提交 1fe37df3 编写于 作者: S Santa An 提交者: GitHub

* [lite][bm] support inception&vgg&darknet&mobilenet,test=develop (#2867)


* [LITE][BM] support VGG,Inception,Mobilenet,Darknet, test=develop
上级 25dfe6b1
......@@ -15,7 +15,12 @@ lite_cc_library(subgraph_bridge_softmax_op_bm SRCS softmax_op.cc DEPS ${subgraph
lite_cc_library(subgraph_bridge_mul_op_bm SRCS mul_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_batch_norm_op_bm SRCS batch_norm_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_scale_op_bm SRCS scale_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_concat_op_bm SRCS concat_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_dropout_op_bm SRCS dropout_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_transpose_op_bm SRCS transpose_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_reshape_op_bm SRCS reshape_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_norm_op_bm SRCS norm_op.cc DEPS ${bm_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_prior_box_op_bm SRCS prior_box_op.cc DEPS ${bm_subgraph_bridge_deps})
set(bm_subgraph_bridges
subgraph_bridge_registry
subgraph_bridge_engine
......@@ -28,4 +33,10 @@ set(bm_subgraph_bridges
subgraph_bridge_mul_op_bm
subgraph_bridge_batch_norm_op_bm
subgraph_bridge_scale_op_bm
subgraph_bridge_concat_op_bm
subgraph_bridge_dropout_op_bm
subgraph_bridge_transpose_op_bm
subgraph_bridge_reshape_op_bm
subgraph_bridge_norm_op_bm
subgraph_bridge_prior_box_op_bm
CACHE INTERNAL "bm_subgraph_bridges")
......@@ -45,7 +45,14 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
}
CHECK_EQ(op_type, "relu");
float alpha = 0.f;
if (op_type == "relu") {
} else if (op_type == "leaky_relu") {
alpha = op_info->GetAttr<float>("alpha");
} else {
LOG(FATAL) << "[BM] unsupport act type";
return FAILED;
}
add_relu_layer(graph->GetCompilerHandle(),
const_cast<const int*>(&i_x_shape_data[0]),
x_dims.size(),
......@@ -53,7 +60,7 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
const_cast<const int*>(&i_output_shape_data[0]),
output_dims.size(),
static_cast<const char*>(output_var_name.c_str()),
0.f,
alpha,
-1.f);
graph->AddNode(output_var_name);
return SUCCESS;
......@@ -65,3 +72,6 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(relu, kBM, paddle::lite::subgraph::bm::ActConverter);
REGISTER_SUBGRAPH_BRIDGE(leaky_relu,
kBM,
paddle::lite::subgraph::bm::ActConverter);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {
int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto scope = op->scope();
auto op_info = op->op_info();
auto op_type = op_info->Type();
// input
auto x_names = op_info->Input("X");
auto x_type = kernel->GetInputDeclType("X");
CHECK(x_type->layout() == DATALAYOUT(kNCHW));
// output
auto output_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
auto output_dims = output->dims();
const int64_t* output_shape_data =
const_cast<const int64_t*>(&output_dims.data()[0]);
std::vector<int32_t> i_output_shape_data(output_dims.size());
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
}
const int32_t input_num = x_names.size();
int32_t** shape = new int32_t*[input_num];
int32_t* dim = new int32_t[input_num];
const char** name = new const char*[input_num];
for (size_t i = 0; i < x_names.size(); i++) {
auto x = scope->FindMutableTensor(x_names[i]);
name[i] = x_names[i].c_str();
auto x_dims = x->dims();
dim[i] = x_dims.size();
const int64_t* x_shape_data = const_cast<const int64_t*>(&x_dims.data()[0]);
