Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
127d7482
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
338
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
127d7482
编写于
8月 13, 2018
作者:
Y
yangfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
implement multithreading 3x3 s2 depth_conv
上级
2394d691
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
662 addition
and
481 deletion
+662
-481
README.md
README.md
+3
-3
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+659
-478
未找到文件。
README.md
浏览文件 @
127d7482
...
@@ -28,13 +28,13 @@ Paddle-Moible是PaddlePaddle组织下的项目,是一个致力于嵌入式平
...
@@ -28,13 +28,13 @@ Paddle-Moible是PaddlePaddle组织下的项目,是一个致力于嵌入式平
|mobilenet arm v7|1线程|2线程|4线程|
|mobilenet arm v7|1线程|2线程|4线程|
|------------|----|-----|-----|
|------------|----|-----|-----|
|麒麟960(ms)|110.586|7
2.474|49.833
|
|麒麟960(ms)|110.586|7
0.897|47.474
|
|||||
|||||
|mobilenetssd arm v7|1线程|2线程|4线程|
|mobilenetssd arm v7|1线程|2线程|4线程|
|麒麟960(ms)|22
4.464|142.544|96.068
|
|麒麟960(ms)|22
2.124|138.952|90.856
|
|||||
|||||
|googlenet(v1) arm v7|1线程|2线程|4线程|
|googlenet(v1) arm v7|1线程|2线程|4线程|
|麒麟960(ms)|348.018|24
2.689
|169.998|
|麒麟960(ms)|348.018|24
0.304
|169.998|
arm cpu是paddle-mobile的主要支持方向,cpu的通用性一直是其优势。嵌入式深度学习,需要大量的cpu汇编实现。我们正在紧锣密鼓的编码,为的是能充分硬件的每一点加速能力。
arm cpu是paddle-mobile的主要支持方向,cpu的通用性一直是其优势。嵌入式深度学习,需要大量的cpu汇编实现。我们正在紧锣密鼓的编码,为的是能充分硬件的每一点加速能力。
arm cpu的优化工作还在进行中,现在使用了常规的cpu优化。在arm a73上paddle-mobile arm-v7现在单核运行一次mobilenet1.0是110+ms,显然这不是我们的最终目标,我们正在用大量的汇编改写,后续性能仍会有巨大提升空间, 目前只支持armv7, 未来我们也会支持armv8。
arm cpu的优化工作还在进行中,现在使用了常规的cpu优化。在arm a73上paddle-mobile arm-v7现在单核运行一次mobilenet1.0是110+ms,显然这不是我们的最终目标,我们正在用大量的汇编改写,后续性能仍会有巨大提升空间, 目前只支持armv7, 未来我们也会支持armv8。
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
127d7482
...
@@ -613,7 +613,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -613,7 +613,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
}
int
m
;
int
m
;
for
(
m
=
1
;
m
<
output_width
-
4
;
m
+=
4
)
{
for
(
m
=
1
;
m
<
output_width
-
4
;
m
+=
4
)
{
float
*
output_ptr
=
output_data
+
m
;
float
*
output_ptr
=
output_data
+
m
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
out0
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
out0
;
...
@@ -637,7 +636,8 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -637,7 +636,8 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
}
vst1q_f32
(
output_ptr
,
out0
);
vst1q_f32
(
output_ptr
,
out0
);
}
}
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
+=
4
)
{
}
}
for
(
int
j
=
m
;
j
<
output_width
-
1
;
j
++
)
{
for
(
int
j
=
m
;
j
<
output_width
-
1
;
j
++
)
{
output_data
[
j
]
=
input_data
[
j
-
1
]
*
w10
+
input_data
[
j
]
*
w11
+
output_data
[
j
]
=
input_data
[
j
-
1
]
*
w10
+
input_data
[
j
]
*
w11
+
...
