提交 1cff3bfe 编写于 作者: W WangLiu 提交者: GitHub

Merge pull request #542 from cocodark/develop

accelerate with openmp
......@@ -2,7 +2,7 @@ cmake_minimum_required(VERSION 3.0)
project(paddle-mobile)
option(DEBUGING "enable debug mode" ON)
option(USE_OPENMP "openmp support" OFF)
option(USE_OPENMP "openmp support" ON)
option(USE_EXCEPTION "use std exception" ON)
option(LOG_PROFILE "log profile" ON)
# select the platform to build
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "io/executor.h"
#include <operators/math/gemm.h>
#include <algorithm>
#include <vector>
#include "common/enforce.h"
......@@ -25,6 +26,9 @@ limitations under the License. */
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#ifdef _OPENMP
#include <omp.h>
#endif // _OPENMP
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#include <queue>
#include <utility>
......@@ -403,6 +407,17 @@ std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
return result_vector;
}
template <typename Dtype, Precision P>
void Executor<Dtype, P>::SetThreadNum(int num) {
for (int k = 0; k < std::max(num, 3); ++k) {
operators::math::Gemmer::gemmers.push_back(new operators::math::Gemmer());
}
#ifdef _OPENMP
// omp_set_dynamic(0);
omp_set_num_threads(num);
#endif
}
template class Executor<CPU, Precision::FP32>;
template class Executor<FPGA, Precision::FP32>;
template class Executor<GPU_MALI, Precision::FP32>;
......
......@@ -58,6 +58,8 @@ class Executor {
std::vector<Ptype> Predict(const std::vector<Ptype> &input,
const std::vector<int64_t> &dims);
void SetThreadNum(int num);
protected:
Executor() = default;
void InitMemory();
......
......@@ -14,10 +14,14 @@ limitations under the License. */
#ifdef FUSION_CONVADD_OP
#pragma once
#if _OPENMP
#include <omp.h>
#endif
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/gemm.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
......@@ -106,9 +110,33 @@ void ConvAddBasic(const FusionConvAddParam &param) {
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
math::matmul<float>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(1));
auto dim_a = filter_slice.dims();
auto dim_b = col_matrix.dims();
auto dim_out = out_slice.dims();
int m = dim_out[0];
int n = dim_out[1];
int k = dim_a[1];
float *output_data = out_slice.data<float>();
int thread_num = 4;
int m1 = m / thread_num;
int m2 = m % thread_num;
#pragma omp parallel for
for (int j = 0; j < thread_num; ++j) {
int row_count = m1;
if (j == thread_num - 1) {
row_count = m1 + m2;
}
math::Gemmer::gemmers[j]->Sgemm(
row_count, n, k, 1, filter_slice.data<float>() + j * m1 * k, k,
col_matrix.data<float>(), n, 1, output_data + j * m1 * n, n, false);
}
// math::matmul<float>(filter_slice, false, col_matrix, false,
// static_cast<float>(1), &out_slice,
// static_cast<float>(1));
}
}
}
......
......@@ -13,7 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#ifdef LRN_OP
#ifdef _OPENMP
#include <omp.h>
#endif
#include "framework/operator.h"
#include "operators/op_param.h"
......@@ -47,6 +49,7 @@ struct LRNFunctor {
std::fill(sqr_buffer_ptr, sqr_buffer_ptr + sqr_buffer.numel(), 0.0);
for (int a = 0; a < N; a++) {
#pragma parallel for
for (int b = 0; b < C; b++) {
for (int index = start; index < end; index++) {
int channel = b + index;
......