shape[i] = new int32_t[x_dims.size()];
for (size_t j = 0; j < x_dims.size(); j++) {
shape[i][j] = static_cast<int32_t>(x_shape_data[j]);
}
}
auto axis = op_info->GetAttr<int>("axis");
add_concat_layer(graph->GetCompilerHandle(),
input_num,
shape,
dim,
name,
const_cast<const int*>(&i_output_shape_data[0]),
output_dims.size(),
static_cast<const char*>(output_var_name.c_str()),
axis);
for (size_t i = 0; i < x_names.size(); i++) {
delete[] shape[i];
}
delete[] shape;
delete[] name;
delete[] dim;
graph->AddNode(output_var_name);
return SUCCESS;
}
} // namespace bm
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(concat,
kBM,
paddle::lite::subgraph::bm::ConcatConverter);
......@@ -12,7 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/conv_op.h"
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
......@@ -58,10 +57,10 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
std::vector<int32_t> i_output_shape_data(output_dims.size());
for (size_t i = 0; i < input_dims.size(); i++) {
i_input_shape_data[i] = static_cast<int>(input_shape_data[i]);
i_input_shape_data[i] = static_cast<int32_t>(input_shape_data[i]);
}
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
i_output_shape_data[i] = static_cast<int32_t>(output_shape_data[i]);
}
const float* filter_data =
const_cast<const float*>(filter->mutable_data<float>());
......@@ -69,7 +68,6 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
auto strides = op_info->GetAttr<std::vector<int>>("strides");
auto dilations = op_info->GetAttr<std::vector<int>>("dilations");
add_conv_layer(graph->GetCompilerHandle(),
const_cast<const int*>(&i_input_shape_data[0]),
input_dims.size(),
......@@ -104,3 +102,6 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
REGISTER_SUBGRAPH_BRIDGE(conv2d,
kBM,
paddle::lite::subgraph::bm::ConvConverter);
REGISTER_SUBGRAPH_BRIDGE(depthwise_conv2d,
kBM,
paddle::lite::subgraph::bm::ConvConverter);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include <bmcompiler_op_code.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {
int DropoutConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto scope = op->scope();
auto op_info = op->op_info();
auto op_type = op_info->Type();
// input
auto x_var_name = op_info->Input("X").front();
auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
auto x_dims = x->dims();
const int64_t* x_shape_data = const_cast<const int64_t*>(&x_dims.data()[0]);
std::vector<int32_t> i_x_shape_data(x_dims.size());
for (size_t i = 0; i < x_dims.size(); i++) {
i_x_shape_data[i] = static_cast<int>(x_shape_data[i]);
}
// output
auto output_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
auto output_dims = output->dims();
const int64_t* output_shape_data =
const_cast<const int64_t*>(&output_dims.data()[0]);
std::vector<int32_t> i_output_shape_data(output_dims.size());
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
}
auto dropout_prob = op_info->GetAttr<float>("dropout_prob");
auto dropout_implementation =
op_info->GetAttr<std::string>("dropout_implementation");
CHECK_EQ(dropout_implementation, "downgrade_in_infer");
add_const_binary_layer(graph->GetCompilerHandle(),
static_cast<const char*>(x_var_name.c_str()),
const_cast<const int*>(&i_x_shape_data[0]),
x_dims.size(),
1.f - dropout_prob,
static_cast<const char*>(output_var_name.c_str()),
BINARY_MUL,
0);
graph->AddNode(output_var_name);
return SUCCESS;