@@ -652,7 +652,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -652,7 +652,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
}
}
}
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
for
(
m
=
1
;
m
<
output_width
-
4
;
m
+=
4
)
{
float
*
output_ptr
=
float
*
output_ptr
=
output_data
+
(
output_height
-
1
)
*
output_width
+
m
;
output_data
+
(
output_height
-
1
)
*
output_width
+
m
;
...
@@ -807,71 +807,60 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -807,71 +807,60 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
w21 * input_data[l] + w22 * input_data[l + 1];
w21 * input_data[l] + w22 * input_data[l + 1];
output_data[l - 1] = w10 * input_data[l - 2] + w11 * input_data[l - 1] +
output_data[l - 1] = w10 * input_data[l - 2] + w11 * input_data[l -
w20 * input_data[2 * l - 2] +
1] + w20 * input_data[2 * l - 2] + w21 * input_data[2 * l - 1];
w21 * input_data[2 * l - 1];
output_data[(l - 1) * l] =
output_data[(l - 1) * l] =
w01 * input_data[(l - 2) * l] + w02 * input_data[(l - 2) * l + 1]
+
w01 * input_data[(l - 2) * l] + w02 * input_data[(l - 2) * l
+
w11 * input_data[(l - 1) * l] + w12 * input_data[(l - 1) * l + 1];
1] +
w11 * input_data[(l - 1) * l] + w12 * input_data[(l - 1) * l + 1];
output_data[l * l - 1] = w00 * input_data[(l - 2) * (l + 1)] +
output_data[l * l - 1] = w00 * input_data[(l - 2) * (l + 1)] +
w01 * input_data[(l - 2) * (l + 1) + 1] +
w01 * input_data[(l - 2) * (l + 1) + 1] +
w10 * input_data[l * l - 2] +
w10 * input_data[l * l - 2] +
w11 * input_data[l * l - 1];
w11 * input_data[l * l - 1];
output_data[0] = output_data[0] * newscale_data[j] + newbias_data[j];
output_data[0] = output_data[0] * newscale_data[j] +
output_data[l - 1] =
newbias_data[j]; output_data[l - 1] = output_data[l - 1] *
output_data[l - 1] * newscale_data[j] + newbias_data[j];
newscale_data[j] + newbias_data[j]; output_data[(l - 1) * l] =
output_data[(l - 1) * l] =
output_data[(l - 1) * l] * newscale_data[j] + newbias_data[j];
output_data[(l - 1) * l] * newscale_data[j] + newbias_data[j];
output_data[l * l - 1] =
output_data[l * l - 1] =
output_data[l * l - 1] * newscale_data[j] + newbias_data[j];
output_data[l * l - 1] * newscale_data[j] + newbias_data[j];
if (if_relu) {
if (if_relu) {
output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
output_data[l - 1] = output_data[l - 1] < 0 ? 0 : output_data[l - 1];
output_data[l - 1] = output_data[l - 1] < 0 ? 0 : output_data[l -
output_data[(l - 1) * l] =
1]; output_data[(l - 1) * l] = output_data[(l - 1) * l] < 0 ? 0 :
output_data[(l - 1) * l] < 0 ? 0 : output_data[(l - 1) * l];
output_data[(l - 1) * l]; output_data[l * l - 1] = output_data[l * l - 1]
output_data[l * l - 1] =
< 0 ? 0 : output_data[l * l - 1];
output_data[l * l - 1] < 0 ? 0 : output_data[l * l - 1];
}
}
for (int i = 1; i < l - 1; ++i) {
for (int i = 1; i < l - 1; ++i) {
output_data[i * l] =
output_data[i * l] =
