout_prob
=
op_info
->
GetAttr
<
float
>
(
"dropout_prob"
);
auto
dropout_implementation
=
op_info
->
GetAttr
<
std
::
string
>
(
"dropout_implementation"
);
CHECK_EQ
(
dropout_implementation
,
"downgrade_in_infer"
);
add_const_binary_layer
(
graph
->
GetCompilerHandle
(),
static_cast
<
const
char
*>
(
x_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_x_shape_data
[
0
]),
x_dims
.
size
(),
1.
f
-
dropout_prob
,
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
BINARY_MUL
,
0
);
graph
->
AddNode
(
output_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
dropout
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
DropoutConverter
);
lite/kernels/bm/bridges/elementwise_ops.cc
浏览文件 @
1fe37df3
...
...
@@ -14,6 +14,7 @@
#include <bmcompiler_defs.h>
#include <bmcompiler_if.h>
#include <bmcompiler_if_lite.h>
#include <bmcompiler_op_code.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
...
...
@@ -68,42 +69,52 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int
>
(
output_shape_data
[
i
]);
}
if
(
y_is_const
)
{
CHECK_EQ
(
op_type
,
"elementwise_add"
);
}
auto
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
int
op_code
{
-
1
};
int
eltwise_if_code
{
-
1
};
float
coeff
[
2
]
=
{
1.
f
,
1.
f
};
if
(
op_type
==
"elementwise_mul"
)
{
op_code
=
0
;
op_code
=
BINARY_MUL
;
eltwise_if_code
=
0
;
}
else
if
(
op_type
==
"elementwise_add"
)
{
op_code
=
1
;
op_code
=
BINARY_ADD
;
eltwise_if_code
=
1
;
}
else
if
(
op_type
==
"elementwise_sub"
)
{
op_code
=
1
;
op_code
=
BINARY_SUB
;
eltwise_if_code
=
1
;
coeff
[
1
]
=
-
1.
f
;
}
else
{
LOG
(
FATAL
)
<<
"UNSUPPORTED ELTWISE OPERATION: "
<<
op_type
;
}
if
(
!
y_is_const
)
{
add_eltwise_layer
(
graph
->
GetCompilerHandle
(),
input_num
,
shape
,
dim
,
name
,
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
output_dims
.
size
(),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
op_code
,
coeff
);
}
else
{
const
float
*
y_data
=
const_cast
<
const
float
*>
(
y
->
mutable_data
<
float
>
());
const
float
*
x_data
=
const_cast
<
const
float
*>
(
x
->
mutable_data
<
float
>
());
auto
unique_op_name
=
lite
::
subgraph
::
bm
::
UniqueName
(
"expand_ndims"
);
std
::
vector
<
int32_t
>
i_expand_shape_data
(
3
);
if
(
y_is_const
)
{
if
(
dim
[
0
]
==
dim
[
1
]
||
2
==
dim
[
0
])
{
bm_add_const_tensor
(
graph
->
GetCompilerHandle
(),
name
[
1
],
shape
[
0
],
dim
[
0
],
shape
[
1
],
dim
[
1
],
static_cast
<
bm_data_type_t
>
(
DTYPE_FP32
),
static_cast
<
const
void
*>
(
y_data
));
}
else
if
(
1
==
dim
[
1
]
&&
1
==
axis
)
{
add_expand_ndims_layer
(
graph
->
GetCompilerHandle
(),
name
[
1
],
shape
[
1
],
dim
[
1
],
static_cast
<
const
float
*>
(
y_data
),
-
1
,
2
,
static_cast
<
const
char
*>
(
unique_op_name
.
c_str
()));
name
[
1
]
=
static_cast
<
const
char
*>
(
unique_op_name
.
c_str
());
dim
[
1
]
=
3
;
i_expand_shape_data
[
0
]
=
i_y_shape_data
[
0
];
i_expand_shape_data
[
1
]
=
1
;
i_expand_shape_data
[
2
]
=
1
;
shape
[
1
]
=
&
i_expand_shape_data
[
0
];
y_data
=
nullptr
;
}
add_binary_layer_v2
(
graph
->
GetCompilerHandle
(),
name
[
0
],
shape
[
0
],
...