}
} // namespace bm
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(dropout,
kBM,
paddle::lite::subgraph::bm::DropoutConverter);
......@@ -14,6 +14,7 @@
#include <bmcompiler_defs.h>
#include <bmcompiler_if.h>
#include <bmcompiler_if_lite.h>
#include <bmcompiler_op_code.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
......@@ -68,42 +69,52 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
}
if (y_is_const) {
CHECK_EQ(op_type, "elementwise_add");
}
auto axis = op_info->GetAttr<int>("axis");
int op_code{-1};
int eltwise_if_code{-1};
float coeff[2] = {1.f, 1.f};
if (op_type == "elementwise_mul") {
op_code = 0;
op_code = BINARY_MUL;
eltwise_if_code = 0;
} else if (op_type == "elementwise_add") {
op_code = 1;
op_code = BINARY_ADD;
eltwise_if_code = 1;
} else if (op_type == "elementwise_sub") {
op_code = 1;
op_code = BINARY_SUB;
eltwise_if_code = 1;
coeff[1] = -1.f;
} else {
LOG(FATAL) << "UNSUPPORTED ELTWISE OPERATION: " << op_type;
}
if (!y_is_const) {
add_eltwise_layer(graph->GetCompilerHandle(),
input_num,
shape,
dim,
name,
const_cast<const int*>(&i_output_shape_data[0]),
output_dims.size(),
static_cast<const char*>(output_var_name.c_str()),
op_code,
coeff);
} else {
const float* y_data = const_cast<const float*>(y->mutable_data<float>());
const float* x_data = const_cast<const float*>(x->mutable_data<float>());
auto unique_op_name = lite::subgraph::bm::UniqueName("expand_ndims");
std::vector<int32_t> i_expand_shape_data(3);
if (y_is_const) {
if (dim[0] == dim[1] || 2 == dim[0]) {
bm_add_const_tensor(graph->GetCompilerHandle(),
name[1],
shape[0],
dim[0],
shape[1],
dim[1],
static_cast<bm_data_type_t>(DTYPE_FP32),
static_cast<const void*>(y_data));
} else if (1 == dim[1] && 1 == axis) {
add_expand_ndims_layer(graph->GetCompilerHandle(),
name[1],
shape[1],
dim[1],
static_cast<const float*>(y_data),
-1,
2,
static_cast<const char*>(unique_op_name.c_str()));
name[1] = static_cast<const char*>(unique_op_name.c_str());
dim[1] = 3;
i_expand_shape_data[0] = i_y_shape_data[0];
i_expand_shape_data[1] = 1;
i_expand_shape_data[2] = 1;
shape[1] = &i_expand_shape_data[0];
y_data = nullptr;
}
add_binary_layer_v2(graph->GetCompilerHandle(),
name[0],
shape[0],
......@@ -111,12 +122,23 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
0,
static_cast<const float*>(x_data),
name[1],
shape[0],
dim[0],
shape[1],
dim[1],
0,
static_cast<const float*>(y_data),
static_cast<const char*>(output_var_name.c_str()),
0);
op_code);
} else {
add_eltwise_layer(graph->GetCompilerHandle(),
input_num,
shape,
dim,
name,
const_cast<const int*>(&i_output_shape_data[0]),
output_dims.size(),
static_cast<const char*>(output_var_name.c_str()),
eltwise_if_code,
coeff);
}
delete[] shape;
delete[] name;
......@@ -133,3 +155,9 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
REGISTER_SUBGRAPH_BRIDGE(elementwise_add,
kBM,
paddle::lite::subgraph::bm::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(elementwise_mul,
kBM,
paddle::lite::subgraph::bm::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(elementwise_sub,
kBM,
paddle::lite::subgraph::bm::ElementwiseConverter);
......@@ -41,8 +41,10 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
}
// add reshape layer
int i_x_reshape_shape_data[2];
for (size_t i = 0; i < 2; i++) {
i_x_reshape_shape_data[i] = static_cast<int>(x_shape_data[i]);
i_x_reshape_shape_data[0] = static_cast<int>(x_shape_data[0]);