w01 * input_data[i * l - l] + w02 * input_data[i * l - l + 1] +
w01 * input_data[i * l - l] + w02 * input_data[i * l - l + 1]
w11 * input_data[i * l] + w12 * input_data[i * l + 1] +
+ w11 * input_data[i * l] + w12 * input_data[i * l + 1] + w21 *
w21 * input_data[i * l + l] + w22 * input_data[i * l + l + 1];
input_data[i * l + l] + w22 * input_data[i * l + l + 1]; output_data[i *
output_data[i * l + l - 1] = w00 * input_data[i * l + l - 1 - l - 1] +
l + l - 1] = w00 * input_data[i * l + l - 1 - l - 1] + w01 * input_data[i
w01 * input_data[i * l + l - 1 - l] +
* l + l - 1 - l] + w10 * input_data[i * l + l - 1 - 1] + w11 *
w10 * input_data[i * l + l - 1 - 1] +
input_data[i * l + l - 1] + w20 * input_data[i * l + l - 1 + l - 1] + w21
w11 * input_data[i * l + l - 1] +
* input_data[i * l + l - 1 + l]; output_data[i * l] = output_data[i * l]
w20 * input_data[i * l + l - 1 + l - 1] +
* newscale_data[j] + newbias_data[j]; output_data[i * l + l - 1] =
w21 * input_data[i * l + l - 1 + l];
output_data[i * l + l - 1] * newscale_data[j] +
output_data[i * l] =
newbias_data[j];
output_data[i * l] * newscale_data[j] + newbias_data[j];
output_data[i * l + l - 1] =
output_data[i * l + l - 1] * newscale_data[j] + newbias_data[j];
if (if_relu) {
if (if_relu) {
output_data[i * l] = output_data[i * l] < 0 ? 0 : output_data[i *
output_data[i * l] = output_data[i * l] < 0 ? 0 : output_data[i
l]; output_data[i * l + l - 1] =
* l]; output_data[i * l + l - 1] = output_data[i * l + l - 1] < 0 ? 0 :
output_data[i * l + l - 1] < 0 ? 0 :
output_data[i * l + l - 1];
output_data[i * l + l - 1];
}
}
}
}
// top 1 row and bottom 1 row
// top 1 row and bottom 1 row
const float *input_tmp = input_data;
const float *input_tmp = input_data;
float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1,
tmp3, tmp4, tmp5, out0;
tmp2, tmp3, tmp4, tmp5, out0; in0 = vld1q_f32(input_tmp); in2 =
in0 = vld1q_f32(input_tmp);
vld1q_f32(input_tmp + l); const float *input_tmp_end = input_tmp + (l -
in2 = vld1q_f32(input_tmp + l);
2) * l; in4 = vld1q_f32(input_tmp_end); in6 = vld1q_f32(input_tmp_end +
const float *input_tmp_end = input_tmp + (l - 2) * l;
l); int c_mid = l_mid; auto output_ptr = output_data + 1; for (; c_mid >
in4 = vld1q_f32(input_tmp_end);
3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 =
in6 = vld1q_f32(input_tmp_end + l);
vld1q_f32(input_tmp + l + 4);
int c_mid = l_mid;
auto output_ptr = output_data + 1;
for (; c_mid > 3; c_mid -= 4) {
in1 = vld1q_f32(input_tmp + 4);
in3 = vld1q_f32(input_tmp + l + 4);
tmp0 = vextq_f32(in0, in1, 1);
tmp0 = vextq_f32(in0, in1, 1);
tmp1 = vextq_f32(in0, in1, 2);
tmp1 = vextq_f32(in0, in1, 2);
...
@@ -1068,6 +1057,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -1068,6 +1057,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
}
}
}
*/
*/
#endif
#endif
}
}
...
@@ -1482,230 +1472,421 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
...