......@@ -22,16 +22,10 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
namespace math {
int MC = 0;
int KC = 0;
int NC = 0;
float *packedA;
float *packedB;
float *packedC;
float *zero;
std::vector<Gemmer *> Gemmer::gemmers;
// 将A矩阵分块复制到连续内存(ColMajor)
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
void Gemmer::PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
float *buffer) {
int i, j;
const float *Aij;
......@@ -58,7 +52,7 @@ void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
}
// 将A矩阵分块复制到连续内存(RowMajor)
void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
void Gemmer::PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
float *buffer) {
const float *a0, *a1, *a2, *a3;
for (int i = 0; i < m - m_tail; i += MR) {
......@@ -98,7 +92,7 @@ void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
}
// 将B矩阵分块复制到连续内存(ColMajor)
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
void Gemmer::PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float *buffer) {
int i, j;
const float *Bj, *Bj1, *Bj2, *Bj3;
......@@ -127,7 +121,7 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
}
// 将B矩阵分块复制到连续内存(RowMajor)
void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
void Gemmer::PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
float *buffer) {
const float *b0;
for (int j = 0; j < n - n_tail; j += NR) {
......@@ -156,8 +150,9 @@ void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
}
// 分块矩阵乘法
void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
float beta, float *c, float *C, int ldc, bool relu) {
void Gemmer::InnerKernel(int mc, int nc, float alpha, const float *a,
const float *b, float beta, float *c, float *C,
int ldc, bool relu) {
for (int j = 0; j < nc; j += NR) {
for (int i = 0; i < mc; i += MR) {
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
......@@ -184,9 +179,10 @@ void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
}
// 分块矩阵乘法
void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
const float *b, float beta, float *c, float *C, int ldc,
bool relu, float *new_scale, float *new_bias) {
void Gemmer::InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
const float *b, float beta, float *c, float *C,
int ldc, bool relu, float *new_scale,
float *new_bias) {
for (int j = 0; j < nc; j += NR) {
for (int i = 0; i < mc; i += MR) {
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
......@@ -202,7 +198,8 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
}
#if defined(IOS)
void AddDot4x4(int k, const float *a, const float *b, float *C, int ldc) {
void Gemmer::AddDot4x4(int k, const float *a, const float *b, float *C,
int ldc) {
// init C
float32x4_t cv0 = vdupq_n_f32(0.0);
float32x4_t cv1 = vdupq_n_f32(0.0);
......@@ -253,7 +250,8 @@ void AddDot4x4(int k, const float *a, const float *b, float *C, int ldc) {
} // namespace math
#elif defined(ARMV7)
void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
void Gemmer::AddDot4x4(int k, const float *a, const float *b, float *c,
int ldc) {
const float *a_ptr, *b_ptr;
a_ptr = a;
b_ptr = b;
......@@ -324,7 +322,8 @@ void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
}
#else
void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
void Gemmer::AddDot4x4(int k, const float *a, const float *b, float *c,
int ldc) {
float *c0, *c1, *c2, *c3;
c0 = c;
c1 = c + ldc;
......@@ -363,8 +362,9 @@ void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
#endif
// 32位 float 矩阵乘法
void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc, bool relu) {
void Gemmer::Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu) {
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int L1 = 30 * 1024;
......@@ -415,9 +415,10 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile::memory::Free(zero);
}
void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu, float *new_scale, float *new_bias) {
void Gemmer::SgemmWithBn(int m, int n, int k, float alpha, const float *A,
int lda, const float *B, int ldb, float beta, float *C,
int ldc, bool relu, float *new_scale,
float *new_bias) {
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int L1 = 30 * 1024;
