Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
1ae03f55
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
1ae03f55
编写于
3月 05, 2020
作者:
Z
zhupengyang
提交者:
GitHub
3月 05, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
arena/framework support tensor_arra, add write_to_array and read_from_array uts (#3083)
上级
0cc72c42
变更
14
显示空白变更内容
内联
并排
Showing
14 changed file
with
249 addition
and
195 deletion
+249
-195
lite/core/arena/framework.cc
lite/core/arena/framework.cc
+42
-12
lite/core/arena/framework.h
lite/core/arena/framework.h
+70
-6
lite/core/tensor.cc
lite/core/tensor.cc
+1
-0
lite/core/type_system.h
lite/core/type_system.h
+3
-2
lite/kernels/arm/read_from_array_compute.cc
lite/kernels/arm/read_from_array_compute.cc
+7
-13
lite/kernels/arm/read_from_array_compute.h
lite/kernels/arm/read_from_array_compute.h
+1
-4
lite/kernels/arm/write_to_array_compute.cc
lite/kernels/arm/write_to_array_compute.cc
+7
-27
lite/kernels/arm/write_to_array_compute.h
lite/kernels/arm/write_to_array_compute.h
+0
-2
lite/operators/op_params.h
lite/operators/op_params.h
+2
-2
lite/operators/read_from_array_op.cc
lite/operators/read_from_array_op.cc
+11
-7
lite/operators/write_to_array_op.cc
lite/operators/write_to_array_op.cc
+12
-7
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+2
-2
lite/tests/kernels/read_from_array_compute_test.cc
lite/tests/kernels/read_from_array_compute_test.cc
+47
-50
lite/tests/kernels/write_to_array_compute_test.cc
lite/tests/kernels/write_to_array_compute_test.cc
+44
-61
未找到文件。
lite/core/arena/framework.cc
浏览文件 @
1ae03f55
...
...
@@ -74,12 +74,21 @@ void TestCase::PrepareInputsForInstruction() {
const
auto
*
param_type
=
ParamTypeRegistry
::
Global
().
RetrieveInArgument
(
place_
,
kernel_key
,
arg
);
const
auto
*
inst_type
=
Type
::
GetTensorTy
(
TARGET
(
kHost
));
const
Type
*
inst_type
=
nullptr
;
if
(
param_type
->
type
->
IsTensor
())
{
inst_type
=
Type
::
GetTensorTy
(
TARGET
(
kHost
));
}
else
if
(
param_type
->
type
->
IsTensorList
())
{
inst_type
=
Type
::
GetTensorListTy
(
TARGET
(
kHost
));
}
else
{
LOG
(
FATAL
)
<<
"unsupported param_type"
;
}
CHECK
(
scope_
->
FindVar
(
var
));
const
auto
*
shared_tensor
=
scope_
->
FindTensor
(
var
);
if
(
!
TargetCompatibleTo
(
*
inst_type
,
*
param_type
->
type
))
{
/// Create a tensor in the instruction's scope, alloc memory and then
/// copy data there.
/// Create a tensor or tensor_array in the instruction's scope,
/// alloc memory and then copy data there.
if
(
param_type
->
type
->
IsTensor
())
{
const
auto
*
shared_tensor
=
scope_
->
FindTensor
(
var
);
auto
*
target_tensor
=
inst_scope_
->
NewTensor
(
var
);
CHECK
(
!
shared_tensor
->
dims
().
empty
())
<<
"shared_tensor is empty yet"
;
target_tensor
->
Resize
(
shared_tensor
->
dims
());
...
...
@@ -88,6 +97,27 @@ void TestCase::PrepareInputsForInstruction() {
shared_tensor
->
memory_size
()),
shared_tensor
->
raw_data
(),
shared_tensor
->
memory_size
());
}
else
if
(
param_type
->
type
->
IsTensorList
())
{
const
auto
*
shared_tensor_array
=
scope_
->
FindVar
(
var
)
->
GetMutable
<
std
::
vector
<
Tensor
>>
();
auto
*
target_tensor_array
=
inst_scope_
->
Var
(
var
)
->
GetMutable
<
std
::
vector
<
Tensor
>>
();
CHECK
(
!
shared_tensor_array
->
empty
())
<<
"shared_tensor_array is empty yet"
;
target_tensor_array
->
resize
(
shared_tensor_array
->
size
());
for
(
int
i
=
0
;
i
<
shared_tensor_array
->
size
();
i
++
)
{
target_tensor_array
->
at
(
i
).
