Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
11b3a655
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
11b3a655
编写于
7月 19, 2018
作者:
Z
zhaojiaying01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix android cross-compilation on armv8 platform
上级
098be2ab
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
318 addition
and
53 deletion
+318
-53
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+312
-52
src/operators/math/gemm.h
src/operators/math/gemm.h
+6
-1
未找到文件。
src/operators/math/gemm.cpp
浏览文件 @
11b3a655
...
@@ -33,6 +33,7 @@ float *packedA;
...
@@ -33,6 +33,7 @@ float *packedA;
float
*
packedB
;
float
*
packedB
;
float
*
packedC
;
float
*
packedC
;
float
*
zero
;
float
*
zero
;
/*
// 将A矩阵分块复制到连续内存(ColMajor)
// 将A矩阵分块复制到连续内存(ColMajor)
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
float *buffer) {
float *buffer) {
...
@@ -60,6 +61,36 @@ void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
...
@@ -60,6 +61,36 @@ void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
}
}
}
}
// 将B矩阵分块复制到连续内存(ColMajor)
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float *buffer) {
int i, j;
const float *Bj, *Bj1, *Bj2, *Bj3;
for (j = 0; j < n - n_tail; j += NR) {
Bj = &B(0, j);
Bj1 = &B(0, j + 1);
Bj2 = &B(0, j + 2);
Bj3 = &B(0, j + 3);
for (i = 0; i < k; ++i) {
*buffer++ = *Bj++;
*buffer++ = *Bj1++;
*buffer++ = *Bj2++;
*buffer++ = *Bj3++;
}
}
if (n_tail != 0) {
for (i = 0; i < k; ++i) {
for (int j = n - n_tail; j < n; ++j) {
*buffer++ = B(i, j);
}
for (int j = n; j < n + (NR - n_tail); ++j) {
*buffer++ = 0;
}
}
}
}
*/
// 将A矩阵分块复制到连续内存(RowMajor)
// 将A矩阵分块复制到连续内存(RowMajor)
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
float
*
buffer
)
{
...
@@ -100,35 +131,6 @@ void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
...
@@ -100,35 +131,6 @@ void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
}
}
}
}
// 将B矩阵分块复制到连续内存(ColMajor)
void
PackMatrixB
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
int
i
,
j
;
const
float
*
Bj
,
*
Bj1
,
*
Bj2
,
*
Bj3
;
for
(
j
=
0
;
j
<
n
-
n_tail
;
j
+=
NR
)
{
Bj
=
&
B
(
0
,
j
);
Bj1
=
&
B
(
0
,
j
+
1
);
Bj2
=
&
B
(
0
,
j
+
2
);
Bj3
=
&
B
(
0
,
j
+
3
);
for
(
i
=
0
;
i
<
k
;
++
i
)
{
*
buffer
++
=
*
Bj
++
;
*
buffer
++
=
*
Bj1
++
;
*
buffer
++
=
*
Bj2
++
;
*
buffer
++
=
*
Bj3
++
;
}
}
if
(
n_tail
!=
0
)
{
for
(
i
=
0
;
i
<
k
;
++
i
)
{
for
(
int
j
=
n
-
n_tail
;
j
<
n
;
++
j
)
{
*
buffer
++
=
B
(
i
,
j
);
}
for
(
int
j
=
n
;
j
<
n
+
(
NR
-
n_tail
);
++
j
)
{
*
buffer
++
=
0
;
}
}
}
}
// 将B矩阵分块复制到连续内存(RowMajor)
// 将B矩阵分块复制到连续内存(RowMajor)
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
float
*
buffer
)
{
...
@@ -138,7 +140,13 @@ void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
...