@@ -1482,230 +1472,421 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
out_w
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
out_l
=
out_h
;
const
int
in_l
=
in_h
;
const
int
inhxw
=
in_h
*
in_w
;
const
int
outhxw
=
out_h
*
out_w
;
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
input_channel
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
const
int
w_times
=
(
out_w
-
2
)
/
3
;
const
int
input_height
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
input_width
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
output_height
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
output_width
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
inhxw
=
input_height
*
input_width
;
const
int
outhxw
=
output_height
*
output_width
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
];
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
int
out2in_mid
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
const
float
*
filter_data_tmp
=
filter_data
;
filter_data
=
filter
->
data
<
float
>
();
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
for
(
int
c
=
0
;
c
<
input_channel
;
c
++
)
{
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
vnewbias
=
vdupq_n_f32
(
newbias_data
[
c
]);
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
vnewscale
=
vdupq_n_f32
(
newscale_data
[
c
]);
auto
input_const
=
input_data_tmp
;
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
float
w10
=
filter_data_tmp
[
3
];
float
w11
=
filter_data_tmp
[
4
];
float
w12
=
filter_data_tmp
[
5
];
float
w20
=
filter_data_tmp
[
6
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
int
h_mid
=
0
;
for
(;
h_mid
<
out_h
-
1
;
h_mid
++
)
{
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
float
w00
=
filter_data
[
0
];
if
(
h_mid
==
0
)
{
float
w01
=
filter_data
[
1
];
elewise_res1
=
zero
;
float
w02
=
filter_data
[
2
];
elewise_res0
=
zero
;
float
w10
=
filter_data
[
3
];
elewise_res2
=
zero
;
float
w11
=
filter_data
[
4
];
}
else
{
float
w12
=
filter_data
[
5
];
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
float
w20
=
filter_data
[
6
];
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
float
w21
=
filter_data
[
7
];
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
float
w22
=
filter_data
[
8
];
}
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
int
m
;
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
for
(
m
=
1
;
m
<
output_width
-
2
;
m
=
m
+
3
)
{
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
float
*
output_ptr
=
output_data
+
m
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
{};
float32x4_t
in0
,
in1
,
in2
,
in3
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
out0
;
input_buff_mid
=
vld2q_f32
(
input_data
+
(
2
*
m
-
1
));
input_buff_bottom
=
vld2q_f32
(
input_data
+
input_width
+
(
2
*
m
-
1
));
elewise_res1
=
in0
=
input_buff_mid
.
val
[
0
];
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
tmp0
=
input_buff_mid
.
val
[
1
];
elewise_res0
=
tmp1
=
vextq_f32
(
in0
,
zero
,
1
);
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
in2
=
input_buff_bottom
.
val
[
0
];
vaddq_f32
(
elewise_res0
,
elewise_res1
))
;
tmp2
=
input_buff_bottom
.
val
[
1
]
;
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
tmp3
=
vextq_f32
(
in2
,
zero
,
1
);
out0
=
vmulq_n_f32
(
in0
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
out0
=
vmaxq_f32
(
out0
,
zero
);
}
}
vst1q_f32
(
output_row_ptr
,
res3
);
vst1q_f32
(
output_ptr
,
out0
);
}
input_row_ptr
+=
6
;
for
(
m
=
1
;
m
<
output_width
-
2
;
m
+=
3
)
{
output_row_ptr
+=
3
;
}
for
(
int
j
=
m
;
j
<
output_width
;
j
++
)
{
output_data
[
j
]
=
input_data
[
2
*
j
-
1
]
*
w10
+
input_data
[
2
*
j
]
*
w11
+
input_data
[
2
*
j
+
1
]
*
w12
+
input_data
[
2
*
j
-
1
+
input_width
]
*
w20
+
input_data
[
2
*
j
+
input_width
]
*
w21
+
input_data
[
2
*
j
+
1
+
input_width
]
*
w22
;
output_data
[
j
]
=
newscale_data
[
c
]
*
output_data
[
j
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
j
]
=
output_data
[
j
]
<
0
?