Resize
(
shared_tensor_array
->
at
(
i
).
dims
());
TargetCopy
(
param_type
->
type
->
target
(),
target_tensor_array
->
at
(
i
).
mutable_data
(
param_type
->
type
->
target
(),
shared_tensor_array
->
at
(
i
).
memory_size
()),
shared_tensor_array
->
at
(
i
).
raw_data
(),
shared_tensor_array
->
at
(
i
).
memory_size
());
}
}
else
{
LOG
(
FATAL
)
<<
"not support"
;
}
}
}
}
...
...
lite/core/arena/framework.h
浏览文件 @
1ae03f55
...
...
@@ -66,9 +66,17 @@ class TestCase {
/// output.
virtual
void
RunBaseline
(
Scope
*
scope
)
=
0
;
/// Check the precision of the output tensors. It will compare the same tensor
/// in two scopes, one of the instruction execution, and the other for the
/// baseline.
// checkout the precision of the two tensors. b_tensor is from the baseline
template
<
typename
T
>
bool
CheckTensorPrecision
(
const
Tensor
*
a_tensor
,
const
Tensor
*
b_tensor
,
float
abs_error
);
/// Check the precision of the output variables. It will compare the same
/// tensor
/// (or all tensors of tensor_array) in two scopes, one of the instruction
/// execution,
/// and the other for the baseline.
template
<
typename
T
>
bool
CheckPrecision
(
const
std
::
string
&
var_name
,
float
abs_error
);
...
...
@@ -120,6 +128,34 @@ class TestCase {
tensor
->
set_persistable
(
is_persistable
);
}
/// Prepare a tensor_array in host. The tensors will be created in scope_.
/// Need to specify the targets other than X86 or ARM.
template
<
typename
T
>
void
SetCommonTensorList
(
const
std
::
string
&
var_name
,
const
std
::
vector
<
DDim
>&
array_tensor_dims
,
const
std
::
vector
<
std
::
vector
<
T
>>&
datas
,
const
std
::
vector
<
LoD
>&
lods
=
{})
{
CHECK_EQ
(
array_tensor_dims
.
size
(),
datas
.
size
());
if
(
!
lods
.
empty
())
{
CHECK_EQ
(
array_tensor_dims
.
size
(),
lods
.
size
());
}
auto
*
tensor_array
=
scope_
->
Var
(
var_name
)
->
GetMutable
<
std
::
vector
<
Tensor
>>
();
for
(
int
i
=
0
;
i
<
array_tensor_dims
.
size
();
i
++
)
{
Tensor
tmp
;
tmp
.
Resize
(
array_tensor_dims
[
i
]);
auto
*
tmp_data
=
tmp
.
mutable_data
<
T
>
();
memcpy
(
tmp_data
,
datas
[
i
].
data
(),
array_tensor_dims
[
i
].
production
()
*
sizeof
(
T
));
if
(
!
lods
.
empty
())
{
tmp
.
set_lod
(
lods
[
i
]);
}
tensor_array
->
push_back
(
tmp
);
}
}
// Prepare for the operator.
virtual
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
=
0
;
...
...
@@ -263,9 +299,9 @@ class Arena {
};
template
<
typename
T
>
bool
TestCase
::
Check
Precision
(
const
std
::
string
&
var_name
,
float
abs_error
)
{
auto
a_tensor
=
inst_scope_
->
FindTensor
(
var_name
);
auto
b_tensor
=
base_scope_
->
FindTensor
(
var_name
);
bool
TestCase
::
Check
TensorPrecision
(
const
Tensor
*
a_tensor
,
const
Tensor
*
b_tensor
,
float
abs_error
)
{
CHECK
(
a_tensor
);
CHECK
(
b_tensor
);
...
...