i_x_reshape_shape_data[1] = 1;
for (size_t i = 1; i < x_dims.size(); i++) {
i_x_reshape_shape_data[1] *= static_cast<int>(x_shape_data[i]);
}
int reshape_param[] = {0, -1};
auto unique_op_reshape_name =
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {
int NormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto scope = op->scope();
auto op_info = op->op_info();
auto op_type = op_info->Type();
auto unique_op_name = lite::subgraph::bm::UniqueName(op_type);
auto x_var_name = op_info->Input("X").front();
auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
auto x_dims = x->dims();
auto output_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
auto output_dims = output->dims();
const int64_t* x_shape_data = const_cast<const int64_t*>(&x_dims.data()[0]);
const int64_t* output_shape_data =
const_cast<const int64_t*>(&output_dims.data()[0]);
std::vector<int32_t> i_x_shape_data(x_dims.size());
std::vector<int32_t> i_output_shape_data(output_dims.size());
for (size_t i = 0; i < x_dims.size(); i++) {
i_x_shape_data[i] = static_cast<int>(x_shape_data[i]);
}
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
}
float one = 1.f;
auto epsilon = op_info->GetAttr<float>("epsilon");
add_normalize_layer(graph->GetCompilerHandle(),
const_cast<const int*>(&i_x_shape_data[0]),
x_dims.size(),
static_cast<const char*>(x_var_name.c_str()),
const_cast<const int*>(&i_output_shape_data[0]),
output_dims.size(),
static_cast<const char*>(output_var_name.c_str()),
static_cast<const char*>(unique_op_name.c_str()),
0,
1,
&one,
epsilon);
graph->AddNode(output_var_name);
return SUCCESS;
}
} // namespace bm
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(norm, kBM, paddle::lite::subgraph::bm::NormConverter);
......@@ -15,10 +15,24 @@
#pragma once
USE_SUBGRAPH_BRIDGE(relu, kBM);
USE_SUBGRAPH_BRIDGE(leaky_relu, kBM);
USE_SUBGRAPH_BRIDGE(conv2d, kBM);
USE_SUBGRAPH_BRIDGE(depthwise_conv2d, kBM);
USE_SUBGRAPH_BRIDGE(elementwise_add, kBM);
USE_SUBGRAPH_BRIDGE(elementwise_mul, kBM);
USE_SUBGRAPH_BRIDGE(elementwise_sub, kBM);
USE_SUBGRAPH_BRIDGE(pool2d, kBM);
USE_SUBGRAPH_BRIDGE(softmax, kBM);
USE_SUBGRAPH_BRIDGE(mul, kBM);
USE_SUBGRAPH_BRIDGE(batch_norm, kBM);
USE_SUBGRAPH_BRIDGE(scale, kBM);
USE_SUBGRAPH_BRIDGE(concat, kBM);
USE_SUBGRAPH_BRIDGE(dropout, kBM);
USE_SUBGRAPH_BRIDGE(transpose, kBM);
USE_SUBGRAPH_BRIDGE(transpose2, kBM);
USE_SUBGRAPH_BRIDGE(reshape, kBM);
USE_SUBGRAPH_BRIDGE(reshape2, kBM);
USE_SUBGRAPH_BRIDGE(flatten, kBM);
USE_SUBGRAPH_BRIDGE(flatten2, kBM);
USE_SUBGRAPH_BRIDGE(norm, kBM);
USE_SUBGRAPH_BRIDGE(prior_box, kBM);
......@@ -65,6 +65,12 @@ int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if (pooling_type == "avg") {
average_exclusive = op_info->GetAttr<bool>("exclusive");
}
if (global_pooling) {
paddings[0] = 0;
paddings[1] = 0;
ksize[0] = i_x_shape_data[2];
ksize[1] = i_x_shape_data[3];
}
add_pooling_layer(
graph->GetCompilerHandle(),
const_cast<const int*>(&i_x_shape_data[0]),
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {
typedef struct __tag_st_priorbox_param {
std::vector<float> min_sizes;
std::vector<float> max_sizes;
std::vector<float> aspect_ratios;
std::vector<float> variances;
float step_w;
float step_h;
float offset;
int32_t img_w;
int32_t img_h;
int32_t prior_num;
bool min_max_aspect_ratios_order;
bool clip;
bool flip;
} st_priorbox_param;
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
bool flip,