0
:
output_data
[
j
];
}
}
}
}
clock
();
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
#pragma omp parallel for
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
for
(
int
i
=
1
;
i
<
output_height
;
i
+=
1
)
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
for
(
int
m
=
1
;
m
<
output_width
-
2
;
m
+=
3
)
{
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
float
*
output_ptr
=
output_data
+
i
*
output_width
+
m
;
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
float32x4x2_t
input_buff_top
{},
input_buff_mid
{},
input_buff_bottom
{};
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
out0
;
input_buff_top
=
vld2q_f32
(
input_data
+
(
2
*
i
-
1
)
*
input_width
+
(
2
*
m
-
1
));
input_buff_mid
=
vld2q_f32
(
input_data
+
(
2
*
i
)
*
input_width
+
(
2
*
m
-
1
));
input_buff_bottom
=
vld2q_f32
(
input_data
+
(
2
*
i
+
1
)
*
input_width
+
(
2
*
m
-
1
));
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
in0
=
input_buff_top
.
val
[
0
];
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
tmp0
=
input_buff_top
.
val
[
1
];
tmp1
=
vextq_f32
(
in0
,
zero
,
1
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
)
;
in2
=
input_buff_mid
.
val
[
0
]
;
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
)
;
tmp2
=
input_buff_mid
.
val
[
1
]
;
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
tmp3
=
vextq_f32
(
in2
,
zero
,
1
);
if
(
!
if_pad
)
{
in4
=
input_buff_bottom
.
val
[
0
];
elewise_res1
=
tmp4
=
input_buff_bottom
.
val
[
1
];
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
tmp5
=
vextq_f32
(
in4
,
zero
,
1
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
}
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
out0
=
vmulq_n_f32
(
in0
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in4
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
out0
=
vmaxq_f32
(
out0
,
zero
);
}
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
}
else
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
}
else
if
(
out_l
-
2
-
w_times
*
3
==
2
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
}
}
vst1q_f32
(
output_ptr
,
out0
);
}
}
in
put_row_ptr
+=
6
;
in
t
m
;
output_row_ptr
+=
3
;
for
(
m
=
1
;
m
<
output_width
-
2
;
m
+=
3
)
{
}
}
for
(
int
j
=
m
;
j
<
output_width
;
j
++
)
{
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
output_data
[
i
*
output_width
+
j
]
=
input_const
[
in_l
]
*
w21
+
input_data
[(
2
*
i
-
1
)
*
input_width
+
2
*
j
-
1
]
*
w00
+
input_const
[
in_l
+
1
]
*
w22
;
input_data
[(
2
*
i
-
1
)
*
input_width
+
2
*
j
]
*
w01
+
input_data
[(
2
*
i
-
1
)
*
input_width
+
2
*
j
+
1
]
*
w02
+
out2in_mid
=
(
out_l
-
1
)
*
2
;
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
-
1
]
*
w10
+
output_data_tmp
[
out_l
-
1
]
=
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
]
*
w11
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
+
1
]
*
w12
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
input_data
[(
2
*
i
+
1
)
*
input_width
+
2
*
j
-
1
]
*
w20
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
input_data
[(
2
*
i
+
1
)
*
input_width
+
2
*
j
]
*
w21
+
(
1
-
if_pad
)
*
(
w12
*
input_const
[
out2in_mid
+
1
]
+
input_data
[(
2
*
i
+
1
)
*
input_width
+
2
*
j
+
1
]
*
w22
;
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data
[
i
*
output_width
+
j
]
=
newscale_data
[
c
]
*
output_data
[
i
*
output_width
+
j
]
+
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
;
newbias_data
[
c
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
(
1
-
if_pad
)
*
(
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
*
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
(
1
-
if_pad
)
*
(
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
-
1
]
=
output_data_tmp
[
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
if
(
if_relu
)
{
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
<
0
?
0
:
output_data_tmp
[
0
];
output_data
[
i
*
output_width
+
j
]
=
output_data_tmp
[
out_l
-
1
]
=
output_data
[
i
*
output_width
+
j
]
<
0
output_data_tmp
[
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
-
1
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
<
0
?
0
:
output_data_tmp
[
out_l
*
(
out_l
-
1
)];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
<
0
?
0
?