......@@ -468,9 +469,9 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile::memory::Free(zero);
}
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu) {
void Gemmer::VectorKernel(int m, int n, int k, float alpha, const float *A,
int lda, const float *B, int ldb, float beta,
float *C, int ldc, bool relu) {
float *bufferC = static_cast<float *>(memory::Alloc(sizeof(float) * n));
const float *a0, *b0, *b1, *b2, *b3;
......@@ -690,9 +691,10 @@ void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
}
}
void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
int lda, const float *B, int ldb, float beta, float *C,
int ldc, bool relu, float *new_scale, float *new_bias) {
void Gemmer::VectorKernelWithBn(int m, int n, int k, float alpha,
const float *A, int lda, const float *B,
int ldb, float beta, float *C, int ldc,
bool relu, float *new_scale, float *new_bias) {
float *bufferC = static_cast<float *>(memory::Alloc(sizeof(float) * n));
const float *a0, *b0, *b1, *b2, *b3;
......@@ -901,7 +903,8 @@ void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
}
}
void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc) {
void Gemmer::AddDot4x8(int k, const float *a, const float *b, float *c,
int ldc) {
const float *a_ptr, *b_ptr;
a_ptr = a;
b_ptr = b;
......@@ -1009,7 +1012,7 @@ void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc) {
}
// C = A * B
void WriteBasic(int mc, int nc, float *c, float *C, int ldc) {
void Gemmer::WriteBasic(int mc, int nc, float *c, float *C, int ldc) {
int nc1 = nc / 16;
int _nc1 = nc % 16;
int step = 4 * ldc;
......@@ -1066,10 +1069,10 @@ void WriteBasic(int mc, int nc, float *c, float *C, int ldc) {
}
// C = alpha * A * B + beta * C
void WriteWithAlphaBeta(int mc, int nc, float *c, float *C, int ldc) {}
void Gemmer::WriteWithAlphaBeta(int mc, int nc, float *c, float *C, int ldc) {}
// C = A * B + C
void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc) {
void Gemmer::WriteWithAdd(int mc, int nc, float *c, float *C, int ldc) {
int nc1 = nc / 16;
int _nc1 = nc % 16;
int step = 4 * ldc;
......@@ -1133,7 +1136,7 @@ void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc) {
}
// C = A * B + C, relu(C)
void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc) {
void Gemmer::WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc) {
int nc1 = nc / 16;
int _nc1 = nc % 16;
int step = 4 * ldc;
......@@ -1207,8 +1210,8 @@ void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc) {
}
// C = A * B, batchnorm(C)
void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *scale,
float *bias) {
void Gemmer::WriteWithBn(int mc, int nc, float *c, float *C, int ldc,
float *scale, float *bias) {
int nc1 = nc / 16;
int _nc1 = nc % 16;
int nc2 = _nc1 / 4;
......@@ -1293,8 +1296,8 @@ void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *scale,
}
// C = A * B, batchnorm(C), relu(C)
void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale,
float *bias) {
void Gemmer::WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
float *scale, float *bias) {
int nc1 = nc / 16;
int _nc1 = nc % 16;
int nc2 = _nc1 / 4;
......@@ -1386,7 +1389,7 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale,
}
// C = A * B
void VecWriteBasic(int n, float *c, float *C, int ldc) {
void Gemmer::VecWriteBasic(int n, float *c, float *C, int ldc) {
int nc1 = n / 16;
int _nc1 = n % 16;
int nc2 = _nc1 / 4;
......@@ -1432,10 +1435,10 @@ void VecWriteBasic(int n, float *c, float *C, int ldc) {
}
// C = alpha * A * B + beta * C
void VecWriteWithAlphaBeta(int n, float *c, float *C, int ldc) {}
void Gemmer::VecWriteWithAlphaBeta(int n, float *c, float *C, int ldc) {}
// C = A * B + C
void VecWriteWithAdd(int n, float *c, float *C, int ldc) {
void Gemmer::VecWriteWithAdd(int n, float *c, float *C, int ldc) {
int nc1 = n / 16;
int _nc1 = n % 16;
......@@ -1473,7 +1476,7 @@ void VecWriteWithAdd(int n, float *c, float *C, int ldc) {
}
// C = A * B + C, relu(C)
void VecWriteWithAddRelu(int n, float *c, float *C, int ldc) {
void Gemmer::VecWriteWithAddRelu(int n, float *c, float *C, int ldc) {
int nc1 = n / 16;
int _nc1 = n % 16;