@@ -305,6 +341,34 @@ bool TestCase::CheckPrecision(const std::string& var_name, float abs_error) {
return
success
;
}
template
<
typename
T
>
bool
TestCase
::
CheckPrecision
(
const
std
::
string
&
var_name
,
float
abs_error
)
{
bool
success
=
true
;
if
(
inst_scope_
->
FindVar
(
var_name
)
->
IsType
<
Tensor
>
())
{
auto
a_tensor
=
inst_scope_
->
FindTensor
(
var_name
);
auto
b_tensor
=
base_scope_
->
FindTensor
(
var_name
);
success
=
success
&&
CheckTensorPrecision
<
T
>
(
a_tensor
,
b_tensor
,
abs_error
);
}
else
if
(
inst_scope_
->
FindVar
(
var_name
)
->
IsType
<
std
::
vector
<
Tensor
>>
())
{
auto
a_tensor_array
=
inst_scope_
->
FindVar
(
var_name
)
->
GetMutable
<
std
::
vector
<
Tensor
>>
();
auto
b_tensor_array
=
base_scope_
->
FindVar
(
var_name
)
->
GetMutable
<
std
::
vector
<
Tensor
>>
();
CHECK_EQ
(
a_tensor_array
->
size
(),
b_tensor_array
->
size
());
for
(
int
i
=
0
;
i
<
a_tensor_array
->
size
();
i
++
)
{
Tensor
*
a_tensor
=
&
(
a_tensor_array
->
at
(
i
));
Tensor
*
b_tensor
=
&
(
b_tensor_array
->
at
(
i
));
if
(
a_tensor
->
dims
().
size
()
==
0
&&
b_tensor
->
dims
().
size
()
==
0
)
{
continue
;
}
success
=
success
&&
CheckTensorPrecision
<
T
>
(
a_tensor
,
b_tensor
,
abs_error
);
}
}
else
{
LOG
(
FATAL
)
<<
"unsupported var type"
;
}
return
success
;
}
}
// namespace arena
}
// namespace lite
}
// namespace paddle
lite/core/tensor.cc
浏览文件 @
1ae03f55
...
...
@@ -82,6 +82,7 @@ void TensorLite::CopyDataFrom(const TensorLite &other) {
target_
=
other
.
target_
;
lod_
=
other
.
lod_
;
memory_size_
=
other
.
memory_size_
;
precision_
=
other
.
precision_
;
buffer_
->
CopyDataFrom
(
*
other
.
buffer_
,
memory_size_
);
}
...
...
lite/core/type_system.h
浏览文件 @
1ae03f55
...
...
@@ -177,8 +177,9 @@ static bool TargetCompatibleTo(const Type& a, const Type& b) {
return
x
==
TARGET
(
kHost
)
||
x
==
TARGET
(
kX86
)
||
x
==
TARGET
(
kARM
);
};
if
(
a
.
IsVoid
()
||
b
.
IsVoid
())
return
true
;
if
(
a
.
IsTensor
()
||
b
.
IsTensor
())
{
if
(
a
.
IsTensor
()
&&
b
.
IsTensor
())
{
if
(
a
.
IsTensor
()
||
b
.
IsTensor
()
||
a
.
IsTensorList
()
||
b
.
IsTensorList
())
{
if
((
a
.
IsTensor
()
&&
b
.
IsTensor
())
||
(
a
.
IsTensorList
()
&&
b
.
IsTensorList
()))
{
return
is_host
(
a
.
target
())
?
is_host
(
b
.
target
())
:
a
.
target
()
==
b
.
target
();
}
...
...
lite/kernels/arm/read_from_array_compute.cc
浏览文件 @
1ae03f55
...
...
@@ -20,23 +20,17 @@ namespace lite {
namespace
kernels
{
namespace
arm
{
void
ReadFromArrayCompute
::
PrepareForRun
()
{}
void
ReadFromArrayCompute
::
Run
()
{
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
auto
&
param
=
this
->
Param
<
operators
::
ReadFromArrayParam
>
();
auto
&
param
=
this
->
Param
<
param_t
>
();
int
in_num
=
param
.
X
->
size
();
CHECK_EQ
(
param
.
I
->
numel
(),
1
)
<<
"I should have only one element"
;
int
id
=
param
.
I
->
data
<
float
>
()[
0
];
int
id
=
param
.
I
->
data
<
int64_t
>
()[
0
];
int
in_num
=
param
.
X
->
size
();
CHECK_LE
(
id
,
in_num
)
<<
"id is not valid"
;
int
input_size
=
(
*
param
.
X
)[
id
].
numel
();
param
.