0
:
output_data_tmp
[
out_l
*
out_l
-
1
];
:
output_data
[
i
*
output_width
+
j
];
}
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
}
out2in_mid
=
i
*
2
*
in_w
;
}
output_data_tmp
[
i
*
out_l
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
output_data
[
0
]
=
input_data
[
0
]
*
w11
+
input_data
[
1
]
*
w12
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
input_data
[
input_height
]
*
w21
+
w11
*
input_const
[
out2in_mid
]
+
input_data
[
input_height
+
1
]
*
w22
;
w12
*
input_const
[
out2in_mid
+
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data
[
0
]
=
newscale_data
[
c
]
*
output_data
[
0
]
+
newbias_data
[
c
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
i
*
out_l
]
=
output_data_tmp
[
i
*
out_l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
if
(
if_relu
)
{
output_data_tmp
[
i
*
out_l
]
=
output_data
[
0
]
=
output_data
[
0
]
<
0
?
0
:
output_data
[
0
];
output_data_tmp
[
i
*
out_l
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
];
}
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
for
(
int
i
=
1
;
i
<
output_height
;
i
++
)
{
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
<
0
output_data
[
i
*
output_width
]
=
input_data
[(
2
*
i
-
1
)
*
input_width
]
*
w01
+
input_data
[(
2
*
i
-
1
)
*
input_width
+
1
]
*
w02
+
input_data
[(
2
*
i
)
*
input_width
]
*
w11
+
input_data
[(
2
*
i
)
*
input_width
+
1
]
*
w12
+
input_data
[(
2
*
i
+
1
)
*
input_width
]
*
w21
+
input_data
[(
2
*
i
+
1
)
*
input_width
+
1
]
*
w22
;
output_data
[
i
*
output_width
]
=
newscale_data
[
c
]
*
output_data
[
i
*
output_width
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
i
*
output_width
]
=
output_data
[
i
*
output_width
]
<
0
?
0
?
0
:
output_data_tmp
[
i
*
out_l
+
out_l
-
1
];
:
output_data
[
i
*
output_width
];
}
}
}
}
filter_data_tmp
+=
9
;
input_data
=
input_data
+
inhxw
;
output_data
=
output_data
+
outhxw
;
filter_data
=
filter_data
+
9
;
}
}
input_data
+=
inhxw
*
c
;
output_data
+=
outhxw
*
c
;
}
}
// const float *input_data = input->data<float>();
// const float *filter_data = filter->data<float>();
// float *output_data = output->data<float>();
// const float *newscale_data = new_scale->data<float>();
// const float *newbias_data = new_bias->data<float>();
//
// float32x4_t vnewbias = vdupq_n_f32(0.0);
// float32x4_t vnewscale = vdupq_n_f32(1.0);
//
// const int in_h = static_cast<int>(input->dims()[2]);
// const int in_w = static_cast<int>(input->dims()[3]);
// const int out_h = static_cast<int>(output->dims()[2]);
// const int out_w = static_cast<int>(output->dims()[3]);
// const int out_l = out_h;
// const int in_l = in_h;
// const int inhxw = in_h * in_w;
// const int outhxw = out_h * out_w;
// const int if_pad = in_l - 1 == (out_l - 1) * 2 ? 1 : 0;
// const int batch_size = static_cast<int>(input->dims()[0]);
// const int c = static_cast<int>(input->dims()[1]);
// const float *input_row_ptr;
// float *output_row_ptr;
//
// const int w_times = (out_w - 2) / 3;
//
// float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
// float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
// int out2in_mid;
// float32x4_t zero = vdupq_n_f32(0.0);
// for (int b = batch_size; b > 0; --b) {
// const float *filter_data_tmp = filter_data;
// for (int j = 0; j < c; ++j) {
// auto output_data_tmp = output_data + j * out_h * out_w;
// auto input_data_tmp = input_data + j * in_h * in_w;
// auto input_const = input_data_tmp;
//
// vnewbias = vdupq_n_f32(newbias_data[j]);