...
@@ -111,12 +122,23 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
0
,
static_cast
<
const
float
*>
(
x_data
),
name
[
1
],
shape
[
0
],
dim
[
0
],
shape
[
1
],
dim
[
1
],
0
,
static_cast
<
const
float
*>
(
y_data
),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
0
);
op_code
);
}
else
{
add_eltwise_layer
(
graph
->
GetCompilerHandle
(),
input_num
,
shape
,
dim
,
name
,
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
output_dims
.
size
(),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
eltwise_if_code
,
coeff
);
}
delete
[]
shape
;
delete
[]
name
;
...
...
@@ -133,3 +155,9 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
REGISTER_SUBGRAPH_BRIDGE
(
elementwise_add
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ElementwiseConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
elementwise_mul
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ElementwiseConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
elementwise_sub
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ElementwiseConverter
);
lite/kernels/bm/bridges/mul_op.cc
浏览文件 @
1fe37df3
...
...
@@ -41,8 +41,10 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
}
// add reshape layer
int
i_x_reshape_shape_data
[
2
];
for
(
size_t
i
=
0
;
i
<
2
;
i
++
)
{
i_x_reshape_shape_data
[
i
]
=
static_cast
<
int
>
(
x_shape_data
[
i
]);
i_x_reshape_shape_data
[
0
]
=
static_cast
<
int
>
(
x_shape_data
[
0
]);
i_x_reshape_shape_data
[
1
]
=
1
;
for
(
size_t
i
=
1
;
i
<
x_dims
.
size
();
i
++
)
{
i_x_reshape_shape_data
[
1
]
*=
static_cast
<
int
>
(
x_shape_data
[
i
]);
}
int
reshape_param
[]
=
{
0
,
-
1
};
auto
unique_op_reshape_name
=
...
...
lite/kernels/bm/bridges/norm_op.cc
0 → 100644
浏览文件 @
1fe37df3
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
int
NormConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
unique_op_name
=
lite
::
subgraph
::
bm
::
UniqueName
(
op_type
);
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
x_dims
=
x
->
dims
();
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
output_dims
=
output
->
dims
();
const
int64_t
*
x_shape_data
=
const_cast
<
const
int64_t
*>
(
&
x_dims
.
data
()[
0
]);
const
int64_t
*
output_shape_data
=
const_cast
<
const
int64_t
*>
(
&
output_dims
.
data
()[
0
]);
std
::
vector
<
int32_t
>
i_x_shape_data
(
x_dims
.
size
());
std
::
vector
<
int32_t
>
i_output_shape_data
(
output_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
i_x_shape_data
[
i
]
=
static_cast
<
int
>
(
x_shape_data
[
i
]);
}
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int
>
(
output_shape_data
[
i
]);
}
float
one
=
1.
f
;
auto
epsilon
=
op_info
->
GetAttr
<
float
>
(
"epsilon"
);
add_normalize_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_x_shape_data
[
0
]),
x_dims
.
size
(),
static_cast
<
const
char
*>
(
x_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
output_dims
.
size
(),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
static_cast
<
const
char
*>
(
unique_op_name
.
c_str
()),
0
,
1
,
&
one
,
epsilon
);
graph
->
AddNode
(
output_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
norm
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
NormConverter
);
lite/kernels/bm/bridges/paddle_use_bridges.h
浏览文件 @
1fe37df3
...
...
@@ -15,10 +15,24 @@
#pragma once
USE_SUBGRAPH_BRIDGE
(
relu
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
leaky_relu
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
conv2d
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
depthwise_conv2d
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
elementwise_add
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
elementwise_mul
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
elementwise_sub
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
pool2d
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
softmax
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
mul
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
batch_norm
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
scale
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
concat
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
dropout
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
transpose
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
transpose2
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
reshape
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
reshape2
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
flatten
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
flatten2
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
norm
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
prior_box
,
kBM
);
lite/kernels/bm/bridges/pool_op.cc
浏览文件 @
1fe37df3
...