Out
->
Resize
((
*
param
.
X
)[
id
].
dims
());
param
.
Out
->
CopyDataFrom
((
*
param
.
X
)[
id
]);
auto
out_lod
=
param
.
Out
->
mutable_lod
();
*
out_lod
=
(
*
param
.
X
)[
id
].
lod
();
}
}
// namespace arm
...
...
@@ -46,11 +40,11 @@ void ReadFromArrayCompute::Run() {
REGISTER_LITE_KERNEL
(
read_from_array
,
kARM
,
k
Float
,
k
Any
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
ReadFromArrayCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorListTy
(
TARGET
(
kARM
))})
.
BindInput
(
"I"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorListTy
(
TARGET
(
kARM
)
,
PRECISION
(
kAny
)
)})
.
BindInput
(
"I"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
)
,
PRECISION
(
kInt64
)
)})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
)
,
PRECISION
(
kAny
)
)})
.
Finalize
();
lite/kernels/arm/read_from_array_compute.h
浏览文件 @
1ae03f55
...
...
@@ -23,13 +23,10 @@ namespace lite {
namespace
kernels
{
namespace
arm
{
class
ReadFromArrayCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
class
ReadFromArrayCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kAny
)
>
{
public:
using
param_t
=
operators
::
ReadFromArrayParam
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
~
ReadFromArrayCompute
()
{}
...
...
lite/kernels/arm/write_to_array_compute.cc
浏览文件 @
1ae03f55
...
...
@@ -24,33 +24,12 @@ void WriteToArrayCompute::Run() {
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
auto
&
param
=
this
->
template
Param
<
operators
::
WriteToArrayParam
>();
CHECK_EQ
(
param
.
I
->
numel
(),
1
)
<<
"input2 should have only one element"
;
auto
precision_type
=
param
.
X
->
precision
();
#define SOLVE_TYPE(type__, T) \
case type__: { \
const auto* x_data = param.X->data<T>(); \
int id = param.I->data<int64_t>()[0]; \
if (id >= param.Out->size()) { \
for (int i = param.Out->size(); i < id + 1; i++) { \
lite::Tensor tmp; \
param.Out->push_back(tmp); \
} \
} \
(*param.Out)[id].Resize(param.X->dims()); \
auto out_lod = (*param.Out)[id].mutable_lod(); \
*out_lod = param.X->lod(); \
auto* o_data = (*param.Out)[id].mutable_data<T>(TARGET(kHost)); \
int input_size = param.X->numel(); \
memcpy(o_data, x_data, sizeof(T) * input_size); \
} break;
switch
(
precision_type
)
{
SOLVE_TYPE
(
PRECISION
(
kFloat
),
float
);
SOLVE_TYPE
(
PRECISION
(
kInt64
),
int64_t
);
default:
LOG
(
FATAL
)
<<
"Unsupported precision type."
;
int
id
=
param
.
I
->
data
<
int64_t
>
()[
0
];
if
(
param
.
Out
->
size
()
<
id
+
1
)
{
param
.
Out
->
resize
(
id
+
1
);
}
#undef SOLVE_TYPE
param
.
Out
->
at
(
id
).
CopyDataFrom
(
*
param
.
X
);
}
}
// namespace arm
...
...
@@ -65,6 +44,7 @@ REGISTER_LITE_KERNEL(write_to_array,
paddle
::
lite
::
kernels
::
arm
::
WriteToArrayCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kAny
))})
.
BindInput
(
"I"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kAny
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorListTy
(
TARGET
(
kARM
))})
.
BindInput
(
"I"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kInt64
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorListTy
(
TARGET
(
kARM
),
PRECISION
(
kAny
))})
.
Finalize
();
lite/kernels/arm/write_to_array_compute.h
浏览文件 @
1ae03f55
...
...
@@ -25,8 +25,6 @@ namespace arm {
class
WriteToArrayCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kAny
)
>
{
public:
using
param_t
=
operators
::
WriteToArrayParam
;
void
Run
()
override
;
~
WriteToArrayCompute
()
{}
...
...
lite/operators/op_params.h
浏览文件 @
1ae03f55
...
...