// vnewscale = vdupq_n_f32(newscale_data[j]);
//
// float w00 = filter_data_tmp[0];
// float w01 = filter_data_tmp[1];
// float w02 = filter_data_tmp[2];
// float w10 = filter_data_tmp[3];
// float w11 = filter_data_tmp[4];
// float w12 = filter_data_tmp[5];
// float w20 = filter_data_tmp[6];
// float w21 = filter_data_tmp[7];
// float w22 = filter_data_tmp[8];
//
// int h_mid = 0;
//
// for (; h_mid < out_h - 1; h_mid++) {
// input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
// output_row_ptr = output_data_tmp + 1 + h_mid * out_w;
//
// for (int w4 = 0; w4 < w_times + 1; w4++) {
// if (h_mid == 0) {
// elewise_res1 = zero;
// elewise_res0 = zero;
// elewise_res2 = zero;
// } else {
// elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
// elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
// elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
// }
// input_buff_mid = vld2q_f32(input_row_ptr);
// input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);
//
// elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1],
// w11); elewise_res0 = vmlaq_n_f32(elewise_res0,
// input_buff_mid.val[0], w10); elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);
//
// elewise_res1 =
// vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1],
// w21);
// elewise_res0 =
// vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0],
// w20);
// elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0],
// w22);
//
// res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
// vaddq_f32(elewise_res0, elewise_res1));
// res3 = vmlaq_f32(vnewbias, vnewscale, res3);
//
// if (if_relu) {
// res3 = vmaxq_f32(res3, zero);
// }
// vst1q_f32(output_row_ptr, res3);
//
// input_row_ptr += 6;
// output_row_ptr += 3;
// }
// }
// clock();
//
// input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
// output_row_ptr = output_data_tmp + 1 + h_mid * out_w;
//
// for (int w4 = 0; w4 < w_times + 1; w4++) {
// elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
// elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
// elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
//
// input_buff_mid = vld2q_f32(input_row_ptr);
// input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);
//
// elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1],
// w11); elewise_res0 = vmlaq_n_f32(elewise_res0,
// input_buff_mid.val[0], w10); elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);
//
// if (!if_pad) {
// elewise_res1 =
// vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1],
// w21);
// elewise_res0 =
// vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0],
// w20);
// elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0],
// w22);
// }
// res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
// vaddq_f32(elewise_res0, elewise_res1));
// res3 = vmlaq_f32(vnewbias, vnewscale, res3);
//
// if (if_relu) {
// res3 = vmaxq_f32(res3, zero);
// }
// if ((w4 != w_times)) {
// vst1q_f32(output_row_ptr, res3);
// } else {
// if (out_l - 2 - w_times * 3 == 1) {
// vst1q_lane_f32(output_row_ptr, res3, 0);
// } else if (out_l - 2 - w_times * 3 == 2) {
// vst1q_lane_f32(output_row_ptr, res3, 0);
// vst1q_lane_f32(output_row_ptr + 1, res3, 1);
// }
// }
// input_row_ptr += 6;
// output_row_ptr += 3;
// }
//
// output_data_tmp[0] = input_const[0] * w11 + input_const[1] * w12 +
// input_const[in_l] * w21 +
// input_const[in_l + 1] * w22;
//
// out2in_mid = (out_l - 1) * 2;
// output_data_tmp[out_l - 1] =