std::vector<float>* output_aspect_ratior) {
constexpr float epsilon = 1e-6;
output_aspect_ratior->clear();
output_aspect_ratior->push_back(1.0f);
for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
float ar = input_aspect_ratior[i];
bool already_exist = false;
for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
already_exist = true;
break;
}
}
if (!already_exist) {
output_aspect_ratior->push_back(ar);
if (flip) {
output_aspect_ratior->push_back(1.0f / ar);
}
}
}
}
float* compute_priorbox_kernel(OpLite* op, st_priorbox_param* param) {
auto op_info = op->op_info();
auto scope = op->scope();
// inputs
auto in_var_name = op_info->Input("Input").front();
auto in = scope->FindVar(in_var_name)->GetMutable<lite::Tensor>();
auto in_dims = in->dims();
auto img_var_name = op_info->Input("Image").front();
auto img = scope->FindVar(img_var_name)->GetMutable<lite::Tensor>();
auto img_dims = img->dims();
// outputs
auto boxes_var_name = op_info->Output("Boxes").front();
auto boxes = scope->FindVar(boxes_var_name)->GetMutable<lite::Tensor>();
auto var_var_name = op_info->Output("Variances").front();
auto var = scope->FindVar(var_var_name)->GetMutable<lite::Tensor>();
std::vector<float> expand_aspect_ratios;
ExpandAspectRatios(param->aspect_ratios, param->flip, &expand_aspect_ratios);
param->aspect_ratios.clear();
for (size_t i = 0; i < expand_aspect_ratios.size(); i++) {
param->aspect_ratios.push_back(expand_aspect_ratios[i]);
}
param->prior_num = param->aspect_ratios.size() * param->min_sizes.size();
if (param->max_sizes.size() > 0) {
param->prior_num += param->max_sizes.size();
}
int32_t win1 = in_dims[3];
int32_t hin1 = in_dims[2];
DDim shape_out({hin1, win1, param->prior_num, 4});
boxes->Resize(shape_out);
var->Resize(shape_out);
// boxes->mutable_data<float>();
// var->mutable_data<float>();
float* cpu_data =
static_cast<float*>(malloc(sizeof(float) * boxes->data_size() * 2));
CHECK(cpu_data != nullptr);
const int32_t width = in_dims[3];
const int32_t height = in_dims[2];
int32_t img_width = param->img_w;
int32_t img_height = param->img_h;
if (img_width == 0 || img_height == 0) {
img_width = img_dims[3];
img_height = img_dims[2];
}
float step_w = param->step_w;
float step_h = param->step_h;
if (step_w == 0.f || step_h == 0.f) {
step_w = static_cast<float>(img_width) / width;
step_h = static_cast<float>(img_height) / height;
}
float offset = param->offset;
int32_t channel_size = height * width * param->prior_num * 4;
int32_t idx = 0;
///////////////////////////////////////////////////////////////////////
for (int32_t h = 0; h < height; ++h) {
for (int32_t w = 0; w < width; ++w) {
float center_x = (w + offset) * step_w;
float center_y = (h + offset) * step_h;
float box_width = 0.f;
float box_height = 0.f;
float* min_buf = reinterpret_cast<float*>(malloc(sizeof(float) * 4));
float* max_buf = reinterpret_cast<float*>(malloc(sizeof(float) * 4));
float* com_buf = reinterpret_cast<float*>(
malloc(sizeof(float) * expand_aspect_ratios.size() * 4));
CHECK(min_buf != nullptr);
CHECK(max_buf != nullptr);
CHECK(com_buf != nullptr);
// LOG(INFO) << "the number of min_size is " << min_sizes_.size();
for (size_t s = 0; s < param->min_sizes.size(); ++s) {
int32_t min_idx = 0;
int32_t max_idx = 0;
int32_t com_idx = 0;
int32_t min_size = param->min_sizes[s];
//! first prior: aspect_ratio = 1, size = min_size
box_width = box_height = min_size;
//! xmin