...
@@ -65,6 +65,12 @@ int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
pooling_type
==
"avg"
)
{
average_exclusive
=
op_info
->
GetAttr
<
bool
>
(
"exclusive"
);
}
if
(
global_pooling
)
{
paddings
[
0
]
=
0
;
paddings
[
1
]
=
0
;
ksize
[
0
]
=
i_x_shape_data
[
2
];
ksize
[
1
]
=
i_x_shape_data
[
3
];
}
add_pooling_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_x_shape_data
[
0
]),
...
...
lite/kernels/bm/bridges/prior_box_op.cc
0 → 100644
浏览文件 @
1fe37df3
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
typedef
struct
__tag_st_priorbox_param
{
std
::
vector
<
float
>
min_sizes
;
std
::
vector
<
float
>
max_sizes
;
std
::
vector
<
float
>
aspect_ratios
;
std
::
vector
<
float
>
variances
;
float
step_w
;
float
step_h
;
float
offset
;
int32_t
img_w
;
int32_t
img_h
;
int32_t
prior_num
;
bool
min_max_aspect_ratios_order
;
bool
clip
;
bool
flip
;
}
st_priorbox_param
;
inline
void
ExpandAspectRatios
(
const
std
::
vector
<
float
>&
input_aspect_ratior
,
bool
flip
,
std
::
vector
<
float
>*
output_aspect_ratior
)
{
constexpr
float
epsilon
=
1e-6
;
output_aspect_ratior
->
clear
();
output_aspect_ratior
->
push_back
(
1.0
f
);
for
(
size_t
i
=
0
;
i
<
input_aspect_ratior
.
size
();
++
i
)
{
float
ar
=
input_aspect_ratior
[
i
];
bool
already_exist
=
false
;
for
(
size_t
j
=
0
;
j
<
output_aspect_ratior
->
size
();
++
j
)
{
if
(
fabs
(
ar
-
output_aspect_ratior
->
at
(
j
))
<
epsilon
)
{
already_exist
=
true
;
break
;
}
}
if
(
!
already_exist
)
{
output_aspect_ratior
->
push_back
(
ar
);
if
(
flip
)
{
output_aspect_ratior
->
push_back
(
1.0
f
/
ar
);
}
}
}
}
float
*
compute_priorbox_kernel
(
OpLite
*
op
,
st_priorbox_param
*
param
)
{
auto
op_info
=
op
->
op_info
();
auto
scope
=
op
->
scope
();
// inputs
auto
in_var_name
=
op_info
->
Input
(
"Input"
).
front
();
auto
in
=
scope
->
FindVar
(
in_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
in_dims
=
in
->
dims
();
auto
img_var_name
=
op_info
->
Input
(
"Image"
).
front
();
auto
img
=
scope
->
FindVar
(
img_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
img_dims
=
img
->
dims
();
// outputs
auto
boxes_var_name
=
op_info
->
Output
(
"Boxes"
).
front
();
auto
boxes
=
scope
->
FindVar
(
boxes_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
var_var_name
=
op_info
->
Output
(
"Variances"
).
front
();
auto
var
=
scope
->
FindVar
(
var_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
std
::
vector
<
float
>
expand_aspect_ratios
;
ExpandAspectRatios
(
param
->
aspect_ratios
,
param
->
flip
,
&
expand_aspect_ratios
);
param
->
aspect_ratios
.
clear
();
for
(
size_t
i
=
0
;
i
<
expand_aspect_ratios
.
size
();
i
++
)
{
param
->
aspect_ratios
.
push_back
(
expand_aspect_ratios
[
i
]);
}
param
->
prior_num
=
param
->
aspect_ratios
.
size
()
*
param
->
min_sizes
.
size
();
if
(
param
->
max_sizes
.
size
()
>
0
)
{
param
->
prior_num
+=
param
->
max_sizes
.