// w10 * input_const[out2in_mid - 1] + w11 *
// input_const[out2in_mid] + w20 * input_const[out2in_mid + in_w -
// 1] + w21 * input_const[out2in_mid + in_w] + (1 - if_pad) * (w12
// * input_const[out2in_mid + 1] +
// w22 * input_const[out2in_mid + in_w + 1]);
//
// out2in_mid = (out_l - 1) * 2 * in_w;
//
// output_data_tmp[out_l * (out_l - 1)] =
// w01 * input_const[out2in_mid - in_w] +
// w02 * input_const[out2in_mid - in_w + 1] +
// w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid +
// 1] + (1 - if_pad) * (w21 * input_const[out2in_mid + in_w] +
// w22 * input_const[out2in_mid + in_w + 1]);
// out2in_mid = (out_l - 1) * 2 * in_w + (out_l - 1) * 2;
//
// output_data_tmp[out_l * out_l - 1] =
// w00 * input_const[out2in_mid - in_w - 1] +
// w01 * input_const[out2in_mid - in_w] +
// w10 * input_const[out2in_mid - 1] + w11 *
// input_const[out2in_mid] + (1 - if_pad) * (w20 *
// input_const[out2in_mid + in_w - 1] +
// w21 * input_const[out2in_mid + in_w] +
// w02 * input_const[out2in_mid - in_w + 1] +
// w12 * input_const[out2in_mid + 1] +
// w22 * input_const[out2in_mid + in_w + 1]);
// output_data_tmp[0] =
// output_data_tmp[0] * newscale_data[j] + newbias_data[j];
// output_data_tmp[out_l - 1] =
// output_data_tmp[out_l - 1] * newscale_data[j] + newbias_data[j];
// output_data_tmp[out_l * (out_l - 1)] =
// output_data_tmp[out_l * (out_l - 1)] * newscale_data[j] +
// newbias_data[j];
// output_data_tmp[out_l * out_l - 1] =
// output_data_tmp[out_l * out_l - 1] * newscale_data[j] +
// newbias_data[j];
// if (if_relu) {
// output_data_tmp[0] = output_data_tmp[0] < 0 ? 0 :
// output_data_tmp[0]; output_data_tmp[out_l - 1] =
// output_data_tmp[out_l - 1] < 0 ? 0 : output_data_tmp[out_l -
// 1];
// output_data_tmp[out_l * (out_l - 1)] =
// output_data_tmp[out_l * (out_l - 1)] < 0
// ? 0
// : output_data_tmp[out_l * (out_l - 1)];
// output_data_tmp[out_l * out_l - 1] =
// output_data_tmp[out_l * out_l - 1] < 0
// ? 0
// : output_data_tmp[out_l * out_l - 1];
// }
// for (int i = 1; i < out_h - 1; i++) {
// out2in_mid = i * 2 * in_w;
// output_data_tmp[i * out_l] = w01 * input_const[out2in_mid - in_w]
// +
// w02 * input_const[out2in_mid - in_w +
// 1] + w11 * input_const[out2in_mid] +
// w12 * input_const[out2in_mid + 1] +
// w21 * input_const[out2in_mid + in_w]
// + w22 * input_const[out2in_mid + in_w
// + 1];
//
// out2in_mid = i * 2 * in_w + (out_l - 1) * 2;
// output_data_tmp[i * out_l + out_l - 1] =
// w00 * input_const[out2in_mid - in_w - 1] +
// w01 * input_const[out2in_mid - in_w] +
// w10 * input_const[out2in_mid - 1] + w11 *
// input_const[out2in_mid] + w20 * input_const[out2in_mid + in_w
// - 1] + w21 * input_const[out2in_mid + in_w] + (1 - if_pad) *
// (w02 * input_const[out2in_mid - in_w + 1] +
// w12 * input_const[out2in_mid + 1] +
// w22 * input_const[out2in_mid + in_w + 1]);
// output_data_tmp[i * out_l] =
// output_data_tmp[i * out_l] * newscale_data[j] +
// newbias_data[j];
// output_data_tmp[i * out_l + out_l - 1] =
// output_data_tmp[i * out_l + out_l - 1] * newscale_data[j] +
// newbias_data[j];
// if (if_relu) {
// output_data_tmp[i * out_l] =
// output_data_tmp[i * out_l] < 0 ? 0 : output_data_tmp[i *
// out_l];
// output_data_tmp[i * out_l + out_l - 1] =
// output_data_tmp[i * out_l + out_l - 1] < 0
// ? 0
// : output_data_tmp[i * out_l + out_l - 1];
// }
// }
// filter_data_tmp += 9;
// }
// input_data += inhxw * c;
// output_data += outhxw * c;
// }
#endif
#endif
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录