@@ -736,8 +736,8 @@ struct WriteToArrayParam {
};
struct
ReadFromArrayParam
{
std
::
vector
<
lite
::
Tensor
>*
X
{};
lite
::
Tensor
*
I
{};
const
std
::
vector
<
lite
::
Tensor
>*
X
{};
const
lite
::
Tensor
*
I
{};
lite
::
Tensor
*
Out
{};
};
...
...
lite/operators/read_from_array_op.cc
浏览文件 @
1ae03f55
...
...
@@ -19,11 +19,17 @@ namespace paddle {
namespace
lite
{
namespace
operators
{
bool
ReadFromArrayOp
::
CheckShape
()
const
{
return
true
;
}
bool
ReadFromArrayOp
::
CheckShape
()
const
{
CHECK
(
param_
.
X
);
CHECK
(
param_
.
I
);
CHECK
(
param_
.
Out
);
return
true
;
}
bool
ReadFromArrayOp
::
InferShape
()
const
{
auto
in_dims
=
(
*
param_
.
X
)[
0
].
dims
();
param_
.
Out
->
Resize
(
in_dims
);
int
id
=
param_
.
I
->
data
<
int64_t
>
()[
0
];
auto
out_dims
=
(
*
param_
.
X
)[
id
].
dims
();
param_
.
Out
->
Resize
(
out_dims
);
return
true
;
}
...
...
@@ -32,11 +38,9 @@ bool ReadFromArrayOp::AttachImpl(const cpp::OpDesc &opdesc,
auto
in
=
opdesc
.
Input
(
"X"
).
front
();
param_
.
X
=
scope
->
FindVar
(
in
)
->
GetMutable
<
std
::
vector
<
lite
::
Tensor
>>
();
param_
.
I
=
scope
->
FindVar
(
opdesc
.
Input
(
"I"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
I
=
scope
->
FindTensor
(
opdesc
.
Input
(
"I"
).
front
());
param_
.
Out
=
scope
->
FindVar
(
opdesc
.
Output
(
"Out"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
Out
=
scope
->
FindMutableTensor
(
opdesc
.
Output
(
"Out"
).
front
());
return
true
;
}
...
...
lite/operators/write_to_array_op.cc
浏览文件 @
1ae03f55
...
...
@@ -19,25 +19,30 @@ namespace paddle {
namespace
lite
{
namespace
operators
{
bool
WriteToArrayOp
::
CheckShape
()
const
{
return
true
;
}
bool
WriteToArrayOp
::
CheckShape
()
const
{
CHECK
(
param_
.
X
);
CHECK
(
param_
.
I
);
CHECK
(
param_
.
Out
);
return
true
;
}
bool
WriteToArrayOp
::
InferShape
()
const
{
auto
in_dims
=
param_
.
X
->
dims
()
;
for
(
auto
out
:
*
param_
.
Out
)
{
out
.
Resize
(
in_dims
);
int
id
=
param_
.
I
->
data
<
int64_t
>
()[
0
]
;
if
(
param_
.
Out
->
size
()
<
id
+
1
)
{
param_
.
Out
->
resize
(
id
+
1
);
}
return
true
;
}
bool
WriteToArrayOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
auto
inputs
=
opdesc
.
Input
(
"X"
).
front
();
param_
.
X
=
scope
->
Find
Var
(
inputs
)
->
GetMutable
<
lite
::
Tensor
>
(
);
param_
.
X
=
scope
->
Find
Tensor
(
inputs
);
auto
id
=
opdesc
.
Input
(
"I"
).
front
();
param_
.
I
=
scope
->
Find
Var
(
id
)
->
GetMutable
<
lite
::
Tensor
>
(
);
param_
.
I
=
scope
->
Find
Tensor
(
id
);
auto
out
=
opdesc
.
Output
(
"Out"
).
front
();
param_
.
Out
=
scope
->
FindVar
(
out
)
->
GetMutable
<
std
::
vector
<
lite
::
Tensor
>>
();
param_
.
Out
=
scope
->
FindVar
(
out
)
->
GetMutable
<
std
::
vector
<
Tensor
>>
();
return
true
;
}
...
...
lite/tests/kernels/CMakeLists.txt
浏览文件 @
1ae03f55
...
...