min_buf[min_idx++] = (center_x - box_width / 2.f) / img_width;
//! ymin
min_buf[min_idx++] = (center_y - box_height / 2.f) / img_height;
//! xmax
min_buf[min_idx++] = (center_x + box_width / 2.f) / img_width;
//! ymax
min_buf[min_idx++] = (center_y + box_height / 2.f) / img_height;
if (param->max_sizes.size() > 0) {
int max_size = param->max_sizes[s];
//! second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
box_width = box_height = sqrtf(min_size * max_size);
//! xmin
max_buf[max_idx++] = (center_x - box_width / 2.f) / img_width;
//! ymin
max_buf[max_idx++] = (center_y - box_height / 2.f) / img_height;
//! xmax
max_buf[max_idx++] = (center_x + box_width / 2.f) / img_width;
//! ymax
max_buf[max_idx++] = (center_y + box_height / 2.f) / img_height;
}
//! rest of priors
for (size_t r = 0; r < expand_aspect_ratios.size(); ++r) {
float ar = expand_aspect_ratios[r];
if (fabs(ar - 1.) < 1e-6) {
continue;
}
box_width = min_size * sqrt(ar);
box_height = min_size / sqrt(ar);
//! xmin
com_buf[com_idx++] = (center_x - box_width / 2.f) / img_width;
//! ymin
com_buf[com_idx++] = (center_y - box_height / 2.f) / img_height;
//! xmax
com_buf[com_idx++] = (center_x + box_width / 2.f) / img_width;
//! ymax
com_buf[com_idx++] = (center_y + box_height / 2.f) / img_height;
}
if (param->min_max_aspect_ratios_order) {
memcpy(cpu_data + idx, min_buf, sizeof(float) * min_idx);
idx += min_idx;
memcpy(cpu_data + idx, max_buf, sizeof(float) * max_idx);
idx += max_idx;
memcpy(cpu_data + idx, com_buf, sizeof(float) * com_idx);
idx += com_idx;
} else {
memcpy(cpu_data + idx, com_buf, sizeof(float) * com_idx);
idx += com_idx;
memcpy(cpu_data + idx, max_buf, sizeof(float) * max_idx);
idx += max_idx;
}
}
free(min_buf);
free(max_buf);
free(com_buf);
}
}
//! clip the prior's coordidate such that it is within [0, 1]
if (param->clip) {
for (int32_t d = 0; d < channel_size; ++d) {
cpu_data[d] = std::min(std::max(cpu_data[d], 0.f), 1.f);
}
}
//! set the variance.
float* ptr = cpu_data + channel_size;
int count = 0;
for (int32_t h = 0; h < height; ++h) {
for (int32_t w = 0; w < width; ++w) {
for (int32_t i = 0; i < param->prior_num; ++i) {
for (int j = 0; j < 4; ++j) {
ptr[count] = param->variances[j];
++count;
}
}
}
}
return cpu_data;
}
int PriorBoxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto scope = op->scope();
auto op_info = op->op_info();
auto op_type = op_info->Type();
// inputs
auto in_var_name = op_info->Input("Input").front();
auto in = scope->FindVar(in_var_name)->GetMutable<lite::Tensor>();
auto in_dims = in->dims();
auto img_var_name = op_info->Input("Image").front();
auto img = scope->FindVar(img_var_name)->GetMutable<lite::Tensor>();
auto img_dims = img->dims();
std::vector<int32_t> i_input_shape_data(in_dims.size());
for (size_t i = 0; i < in_dims.size(); i++) {
i_input_shape_data[i] = static_cast<int32_t>(in_dims[i]);
}
// outputs
auto boxes_var_name = op_info->Output("Boxes").front();
auto boxes = scope->FindVar(boxes_var_name)->GetMutable<lite::Tensor>();
auto var_var_name = op_info->Output("Variances").front();
auto unique_op_name = lite::subgraph::bm::UniqueName(op_type);
// param
st_priorbox_param param;
param.clip = op_info->GetAttr<bool>("clip");
param.min_sizes = op_info->GetAttr<std::vector<float>>("min_sizes");
param.max_sizes = op_info->GetAttr<std::vector<float>>("max_sizes");
param.aspect_ratios = op_info->GetAttr<std::vector<float>>("aspect_ratios");