......@@ -1521,7 +1524,7 @@ void VecWriteWithAddRelu(int n, float *c, float *C, int ldc) {
}
// C = A * B, batchnorm(C)
void VecWriteWithBn(int n, float *c, float *C, int ldc, float *scale,
void Gemmer::VecWriteWithBn(int n, float *c, float *C, int ldc, float *scale,
float *bias) {
int nc1 = n / 16;
int _nc1 = n % 16;
......@@ -1588,8 +1591,8 @@ void VecWriteWithBn(int n, float *c, float *C, int ldc, float *scale,
}
// C = A * B, batchnorm(C), relu(C)
void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *scale,
float *bias) {
void Gemmer::VecWriteWithBnRelu(int n, float *c, float *C, int ldc,
float *scale, float *bias) {
int nc1 = n / 16;
int _nc1 = n % 16;
int nc2 = _nc1 / 4;
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
......@@ -27,88 +28,111 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
namespace math {
// 将 A 矩阵分块复制到连续内存(ColMajor)
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
struct Gemmer {
int MC = 0;
int KC = 0;
int NC = 0;
float *packedA;
float *packedB;
float *packedC;
float *zero;
static std::vector<Gemmer *> gemmers;
// 将 A 矩阵分块复制到连续内存(ColMajor)
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
float *buffer);
// 将 B 矩阵分块复制到连续内存(ColMajor)
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
// 将 B 矩阵分块复制到连续内存(ColMajor)
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float *buffer);
// 将 A 矩阵分块复制到连续内存(RowMajor)
void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
// 将 A 矩阵分块复制到连续内存(RowMajor)
void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
float *buffer);
// 将 B 矩阵分块复制到连续内存(RowMajor)
void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
// 将 B 矩阵分块复制到连续内存(RowMajor)
void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
float *buffer);
// 分块矩阵乘法
void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
// 分块矩阵乘法
void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
float beta, float *c, float *C, int ldc, bool relu);
void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
const float *b, float beta, float *c, float *C, int ldc,
bool relu, float *new_scale, float *new_bias);
void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
const float *b, float beta, float *c, float *C,
int ldc, bool relu, float *new_scale, float *new_bias);
// 向量矩阵乘法 (M = 1)
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
// 向量矩阵乘法 (M = 1)
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu);
void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
int lda, const float *B, int ldb, float beta, float *C,
int ldc, bool relu, float *new_scale, float *new_bias);
// 计算一个更小的 C 矩阵分块
void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc);
void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc);
// 分块矩阵乘法结果回写
// C = A * B
void WriteBasic(int mc, int nc, float *c, float *C, int ldc);
// C = alpha * A * B + beta * C
void WriteWithAlphaBeta(int mc, int nc, float *c, float *C, int ldc);
// C = A * B + C
void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc);
// C = A * B + C, relu(C)
void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc);
// C = A * B, batchnorm(C)
void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *new_scale,
void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
int lda, const float *B, int ldb, float beta,
float *C, int ldc, bool relu, float *new_scale,
float *new_bias);
// C = A * B, batchnorm(C), relu(C)
void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
// 计算一个更小的 C 矩阵分块
void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc);
void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc);
// 分块矩阵乘法结果回写
// C = A * B
void WriteBasic(int mc, int nc, float *c, float *C, int ldc);
// C = alpha * A * B + beta * C
void WriteWithAlphaBeta(int mc, int nc, float *c, float *C, int ldc);
// C = A * B + C
void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc);
// C = A * B + C, relu(C)
void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc);
// C = A * B, batchnorm(C)
void WriteWithBn(int mc, int nc, float *c, float *C, int ldc,
float *new_scale, float *new_bias);
// 向量矩阵乘法结果回写
// C = A * B
void VecWriteBasic(int n, float *c, float *C, int ldc);
// C = alpha * A * B + beta * C