size
();
}
int32_t
win1
=
in_dims
[
3
];
int32_t
hin1
=
in_dims
[
2
];
DDim
shape_out
({
hin1
,
win1
,
param
->
prior_num
,
4
});
boxes
->
Resize
(
shape_out
);
var
->
Resize
(
shape_out
);
// boxes->mutable_data<float>();
// var->mutable_data<float>();
float
*
cpu_data
=
static_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
boxes
->
data_size
()
*
2
));
CHECK
(
cpu_data
!=
nullptr
);
const
int32_t
width
=
in_dims
[
3
];
const
int32_t
height
=
in_dims
[
2
];
int32_t
img_width
=
param
->
img_w
;
int32_t
img_height
=
param
->
img_h
;
if
(
img_width
==
0
||
img_height
==
0
)
{
img_width
=
img_dims
[
3
];
img_height
=
img_dims
[
2
];
}
float
step_w
=
param
->
step_w
;
float
step_h
=
param
->
step_h
;
if
(
step_w
==
0.
f
||
step_h
==
0.
f
)
{
step_w
=
static_cast
<
float
>
(
img_width
)
/
width
;
step_h
=
static_cast
<
float
>
(
img_height
)
/
height
;
}
float
offset
=
param
->
offset
;
int32_t
channel_size
=
height
*
width
*
param
->
prior_num
*
4
;
int32_t
idx
=
0
;
///////////////////////////////////////////////////////////////////////
for
(
int32_t
h
=
0
;
h
<
height
;
++
h
)
{
for
(
int32_t
w
=
0
;
w
<
width
;
++
w
)
{
float
center_x
=
(
w
+
offset
)
*
step_w
;
float
center_y
=
(
h
+
offset
)
*
step_h
;
float
box_width
=
0.
f
;
float
box_height
=
0.
f
;
float
*
min_buf
=
reinterpret_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
4
));
float
*
max_buf
=
reinterpret_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
4
));
float
*
com_buf
=
reinterpret_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
expand_aspect_ratios
.
size
()
*
4
));
CHECK
(
min_buf
!=
nullptr
);
CHECK
(
max_buf
!=
nullptr
);
CHECK
(
com_buf
!=
nullptr
);
// LOG(INFO) << "the number of min_size is " << min_sizes_.size();
for
(
size_t
s
=
0
;
s
<
param
->
min_sizes
.
size
();
++
s
)
{
int32_t
min_idx
=
0
;
int32_t
max_idx
=
0
;
int32_t
com_idx
=
0
;
int32_t
min_size
=
param
->
min_sizes
[
s
];
//! first prior: aspect_ratio = 1, size = min_size
box_width
=
box_height
=
min_size
;
//! xmin
min_buf
[
min_idx
++
]
=
(
center_x
-
box_width
/
2.
f
)
/
img_width
;
//! ymin
min_buf
[
min_idx
++
]
=
(
center_y
-
box_height
/
2.
f
)
/
img_height
;
//! xmax
min_buf
[
min_idx
++
]
=
(
center_x
+
box_width
/
2.
f
)
/
img_width
;
//! ymax
min_buf
[
min_idx
++
]
=
(
center_y
+
box_height
/
2.
f
)
/
img_height
;
if
(
param
->
max_sizes
.
size
()
>
0
)
{
int
max_size
=
param
->
max_sizes
[
s
];
//! second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
box_width
=
box_height
=
sqrtf
(
min_size
*
max_size
);
//! xmin
max_buf
[
max_idx
++
]
=
(
center_x
-
box_width
/
2.
f
)
/
img_width
;
//! ymin
max_buf
[
max_idx
++
]
=
(
center_y
-
box_height
/
2.
f
)
/
img_height
;
//! xmax
max_buf
[
max_idx
++
]
=
(
center_x
+
box_width
/
2.
f
)
/
img_width
;
//! ymax
max_buf
[
max_idx
++
]
=
(
center_y
+
box_height
/
2.
f
)
/
img_height
;
}
//! rest of priors
for
(
size_t
r
=
0
;
r
<
expand_aspect_ratios
.
size
();
++
r
)
{
float
ar
=
expand_aspect_ratios
[
r
];
if
(
fabs
(
ar
-
1.