@@ -23,8 +23,8 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA AND NOT LITE_WITH_BM) AND (LITE_
#lite_cc_test(test_kernel_logical_xor_compute SRCS logical_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_topk_compute SRCS topk_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_increment_compute SRCS increment_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_write_to_array_compute SRCS write_to_array_compute_test.cc DEPS arena_framework
${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_read_from_array_compute SRCS read_from_array_compute_test.cc DEPS arena_framework
${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test
(
test_kernel_write_to_array_compute SRCS write_to_array_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_read_from_array_compute SRCS read_from_array_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reshape_compute SRCS reshape_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/read_from_array_compute_test.cc
浏览文件 @
1ae03f55
...
...
@@ -13,11 +13,10 @@
// limitations under the License.
#include <gtest/gtest.h>
#include <stdio.h>
#include <stdlib.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"
namespace
paddle
{
namespace
lite
{
...
...
@@ -25,80 +24,78 @@ namespace lite {
class
ReadFromArrayComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
input_0
=
"in_0"
;
std
::
string
input_1
=
"in_1"
;
std
::
string
input_2
=
"in_2"
;
std
::
string
input_i
=
"i"
;
std
::
string
output
=
"out"
;
DDim
dims_
{{
3
,
5
,
4
,
4
}};
int
i_
;
std
::
string
x_
=
"x"
;
std
::
string
idn_
=
"i"
;
std
::
string
out_
=
"out"
;
DDim
tar_dims_
{{
3
,
5
,
4
,
4
}};
int
x_size_
=
1
;
int
id_
=
0
;
public:
ReadFromArrayComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
const
int
i
,
DDim
dims
)
:
TestCase
(
place
,
alias
),
i_
(
i
),
dims_
(
dims
)
{}
DDim
tar_dims
,
int
x_size
=
1
,
int
id
=
0
)
:
TestCase
(
place
,
alias
),
tar_dims_
(
tar_dims
),
x_size_
(
x_size
),
id_
(
id
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
*
out
=
scope
->
NewTensor
(
output
);
CHECK
(
out
);
auto
*
in_0
=
scope
->
FindTensor
(
input_0
);
auto
*
in_1
=
scope
->
FindTensor
(
input_1
);
auto
*
in_2
=
scope
->
FindTensor
(
input_2
);
auto
*
id_tensor
=
scope
->
FindTensor
(
input_i
);
std
::
vector
<
const
TensorLite
*>
in_vec
=
{
in_0
,
in_1
,
in_2
};
int
cur_in_num
=
in_vec
.
size
();
auto
x
=
scope
->
FindVar
(
x_
)
->
GetMutable
<
std
::
vector
<
Tensor
>>
();
auto
idn
=
scope
->
FindTensor
(
idn_
);
auto
out
=
scope
->
NewTensor
(
out_
);
int
id
=
id_tensor
->
data
<
int
>
()[
0
];
out
->
Resize
(
dims_
);
const
auto
*
in_data
=
in_vec
[
id
]
->
data
<
float
>
();
auto
*
o_data
=
out
->
mutable_data
<
float
>
();
int
n
=
in_vec
[
id
]
->
numel
();
memcpy
(
o_data
,
in_data
,
sizeof
(
float
)
*
n
);
int
id
=
idn
->
data
<
int64_t
>
()[
0
];
out
->
CopyDataFrom
(
x
->
at
(
id
));
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"read_from_array"
);
op_desc
->
SetInput
(
"X"
,
{
input_0
,
input_1
,
input_2
});
op_desc
->
SetInput
(
"I"
,
{
i
nput_i
});
op_desc
->
SetOutput
(
"Out"
,
{
out
put
});
op_desc
->
SetInput
(
"X"
,
{
x_
});
op_desc
->
SetInput
(
"I"
,
{
i
dn_
});
op_desc
->
SetOutput
(
"Out"
,
{
out
_
});
}
void
PrepareData
()
override
{
std
::
vector
<
std
::
string
>
in_vec
=
{
input_0
,
input_1
,
input_2
};
for
(
auto
in
:
in_vec
)
{
std
::
vector
<
float
>
data
(
dims_
.
production
());
for
(
int
i
=
0
;
i
<
dims_
.
production
();
i
++
)
{
data
[
i
]
=
std
::
rand
()
*
1.0
f
/
RAND_MAX
;
}
SetCommonTensor
(
in
,
dims_
,
data
.
