Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
1ab1fe02
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1ab1fe02
编写于
8月 07, 2019
作者:
Z
zhaojiaying01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add OpenCL depthwise3x3s1 kernel
上级
00a81db2
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
335 addition
and
22 deletion
+335
-22
src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
+108
-0
src/operators/kernel/cl/cl-kernel-func/conv_func.h
src/operators/kernel/cl/cl-kernel-func/conv_func.h
+6
-0
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+149
-0
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+13
-4
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+12
-4
src/operators/kernel/cl/conv_add_relu_kernel.cpp
src/operators/kernel/cl/conv_add_relu_kernel.cpp
+12
-4
src/operators/kernel/cl/conv_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_bn_relu_kernel.cpp
+13
-4
src/operators/kernel/cl/conv_kernel.cpp
src/operators/kernel/cl/conv_kernel.cpp
+10
-3
src/operators/kernel/cl/conv_relu_kernel.cpp
src/operators/kernel/cl/conv_relu_kernel.cpp
+12
-3
未找到文件。
src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
浏览文件 @
1ab1fe02
...
...
@@ -233,5 +233,113 @@ void ConvAddBnRelu(framework::CLHelper *cl_helper,
}
}
void
DWConvAddBnRelu
(
framework
::
CLHelper
*
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
,
const
framework
::
CLImage
*
biase
,
const
framework
::
CLImage
*
new_scale
,
const
framework
::
CLImage
*
new_bias
)
{
auto
kernel
=
cl_helper
->
KernelAt
(
0
);
auto
default_work_size
=
cl_helper
->
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
int
w_blk_size
=
2
;
int
w_blk
=
(
w
+
w_blk_size
-
1
)
/
w_blk_size
;
default_work_size
[
1
]
=
w_blk
;
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
pad
=
param
.
Paddings
()[
0
];
int
dilation
=
param
.
Dilations
()[
0
];
int
input_channel
=
param
.
Input
()
->
dims
()[
1
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << param.Input()->dims();
// DLOG << " output dim " << param.Output()->dims();
// DLOG << " filter dim " << param.Filter()->dims();
cl_int
status
;
int
index
=
0
;
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
w_blk
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
if
(
biase
)
{
auto
bias_mem
=
biase
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
if
(
new_scale
&&
new_bias
)
{
auto
new_scale_mem
=
new_scale
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_scale_mem
);
CL_CHECK_ERRORS
(
status
);
auto
new_bias_mem
=
new_bias
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
pad
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_channel
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
cl_helper
->
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/cl/cl-kernel-func/conv_func.h
浏览文件 @
1ab1fe02
...
...
@@ -41,6 +41,12 @@ void ConvAddBnRelu(framework::CLHelper *cl_helper,
const
framework
::
CLImage
*
new_scale
=
nullptr
,
const
framework
::
CLImage
*
new_bias
=
nullptr
);
void
DWConvAddBnRelu
(
framework
::
CLHelper
*
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
=
false
,
const
framework
::
CLImage
*
biase
=
nullptr
,
const
framework
::
CLImage
*
new_scale
=
nullptr
,
const
framework
::
CLImage
*
new_bias
=
nullptr
);
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
1ab1fe02
...
...
@@ -583,6 +583,155 @@ __kernel void depth_conv_3x3(__private const int global_size_dim0,
}
__kernel void depth_conv_3x3s1(__private const int ou_ch_blk,
__private const int ou_w_blk,
__private const int ou_nh,
__read_only image2d_t input,
__read_only image2d_t filter,
#if defined(BIASE_CH) || defined(BIASE_ELE)
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int pad,
__private const int dilation,
__private const int in_ch,
__private const int in_w,/* of one block */
__private const int in_h, /* of one block */
__private const int ou_w,
__private const int ou_h) {
const int ou_ch_blk_id = get_global_id(0);
const int ou_w_blk_id = get_global_id(1);
const int ou_nh_id = get_global_id(2);
const int w_blk_size = 2;
const int batch_id = ou_nh_id / ou_h;
int ou_col_id = ou_w_blk_id * w_blk_size;
int ou_row_id = ou_nh_id % ou_h;
int ou_x = mad24(ou_ch_blk_id, ou_w, ou_col_id);
// input pos in one block and on batch
int col_id = ou_col_id - pad;
int row_id = ou_row_id - pad;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
#ifdef BIASE_CH
half4 output[2];
output[0] = read_imageh(bias, sampler, (int2)(ou_ch_blk_id, 0));
output[1] = output[0];
#elif defined(BIASE_ELE)
half4 output[2];
output[0] = read_imageh(bias, sampler, (int2)(ou_x, ou_nh_id));