)
<
1e-6
)
{
continue
;
}
box_width
=
min_size
*
sqrt
(
ar
);
box_height
=
min_size
/
sqrt
(
ar
);
//! xmin
com_buf
[
com_idx
++
]
=
(
center_x
-
box_width
/
2.
f
)
/
img_width
;
//! ymin
com_buf
[
com_idx
++
]
=
(
center_y
-
box_height
/
2.
f
)
/
img_height
;
//! xmax
com_buf
[
com_idx
++
]
=
(
center_x
+
box_width
/
2.
f
)
/
img_width
;
//! ymax
com_buf
[
com_idx
++
]
=
(
center_y
+
box_height
/
2.
f
)
/
img_height
;
}
if
(
param
->
min_max_aspect_ratios_order
)
{
memcpy
(
cpu_data
+
idx
,
min_buf
,
sizeof
(
float
)
*
min_idx
);
idx
+=
min_idx
;
memcpy
(
cpu_data
+
idx
,
max_buf
,
sizeof
(
float
)
*
max_idx
);
idx
+=
max_idx
;
memcpy
(
cpu_data
+
idx
,
com_buf
,
sizeof
(
float
)
*
com_idx
);
idx
+=
com_idx
;
}
else
{
memcpy
(
cpu_data
+
idx
,
com_buf
,
sizeof
(
float
)
*
com_idx
);
idx
+=
com_idx
;
memcpy
(
cpu_data
+
idx
,
max_buf
,
sizeof
(
float
)
*
max_idx
);
idx
+=
max_idx
;
}
}
free
(
min_buf
);
free
(
max_buf
);
free
(
com_buf
);
}
}
//! clip the prior's coordidate such that it is within [0, 1]
if
(
param
->
clip
)
{
for
(
int32_t
d
=
0
;
d
<
channel_size
;
++
d
)
{
cpu_data
[
d
]
=
std
::
min
(
std
::
max
(
cpu_data
[
d
],
0.
f
),
1.
f
);
}
}
//! set the variance.
float
*
ptr
=
cpu_data
+
channel_size
;
int
count
=
0
;
for
(
int32_t
h
=
0
;
h
<
height
;
++
h
)
{
for
(
int32_t
w
=
0
;
w
<
width
;
++
w
)
{
for
(
int32_t
i
=
0
;
i
<
param
->
prior_num
;
++
i
)
{
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
ptr
[
count
]
=
param
->
variances
[
j
];
++
count
;
}
}
}
}
return
cpu_data
;
}
int
PriorBoxConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
// inputs
auto
in_var_name
=
op_info
->
Input
(
"Input"
).
front
();
auto
in
=
scope
->
FindVar
(
in_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
in_dims
=
in
->
dims
();
auto
img_var_name
=
op_info
->
Input
(
"Image"
).
front
();
auto
img
=
scope
->
FindVar
(
img_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
img_dims
=
img
->
dims
();
std
::
vector
<
int32_t
>
i_input_shape_data
(
in_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
in_dims
.
size
();
i
++
)
{
i_input_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
in_dims
[
i
]);
}
// outputs
auto
boxes_var_name
=
op_info
->
Output
(
"Boxes"
).
front
();
auto
boxes
=
scope
->
FindVar
(
boxes_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
var_var_name
=
op_info
->
Output
(
"Variances"
).
front
();
auto
unique_op_name
=
lite
::
subgraph
::
bm
::
UniqueName
(
op_type
);
// param
st_priorbox_param
param
;
param
.
clip
=
op_info
->
GetAttr
<
bool
>
(
"clip"
);
param
.
min_sizes
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"min_sizes"
);
param
.
max_sizes
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"max_sizes"
);
param
.
aspect_ratios
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"aspect_ratios"
);
param
.