data
());
std
::
vector
<
DDim
>
x_dims
(
x_size_
);
std
::
vector
<
std
::
vector
<
float
>>
x_data
(
x_size_
);
for
(
int
i
=
0
;
i
<
x_size_
;
i
++
)
{
x_dims
[
i
]
=
tar_dims_
;
x_data
[
i
].
resize
(
x_dims
[
i
].
production
());
fill_data_rand
(
x_data
[
i
].
data
(),
-
1.
f
,
1.
f
,
x_dims
[
i
].
production
());
}
SetCommonTensorList
(
x_
,
x_dims
,
x_data
);
std
::
vector
<
int64_t
>
didn
(
1
);
didn
[
0
]
=
id_
;
SetCommonTensor
(
idn_
,
DDim
{{
1
}},
didn
.
data
());
DDimLite
dims_i
{{
1
}};
int
a
=
1
;
SetCommonTensor
(
input_i
,
dims_i
,
&
a
);
SetPrecisionType
(
out_
,
PRECISION
(
kFloat
));
}
};
void
test_read_from_array
(
Place
place
)
{
void
TestReadFromArray
(
Place
place
,
float
abs_error
)
{
DDimLite
dims
{{
3
,
5
,
4
,
4
}};
for
(
int
i
:
{
1
,
2
})
{
for
(
int
x_size
:
{
1
,
3
})
{
for
(
int
id
:
{
0
,
2
})
{
if
(
x_size
<
id
+
1
)
continue
;
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
ReadFromArrayComputeTester
(
place
,
"def"
,
i
,
dims
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
new
ReadFromArrayComputeTester
(
place
,
"def"
,
dims
,
x_size
,
id
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
TEST
(
ReadFromArray
,
precision
)
{
// #ifdef LITE_WITH_X86
// Place place(TARGET(kX86));
// #endif
Place
place
;
float
abs_error
=
1e-5
;
#ifdef LITE_WITH_ARM
Place
place
(
TARGET
(
kARM
));
test_read_from_array
(
place
);
place
=
{
TARGET
(
kARM
),
PRECISION
(
kAny
)};
#else
return
;
#endif
TestReadFromArray
(
place
,
abs_error
);
}
}
// namespace lite
...
...
lite/tests/kernels/write_to_array_compute_test.cc
浏览文件 @
1ae03f55
...
...
@@ -13,11 +13,10 @@
// limitations under the License.
#include <gtest/gtest.h>
#include <stdio.h>
#include <stdlib.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"
namespace
paddle
{
namespace
lite
{
...
...
@@ -25,91 +24,75 @@ namespace lite {
class
WriteToArrayComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
input_0
=
"x"
;
std
::
string
input_1
=
"i"
;
std
::
string
output_0
=
"out0"
;
std
::
string
output_1
=
"out1"
;
std
::
string
output_2
=
"out2"
;
DDim
dims_
{{
3
,
5
,
4
,
4
}};
int
i_
;
std
::
string
x_
=
"x"
;
std
::
string
idn_
=
"i"
;
std
::
string
out_
=
"out"
;
DDim
x_dims_
{{
3
,
5
,
4
,
4
}};
int
out_size_
=
0
;
int
id_
=
0
;
public:
WriteToArrayComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
const
int
i
,
DDim
dims
)
:
TestCase
(
place
,
alias
),
i_
(
i
),
dims_
(
dims
)
{}
DDim
x_dims
,
int
out_size
=
0
,
int
id
=
0
)
:
TestCase
(
place
,
alias
),
x_dims_
(
x_dims
),
out_size_
(
out_size
),
id_
(
id
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
*
out_0
=
scope
->
NewTensor
(
output_0
);
auto
*
out_1
=
scope
->
NewTensor
(
output_1
);
auto
*
out_2
=
scope
->
NewTensor
(
output_2
);
CHECK
(
out_0
);
CHECK
(
out_1
);
CHECK
(
out_2
);
std
::
vector
<
TensorLite
*>
out_vec
=
{
out_0
,
out_1
,
out_2
};
auto
out
=
scope
->
Var
(
out_
)
->
GetMutable
<
std
::
vector
<
Tensor
>>
();
auto
x
=
scope
->
FindTensor
(
x_
);
auto
*
x
=
scope
->
FindTensor
(
input_0
);
const
auto
*
x_data
=
x
->
data
<
float
>
();
auto
*
id
=
scope
->
FindTensor
(
input_1
);
const
auto
*
id_data
=
id
->
data
<
float
>
();
int
n
=
x
->
numel
();
int
cur_out_num
=
out_vec
.