if (ou_col_id + 1 < ou_w) {
output[1] = read_imageh(bias, sampler, (int2)(ou_x + 1, ou_nh_id));
}
#else
half4 output[2] = {0.0f};
#endif
half4 inputs[12];
int filter_x = ou_ch_blk_id * 3;
int filter_y = 0;
half4 filters[9];
filters[0] = read_imageh(filter, sampler,(int2)(filter_x,filter_y));
filters[1] = read_imageh(filter, sampler,(int2)(filter_x + 1,filter_y));
filters[2] = read_imageh(filter, sampler,(int2)(filter_x + 2,filter_y));
int in_x = mad24(ou_ch_blk_id, in_w, col_id);
int in_y = mad24(batch_id, in_h, row_id);
int y0 = select(in_y, -1, row_id < 0 || row_id >= in_h);
int x0 = select(in_x, -1, col_id < 0 || col_id >= in_w);
inputs[0] = read_imageh(input, sampler, (int2)(x0, y0));
int x1 = select(in_x + 1, -1, col_id + 1 < 0 || col_id + 1 >= in_w);
inputs[1] = read_imageh(input, sampler, (int2)(x1, y0));
int x2 = select(in_x + 2, -1, col_id + 2 < 0 || col_id + 2 >= in_w);
inputs[2] = read_imageh(input, sampler, (int2)(x2, y0));
int x3 = select(in_x + 3, -1, col_id + 3 < 0 || col_id + 3 >= in_w);
inputs[3] = read_imageh(input, sampler, (int2)(x3, y0));
output[0] = mad(inputs[0], filters[0], output[0]);
output[1] = mad(inputs[1], filters[0], output[1]);
output[0] = mad(inputs[1], filters[1], output[0]);
output[1] = mad(inputs[2], filters[1], output[1]);
output[0] = mad(inputs[2], filters[2], output[0]);
output[1] = mad(inputs[3], filters[2], output[1]);
filters[3] = read_imageh(filter, sampler,(int2)(filter_x,filter_y + 1));
filters[4] = read_imageh(filter, sampler,(int2)(filter_x + 1,filter_y + 1));
filters[5] = read_imageh(filter, sampler,(int2)(filter_x + 2,filter_y + 1));
int y1 = select(in_y + 1, -1, row_id + 1 < 0 || row_id + 1 >= in_h);
inputs[4] = read_imageh(input, sampler, (int2)(x0, y1));
inputs[5] = read_imageh(input, sampler, (int2)(x1, y1));
inputs[6] = read_imageh(input, sampler, (int2)(x2, y1));
inputs[7] = read_imageh(input, sampler, (int2)(x3, y1));
output[0] = mad(inputs[4], filters[3], output[0]);
output[1] = mad(inputs[5], filters[3], output[1]);
output[0] = mad(inputs[5], filters[4], output[0]);
output[1] = mad(inputs[6], filters[4], output[1]);
output[0] = mad(inputs[6], filters[5], output[0]);
output[1] = mad(inputs[7], filters[5], output[1]);
filters[6] = read_imageh(filter, sampler,(int2)(filter_x,filter_y + 2));
filters[7] = read_imageh(filter, sampler,(int2)(filter_x + 1,filter_y + 2));
filters[8] = read_imageh(filter, sampler,(int2)(filter_x + 2,filter_y + 2));
int y2 = select(in_y + 2, -1, row_id + 2 < 0 || row_id + 2 >= in_h);
inputs[8] = read_imageh(input, sampler, (int2)(x0, y2));
inputs[9] = read_imageh(input, sampler, (int2)(x1, y2));
inputs[10] = read_imageh(input, sampler, (int2)(x2, y2));
inputs[11] = read_imageh(input, sampler, (int2)(x3, y2));
output[0] = mad(inputs[8], filters[6], output[0]);
output[1] = mad(inputs[9], filters[6], output[1]);
output[0] = mad(inputs[9], filters[7], output[0]);
output[1] = mad(inputs[10], filters[7], output[1]);
output[0] = mad(inputs[10], filters[8], output[0]);
output[1] = mad(inputs[11], filters[8], output[1]);
#ifdef BATCH_NORM
half4 scale = read_imageh(new_scale, sampler, (int2)(ou_ch_blk_id, 0));
half4 biase = read_imageh(new_biase, sampler, (int2)(ou_ch_blk_id, 0));
output[0] = mad(scale, output[0], biase);
if (ou_col_id + 1 < ou_w) {
output[1] = mad(scale, output[1], biase);
}
#endif
#ifdef RELU
output[0] = activation(output[0]);
output[1] = activation(output[1]);
#endif
write_imageh(output_image, (int2)(ou_x, ou_nh_id), output[0]);
if (ou_col_id + 1 < ou_w) {
write_imageh(output_image, (int2)(ou_x + 1, ou_nh_id), output[1]);
}
}
__kernel void conv_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
...
...
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
1ab1fe02
...
...
@@ -157,12 +157,17 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
param
->
Filter
()
->
InitDWImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
param
->
Strides
()[
0
]
==
1
&&
param
->
Dilations
()[
0
]
==
1
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3s1"
,
conv_kernel_file
,
build_options
);
}
else
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3"
,
conv_kernel_file
,
build_options
);
}
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
param
->
Filter
()
->
dims
()[
3
]
==
3
)
{
...
...
@@ -207,6 +212,10 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
ConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
(),
param
.
NewScale
(),
param
.
NewBias
());
break
;
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
:
DWConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
(),
param
.