variances
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"variances"
);
param
.
offset
=
op_info
->
GetAttr
<
float
>
(
"offset"
);
if
(
op_info
->
HasAttr
(
"flip"
))
{
param
.
flip
=
op_info
->
GetAttr
<
bool
>
(
"flip"
);
}
if
(
op_info
->
HasAttr
(
"img_w"
))
{
param
.
img_w
=
op_info
->
GetAttr
<
int32_t
>
(
"img_w"
);
}
if
(
op_info
->
HasAttr
(
"img_h"
))
{
param
.
img_h
=
op_info
->
GetAttr
<
int32_t
>
(
"img_h"
);
}
if
(
op_info
->
HasAttr
(
"step_w"
))
{
param
.
step_w
=
op_info
->
GetAttr
<
float
>
(
"step_w"
);
}
if
(
op_info
->
HasAttr
(
"step_h"
))
{
param
.
step_h
=
op_info
->
GetAttr
<
float
>
(
"step_h"
);
}
if
(
op_info
->
HasAttr
(
"prior_num"
))
{
param
.
prior_num
=
op_info
->
GetAttr
<
int32_t
>
(
"prior_num"
);
}
if
(
op_info
->
HasAttr
(
"min_max_aspect_ratios_order"
))
{
param
.
min_max_aspect_ratios_order
=
op_info
->
GetAttr
<
bool
>
(
"min_max_aspect_ratios_order"
);
}
float
*
cpu_data
=
compute_priorbox_kernel
(
op
,
&
param
);
compute_priorbox_kernel
(
op
,
param
);
auto
boxes_dims
=
boxes
->
dims
();
std
::
vector
<
int32_t
>
i_pri_out_shape_data
(
boxes_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
boxes_dims
.
size
();
i
++
)
{
i_pri_out_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
boxes_dims
[
i
]);
}
i_pri_out_shape_data
[
0
]
*=
2
;
add_priorbox_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_input_shape_data
[
0
]),
in_dims
.
size
(),
static_cast
<
const
char
*>
(
in_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_pri_out_shape_data
[
0
]),
boxes_dims
.
size
(),
static_cast
<
const
char
*>
(
unique_op_name
.
c_str
()),
static_cast
<
const
float
*>
(
cpu_data
),
param
.
min_sizes
.
size
(),
const_cast
<
const
float
*>
(
&
param
.
min_sizes
[
0
]),
param
.
max_sizes
.
size
(),
const_cast
<
const
float
*>
(
&
param
.
max_sizes
[
0
]),
param
.
aspect_ratios
.
size
(),
const_cast
<
const
float
*>
(
&
param
.
aspect_ratios
[
0
]),
static_cast
<
int
>
(
param
.
flip
),
static_cast
<
int
>
(
param
.
clip
),
param
.
variances
.
size
(),
const_cast
<
const
float
*>
(
&
param
.
variances
[
0
]),
param
.
img_h
,
param
.
img_w
,
param
.
step_h
,
param
.
step_w
,
param
.
offset
);
std
::
vector
<
int32_t
>
i_output_shape_data
(
boxes_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
boxes_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
boxes_dims
[
i
]);
}
int32_t
*
shape
[
2
];
int
dim
[
2
];
const
char
*
name
[
2
];
dim
[
0
]
=
boxes_dims
.
size
();
dim
[
1
]
=
boxes_dims
.
size
();
name
[
0
]
=
static_cast
<
const
char
*>
(
boxes_var_name
.
c_str
());
name
[
1
]
=
static_cast
<
const
char
*>
(
var_var_name
.
c_str
());
shape
[
0
]
=
&
i_output_shape_data
[
0
];
shape
[
1
]
=
&
i_output_shape_data
[
0
];
int
split_size
=
2
;
add_tf_split_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_pri_out_shape_data
[
0
]),
boxes_dims
.
size
(),
static_cast
<
const
char
*>
(
unique_op_name
.
c_str
()),
2
,
shape
,
dim
,
name
,
boxes_dims
.