size
();
for
(
int
i
=
cur_out_num
;
i
<
id_data
[
0
]
+
1
;
i
++
)
{
char
buffer
[
30
];
snprintf
(
buffer
,
sizeof
(
buffer
),
"out%d"
,
i
);
auto
out
=
scope
->
NewTensor
(
buffer
);
out_vec
.
push_back
(
out
);
if
(
out
->
size
()
<
id_
+
1
)
{
out
->
resize
(
id_
+
1
);
}
out
_vec
[
id_data
[
0
]]
->
Resize
(
dims_
);
auto
*
out_data
=
out_vec
[
id_data
[
0
]]
->
mutable_data
<
float
>
();
memcpy
(
out_data
,
x
_data
,
sizeof
(
float
)
*
n
);
out
->
at
(
id_
).
Resize
(
x
->
dims
()
);
auto
out_data
=
out
->
at
(
id_
).
mutable_data
<
float
>
();
memcpy
(
out_data
,
x
->
data
<
float
>
(),
sizeof
(
float
)
*
x
->
numel
()
);
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"write_to_array"
);
op_desc
->
SetInput
(
"X"
,
{
input_0
});
op_desc
->
SetInput
(
"I"
,
{
i
nput_1
});
op_desc
->
SetOutput
(
"Out"
,
{
out
put_0
,
output_1
,
output_2
});
op_desc
->
SetInput
(
"X"
,
{
x_
});
op_desc
->
SetInput
(
"I"
,
{
i
dn_
});
op_desc
->
SetOutput
(
"Out"
,
{
out
_
});
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
data
(
dims_
.
production
());
std
::
vector
<
float
>
dx
(
x_dims_
.
production
());
fill_data_rand
(
dx
.
data
(),
-
1.
f
,
1.
f
,
x_dims_
.
production
());
SetCommonTensor
(
x_
,
x_dims_
,
dx
.
data
());
for
(
int
i
=
0
;
i
<
dims_
.
production
();
i
++
)
{
data
[
i
]
=
i
*
1.1
;
}
SetCommonTensor
(
input_0
,
dims_
,
data
.
data
());
std
::
vector
<
int
>
data_1
(
1
);
data_1
[
0
]
=
i_
;
DDimLite
dims_2
{{
1
}};
SetCommonTensor
(
input_1
,
dims_2
,
data_1
.
data
());
std
::
vector
<
int64_t
>
didn
(
1
);
didn
[
0
]
=
id_
;
SetCommonTensor
(
idn_
,
DDim
{{
1
}},
didn
.
data
());
SetCommonTensor
(
output_0
,
dims_2
,
data_1
.
data
());
SetCommonTensor
(
output_1
,
dims_2
,
data_1
.
data
());
SetCommonTensor
(
output_2
,
dims_2
,
data_1
.
data
());
SetPrecisionType
(
out_
,
PRECISION
(
kFloat
));
}
};
void
test_write_to_array
(
Place
place
)
{
void
TestWriteToArray
(
Place
place
,
float
abs_error
)
{
DDimLite
dims
{{
3
,
5
,
4
,
4
}};
for
(
int
i
:
{
1
,
4
})
{
for
(
int
out_size
:
{
0
,
3
})
{
for
(
int
id
:
{
0
,
1
,
4
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
WriteToArrayComputeTester
(
place
,
"def"
,
i
,
dims
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
new
WriteToArrayComputeTester
(
place
,
"def"
,
dims
,
out_size
,
id
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
TEST
(
WriteToArray
,
precision
)
{
// #ifdef LITE_WITH_X86
// Place place(TARGET(kX86));
// #endif
Place
place
;
float
abs_error
=
1e-5
;
#ifdef LITE_WITH_ARM
Place
place
(
TARGET
(
kARM
));
test_write_to_array
(
place
);
place
=
{
TARGET
(
kARM
),
PRECISION
(
kAny
)};
#else
return
;
#endif
TestWriteToArray
(
place
,
abs_error
);
}
}
// namespace lite
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录