void VecWriteWithAlphaBeta(int n, float *c, float *C, int ldc);
// C = A * B + C
void VecWriteWithAdd(int n, float *c, float *C, int ldc);
// C = A * B + C, relu(C)
void VecWriteWithAddRelu(int n, float *c, float *C, int ldc);
// C = A * B, batchnorm(C)
void VecWriteWithBn(int n, float *c, float *C, int ldc, float *new_scale,
// C = A * B, batchnorm(C), relu(C)
void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
float *new_scale, float *new_bias);
// 向量矩阵乘法结果回写
// C = A * B
void VecWriteBasic(int n, float *c, float *C, int ldc);
// C = alpha * A * B + beta * C
void VecWriteWithAlphaBeta(int n, float *c, float *C, int ldc);
// C = A * B + C
void VecWriteWithAdd(int n, float *c, float *C, int ldc);
// C = A * B + C, relu(C)
void VecWriteWithAddRelu(int n, float *c, float *C, int ldc);
// C = A * B, batchnorm(C)
void VecWriteWithBn(int n, float *c, float *C, int ldc, float *new_scale,
float *new_bias);
// C = A * B, batchnorm(C), relu(C)
void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
// C = A * B, batchnorm(C), relu(C)
void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
float *new_bias);
// 32位 float 矩阵乘法
void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
// 32位 float 矩阵乘法
void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc, bool relu);
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu, float *new_scale, float *new_bias);
// 64位 double 矩阵乘法
void dgemm(int m, int n, int k, float alpha, const double *A, int lda,
// 64位 double 矩阵乘法
void dgemm(int m, int n, int k, float alpha, const double *A, int lda,
const double *B, int ldb, float beta, double *C, int ldc);
};
} // namespace math
} // namespace operators
......
......@@ -26,23 +26,14 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int M = dim_out[0];
int N = dim_out[1];
int K = (!trans_a) ? dim_a[1] : dim_a[0];
Sgemm(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
beta, matrix_out->data<float>(), N, relu);
Gemmer::gemmers[0]->Sgemm(M, N, K, alpha, matrix_a.data<float>(), K,
matrix_b.data<float>(), N, beta,
matrix_out->data<float>(), N, relu);
}
template <>
......@@ -54,24 +45,15 @@ void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int M = dim_out[0];
int N = dim_out[1];
int K = (!trans_a) ? dim_a[1] : dim_a[0];
SgemmWithBn(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(),
N, beta, matrix_out->data<float>(), N, relu,
new_scale->data<float>(), new_bias->data<float>());
Gemmer::gemmers[0]->SgemmWithBn(
M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
beta, matrix_out->data<float>(), N, relu, new_scale->data<float>(),
new_bias->data<float>());
}
} // namespace math
......
此差异已折叠。
......@@ -15,6 +15,9 @@ limitations under the License. */
#ifdef POOL_OP
#pragma once
#ifdef _OPENMP
#include <omp.h>
#endif
#include <algorithm>
#include <vector>
#include "framework/tensor.h"
......
......@@ -16,6 +16,9 @@ limitations under the License. */
#include "pooling.h"
#include "common/types.h"
#ifdef _OPENMP
#include <omp.h>
#endif
namespace paddle_mobile {
namespace operators {
......@@ -57,8 +60,8 @@ class PoolFunctor<CPU, PoolProcess, T> {
T *output_data = output->mutable_data<T>();
for (int i = 0; i < batch_size; i++) {
// #pragma omp parallel for
for (int c = 0; c < output_channels; ++c) {
#pragma omp parallel for
for (int ph = 0; ph < output_height; ++ph) {
int hstart = ph * stride_height - padding_height;
int hend = std::min(hstart + ksize_height, input_height);
......
......@@ -26,16 +26,17 @@ int main() {
auto time2 = time();
DLOG << "load cost :" << time_diff(time1, time2) << "ms\n";
paddle_mobile::Executor<paddle_mobile::CPU> executor(program, 1, optimize);
executor.SetThreadNum(4);
std::vector<float> input;
std::vector<int64_t> dims{1, 3, 224, 224};
GetInput<float>(g_test_image_1x3x224x224, &input, dims);
auto time3 = time();
for (int i = 0; i < 10; ++i) {
int count = 1;
for (int i = 0; i < count; ++i) {
executor.Predict(input, dims);
}
auto time4 = time();
DLOG << "predict cost :" << time_diff(time3, time4) << "ms\n";
DLOG << "predict cost :" << time_diff(time3, time4) / count << "ms\n";
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册