size
(),
0
,
&
split_size
,
0
);
graph
->
AddNode
(
boxes_var_name
);
graph
->
AddNode
(
var_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
prior_box
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
PriorBoxConverter
);
lite/kernels/bm/bridges/reshape_op.cc
0 → 100644
浏览文件 @
1fe37df3
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
int
ReshapeConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
x_dims
=
x
->
dims
();
std
::
vector
<
int32_t
>
i_x_shape_data
(
x_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
i_x_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
x_dims
[
i
]);
}
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
output_dims
=
output
->
dims
();
std
::
vector
<
int32_t
>
i_output_shape_data
(
output_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
output_dims
[
i
]);
}
// auto axis = op_info->GetAttr<int>("axis");
add_reshape_layer_v2
(
graph
->
GetCompilerHandle
(),
static_cast
<
const
char
*>
(
x_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_x_shape_data
[
0
]),
x_dims
.
size
(),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
output_dims
.
size
());
graph
->
AddNode
(
output_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
reshape
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ReshapeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
reshape2
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ReshapeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
flatten
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ReshapeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
flatten2
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ReshapeConverter
);
lite/kernels/bm/bridges/softmax_op.cc
浏览文件 @
1fe37df3
...
...
@@ -48,7 +48,10 @@ int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
for
(
size_t
i
=
0
;
i
<
length
;
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int
>
(
output_shape_data
[
i
]);
}
auto
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
int32_t
axis
=
-
1
;
if
(
op_info
->
HasAttr
(
"axis"
))
{
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
}
if
(
axis
<
0
)
{
axis
+=
x_dims
.
size
();
}
...
...
lite/kernels/bm/bridges/transpose_op.cc
0 → 100644
浏览文件 @
1fe37df3
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_defs.h>
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
int
TransposeConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
x_dims
=
x
->
dims
();
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
output_dims
=
output
->
dims
();
const
int64_t
*
x_shape_data
=
const_cast
<
const
int64_t
*>
(
&
x_dims
.
data
()[
0
]);
const
int64_t
*
output_shape_data
=
const_cast
<
const
int64_t
*>
(
&
output_dims
.
data
()[
0
]);
std
::
vector
<
int32_t
>
i_x_shape_data
(
x_dims
.
size
());
std
::
vector
<
int32_t
>
i_output_shape_data
(
output_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
i_x_shape_data
[
i
]
=
static_cast
<
int
>
(
x_shape_data
[
i
]);
}
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int
>
(
output_shape_data
[
i
]);
}
auto
axis
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"axis"
);
CHECK_EQ
(
axis
.
size
(),
x_dims
.
size
());
add_transpose_layer_v2
(
graph
->
GetCompilerHandle
(),
static_cast
<
const
char
*>
(
x_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_x_shape_data
[
0
]),
x_dims
.
size
(),
DTYPE_FP32
,
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
NULL
,
const_cast
<
const
int
*>
(
&
axis
[
0
]));
graph
->
AddNode
(
output_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
transpose
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
TransposeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
transpose2
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
TransposeConverter
);
lite/kernels/bm/subgraph_compute.cc
浏览文件 @
1fe37df3
...
...
@@ -54,7 +54,7 @@ int SubgraphEngine::BuildDeviceProgram() {
}
std
::
string
net_name
=
"paddle_bitmain"
;
__bmcompile_opt
(
graph
.
GetCompilerHandle
(),
const_cast
<
char
*>
(
net_name
.
c_str
()),
2
);
graph
.
GetCompilerHandle
(),
const_cast
<
char
*>
(
net_name
.
c_str
()),
1
);
void
*
bmodel_data
=
nullptr
;
unsigned
int
data_size
=
0
;
bm_hd_
=
static_cast
<
bm_handle_t
>
(
ctx
.
GetHandle
());
...
...
@@ -109,7 +109,6 @@ int SubgraphEngine::BuildDeviceProgram() {
net_info_
->
output_dtypes
[
i
],
stage
.
output_shapes
[
i
]);
}
return
status
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录