param.variances = op_info->GetAttr<std::vector<float>>("variances");
param.offset = op_info->GetAttr<float>("offset");
if (op_info->HasAttr("flip")) {
param.flip = op_info->GetAttr<bool>("flip");
}
if (op_info->HasAttr("img_w")) {
param.img_w = op_info->GetAttr<int32_t>("img_w");
}
if (op_info->HasAttr("img_h")) {
param.img_h = op_info->GetAttr<int32_t>("img_h");
}
if (op_info->HasAttr("step_w")) {
param.step_w = op_info->GetAttr<float>("step_w");
}
if (op_info->HasAttr("step_h")) {
param.step_h = op_info->GetAttr<float>("step_h");
}
if (op_info->HasAttr("prior_num")) {
param.prior_num = op_info->GetAttr<int32_t>("prior_num");
}
if (op_info->HasAttr("min_max_aspect_ratios_order")) {
param.min_max_aspect_ratios_order =
op_info->GetAttr<bool>("min_max_aspect_ratios_order");
}
float* cpu_data = compute_priorbox_kernel(op, &param);
compute_priorbox_kernel(op, param);
auto boxes_dims = boxes->dims();
std::vector<int32_t> i_pri_out_shape_data(boxes_dims.size());
for (size_t i = 0; i < boxes_dims.size(); i++) {
i_pri_out_shape_data[i] = static_cast<int32_t>(boxes_dims[i]);
}
i_pri_out_shape_data[0] *= 2;
add_priorbox_layer(graph->GetCompilerHandle(),
const_cast<const int*>(&i_input_shape_data[0]),
in_dims.size(),
static_cast<const char*>(in_var_name.c_str()),
const_cast<const int*>(&i_pri_out_shape_data[0]),
boxes_dims.size(),
static_cast<const char*>(unique_op_name.c_str()),
static_cast<const float*>(cpu_data),
param.min_sizes.size(),
const_cast<const float*>(&param.min_sizes[0]),
param.max_sizes.size(),
const_cast<const float*>(&param.max_sizes[0]),
param.aspect_ratios.size(),
const_cast<const float*>(&param.aspect_ratios[0]),
static_cast<int>(param.flip),
static_cast<int>(param.clip),
param.variances.size(),
const_cast<const float*>(&param.variances[0]),
param.img_h,
param.img_w,
param.step_h,
param.step_w,
param.offset);
std::vector<int32_t> i_output_shape_data(boxes_dims.size());
for (size_t i = 0; i < boxes_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int32_t>(boxes_dims[i]);
}
int32_t* shape[2];
int dim[2];
const char* name[2];
dim[0] = boxes_dims.size();
dim[1] = boxes_dims.size();
name[0] = static_cast<const char*>(boxes_var_name.c_str());
name[1] = static_cast<const char*>(var_var_name.c_str());
shape[0] = &i_output_shape_data[0];
shape[1] = &i_output_shape_data[0];
int split_size = 2;
add_tf_split_layer(graph->GetCompilerHandle(),
const_cast<const int*>(&i_pri_out_shape_data[0]),
boxes_dims.size(),
static_cast<const char*>(unique_op_name.c_str()),
2,
shape,
dim,
name,
boxes_dims.size(),
0,
&split_size,
0);
graph->AddNode(boxes_var_name);
graph->AddNode(var_var_name);
return SUCCESS;
}
} // namespace bm
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(prior_box,
kBM,
paddle::lite::subgraph::bm::PriorBoxConverter);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {
int ReshapeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto scope = op->scope();
auto op_info = op->op_info();
auto op_type = op_info->Type();
auto x_var_name = op_info->Input("X").front();
auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
auto x_dims = x->dims();
std::vector<int32_t> i_x_shape_data(x_dims.size());
for (size_t i = 0; i < x_dims.size(); i++) {
i_x_shape_data[i] = static_cast<int32_t>(x_dims[i]);
}
auto output_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
auto output_dims = output->dims();
std::vector<int32_t> i_output_shape_data(output_dims.size());