NewScale
(),
param
.
NewBias
());
break
;
default:
PADDLE_MOBILE_THROW_EXCEPTION
(
"Invalid convolution execute mode %d"
,
param
.
ExecMode
());
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
1ab1fe02
...
...
@@ -54,12 +54,17 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
param
->
Filter
()
->
InitDWImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
param
->
Strides
()[
0
]
==
1
&&
param
->
Dilations
()[
0
]
==
1
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3s1"
,
conv_kernel_file
,
build_options
);
}
else
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3"
,
conv_kernel_file
,
build_options
);
}
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
param
->
Filter
()
->
dims
()[
3
]
==
3
)
{
...
...
@@ -118,6 +123,9 @@ void ConvAddKernel<GPU_CL, float>::Compute(
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
:
ConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
false
,
param
.
Bias
());
break
;
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
:
DWConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
false
,
param
.
Bias
());
break
;
default:
PADDLE_MOBILE_THROW_EXCEPTION
(
"Invalid convolution execute mode %d"
,
param
.
ExecMode
());
...
...
src/operators/kernel/cl/conv_add_relu_kernel.cpp
浏览文件 @
1ab1fe02
...
...
@@ -55,12 +55,17 @@ bool ConvAddReluKernel<GPU_CL, float>::Init(
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
param
->
Filter
()
->
InitDWImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
param
->
Strides
()[
0
]
==
1
&&
param
->
Dilations
()[
0
]
==
1
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3s1"
,
conv_kernel_file
,
build_options
);
}
else
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3"
,
conv_kernel_file
,
build_options
);
}
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
param
->
Filter
()
->
dims
()[
3
]
==
3
)
{
...
...
@@ -122,6 +127,9 @@ void ConvAddReluKernel<GPU_CL, float>::Compute(
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
:
ConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
());
break
;
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
:
DWConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
());
break
;
default:
PADDLE_MOBILE_THROW_EXCEPTION
(
"Invalid convolution execute mode %d"
,
param
.
ExecMode
());
...
...
src/operators/kernel/cl/conv_bn_relu_kernel.cpp
浏览文件 @
1ab1fe02
...
...
@@ -112,12 +112,17 @@ bool ConvBNReluKernel<GPU_CL, float>::Init(
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
param
->
Filter
()
->
InitDWImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
param
->
Strides
()[
0
]
==
1
&&
param
->
Dilations
()[
0
]
==
1
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3s1"
,
conv_kernel_file
,
build_options
);
}
else
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3"
,
conv_kernel_file
,
build_options
);
}
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
param
->
Filter
()
->
dims
()[
3
]
==
3
)
{
...
...
@@ -161,6 +166,10 @@ void ConvBNReluKernel<GPU_CL, float>::Compute(
ConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
true
,
nullptr
,
param
.
NewScale
(),
param
.
NewBias
());
break
;
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
:
DWConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
true
,
nullptr
,
param
.
NewScale
(),
param
.
NewBias
());
break
;
default:
PADDLE_MOBILE_THROW_EXCEPTION
(
"Invalid convolution execute mode %d"
,
param
.
ExecMode
());
...
...
src/operators/kernel/cl/conv_kernel.cpp
浏览文件 @
1ab1fe02
...
...
@@ -51,11 +51,15 @@ bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
param
->
Filter
()
->
InitDWImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
param
->
Strides
()[
0
]
==
1
&&
param
->
Dilations
()[
0
]
==
1
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3s1"
,
conv_kernel_file
);
}
else
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3"
,
conv_kernel_file
);
}
DLOG
<<
"depth_conv 3x3"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
...
...
@@ -100,6 +104,9 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> ¶m) {
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
:
ConvAddBnRelu
(
&
this
->
cl_helper_
,
param
);
break
;
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
:
DWConvAddBnRelu
(
&
this
->
cl_helper_
,
param
);
break
;
default:
PADDLE_MOBILE_THROW_EXCEPTION
(
"Invalid convolution execute mode %d"
,
param
.
ExecMode
());
...
...
src/operators/kernel/cl/conv_relu_kernel.cpp
浏览文件 @
1ab1fe02
...
...
@@ -52,12 +52,18 @@ bool ConvReluKernel<GPU_CL, float>::Init(FusionConvReluParam<GPU_CL> *param) {
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
param
->
Filter
()
->
InitDWImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
param
->
Strides
()[
0
]
==
1
&&
param
->
Dilations
()[
0
]
==
1
)
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3s1"
,
conv_kernel_file
,
build_options
);
}
else
{
param
->
ExecMode
()
=
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
;
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3"
,
conv_kernel_file
,
build_options
);
}
DLOG
<<
"depth_conv 3x3"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
...
...
@@ -103,6 +109,9 @@ void ConvReluKernel<GPU_CL, float>::Compute(
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
:
ConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
true
);
break
;
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
:
DWConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
true
);
break
;
default:
PADDLE_MOBILE_THROW_EXCEPTION
(
"Invalid convolution execute mode %d"
,
param
.
ExecMode
());
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录