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int32_t>(output_dims[i]);
}
// auto axis = op_info->GetAttr<int>("axis");
add_reshape_layer_v2(graph->GetCompilerHandle(),
static_cast<const char*>(x_var_name.c_str()),
const_cast<const int*>(&i_x_shape_data[0]),
x_dims.size(),
static_cast<const char*>(output_var_name.c_str()),
const_cast<const int*>(&i_output_shape_data[0]),
output_dims.size());
graph->AddNode(output_var_name);
return SUCCESS;
}
} // namespace bm
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(reshape,
kBM,
paddle::lite::subgraph::bm::ReshapeConverter);
REGISTER_SUBGRAPH_BRIDGE(reshape2,
kBM,
paddle::lite::subgraph::bm::ReshapeConverter);
REGISTER_SUBGRAPH_BRIDGE(flatten,
kBM,
paddle::lite::subgraph::bm::ReshapeConverter);
REGISTER_SUBGRAPH_BRIDGE(flatten2,
kBM,
paddle::lite::subgraph::bm::ReshapeConverter);
......@@ -48,7 +48,10 @@ int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
for (size_t i = 0; i < length; i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
}
auto axis = op_info->GetAttr<int>("axis");
int32_t axis = -1;
if (op_info->HasAttr("axis")) {
axis = op_info->GetAttr<int>("axis");
}
if (axis < 0) {
axis += x_dims.size();
}
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_defs.h>
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {
int TransposeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto scope = op->scope();
auto op_info = op->op_info();
auto op_type = op_info->Type();
auto x_var_name = op_info->Input("X").front();
auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
auto x_dims = x->dims();
auto output_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
auto output_dims = output->dims();
const int64_t* x_shape_data = const_cast<const int64_t*>(&x_dims.data()[0]);
const int64_t* output_shape_data =
const_cast<const int64_t*>(&output_dims.data()[0]);
std::vector<int32_t> i_x_shape_data(x_dims.size());
std::vector<int32_t> i_output_shape_data(output_dims.size());
for (size_t i = 0; i < x_dims.size(); i++) {
i_x_shape_data[i] = static_cast<int>(x_shape_data[i]);
}
for (size_t i = 0; i < output_dims.size(); i++) {
i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
}
auto axis = op_info->GetAttr<std::vector<int>>("axis");
CHECK_EQ(axis.size(), x_dims.size());
add_transpose_layer_v2(graph->GetCompilerHandle(),
static_cast<const char*>(x_var_name.c_str()),
const_cast<const int*>(&i_x_shape_data[0]),
x_dims.size(),
DTYPE_FP32,
static_cast<const char*>(output_var_name.c_str()),
NULL,
const_cast<const int*>(&axis[0]));
graph->AddNode(output_var_name);
return SUCCESS;
}
} // namespace bm
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(transpose,
kBM,
paddle::lite::subgraph::bm::TransposeConverter);
REGISTER_SUBGRAPH_BRIDGE(transpose2,
kBM,
paddle::lite::subgraph::bm::TransposeConverter);
......@@ -54,7 +54,7 @@ int SubgraphEngine::BuildDeviceProgram() {
}
std::string net_name = "paddle_bitmain";
__bmcompile_opt(
graph.GetCompilerHandle(), const_cast<char*>(net_name.c_str()), 2);
graph.GetCompilerHandle(), const_cast<char*>(net_name.c_str()), 1);
void* bmodel_data = nullptr;
unsigned int data_size = 0;
bm_hd_ = static_cast<bm_handle_t>(ctx.GetHandle());
......@@ -109,7 +109,6 @@ int SubgraphEngine::BuildDeviceProgram() {
net_info_->output_dtypes[i],
stage.output_shapes[i]);
}
return status;
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册