@@ -138,7 +140,13 @@ void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
b0
=
&
B
(
i
,
j
);
b0
=
&
B
(
i
,
j
);
#if __ARM_NEON
#if __ARM_NEON
#if __aarch64__
#if __aarch64__
asm
volatile
(
"prfm pldl1keep, [%[b0]]
\n\t
"
"ld1 {v0.4s, v1.4s}, [%[b0]]
\n\t
"
"st1 {v0.4s, v1.4s}, [%[buffer]], #32
\n\t
"
:
[
buffer
]
"+r"
(
buffer
)
:
[
b0
]
"r"
(
b0
)
:
"memory"
,
"v0"
,
"v1"
);
#else
#else
asm
volatile
(
asm
volatile
(
"pld [%[b0]]
\n\t
"
"pld [%[b0]]
\n\t
"
...
@@ -146,10 +154,17 @@ void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
...
@@ -146,10 +154,17 @@ void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
"vst1.32 {q0, q1}, [%[buffer]]!
\n\t
"
"vst1.32 {q0, q1}, [%[buffer]]!
\n\t
"
:
[
buffer
]
"+r"
(
buffer
)
:
[
buffer
]
"+r"
(
buffer
)
:
[
b0
]
"r"
(
b0
)
:
[
b0
]
"r"
(
b0
)
:
"memory"
,
"q0"
,
"q
0
"
);
:
"memory"
,
"q0"
,
"q
1
"
);
#endif // __aarch64__
#endif // __aarch64__
#else
#else
*
buffer
++
=
*
b0
++
;
*
buffer
++
=
*
b0
++
;
*
buffer
++
=
*
b0
++
;
*
buffer
++
=
*
b0
++
;
*
buffer
++
=
*
b0
++
;
*
buffer
++
=
*
b0
++
;
*
buffer
++
=
*
b0
++
;
*
buffer
++
=
*
b0
++
;
#endif // __ARM_NEON
#endif // __ARM_NEON
}
}
}
}
...
@@ -217,7 +232,7 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
...
@@ -217,7 +232,7 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
#if __ARM_NEON
#if __ARM_NEON
#if __aarch64__
#if __aarch64__
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
C
,
int
ldc
)
{
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
// init C
// init C
float32x4_t
cv0
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv0
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv1
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv1
=
vdupq_n_f32
(
0.0
);
...
@@ -244,23 +259,264 @@ void AddDot4x4(int k, const float *a, const float *b, float *C, int ldc) {
...
@@ -244,23 +259,264 @@ void AddDot4x4(int k, const float *a, const float *b, float *C, int ldc) {
a
+=
MR
;
a
+=
MR
;
b
+=
NR
;
b
+=
NR
;
}
}
float32x4x4_t
cv
=
{
cv0
,
cv1
,
cv2
,
cv3
};
int
i
,
j
;
vst1q_f32
(
c
,
cv0
);
for
(
i
=
0
;
i
<
mc
;
++
i
)
{
vst1q_f32
(
c
+
ldc
,
cv1
);
for
(
j
=
0
;
j
<
nc
;
++
j
)
{
vst1q_f32
(
c
+
2
*
ldc
,
cv2
);
if
(
beta
==
0.0
)
{
vst1q_f32
(
c
+
3
*
ldc
,
cv3
);
C
(
i
,
j
)
=
0.0
;
// float32x4x4_t cv = {cv0, cv1, cv2, cv3};
}
else
if
(
beta
!=
1.0
)
{
}
C
(
i
,
j
)
*=
beta
;
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
// init C
float32x4_t
cv0
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv1
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv2
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv3
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv4
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv5
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv6
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv7
=
vdupq_n_f32
(
0.0
);
float32x4_t
av
;
float32x4_t
bv0
;
float32x4_t
bv1
;
float32x2_t
av01
;
float32x2_t
av23
;
for
(
int
p
=
0
;
p
<
k
;
p
+=
1
)
{
av
=
vld1q_f32
(
a
);
bv0
=
vld1q_f32
(
b
);
bv1
=
vld1q_f32
(
b
+
4
);
av01
=
vget_low_f32
(
av
);
cv0
=
vmlaq_lane_f32
(
cv0
,
bv0
,
av01
,
0
);
cv1
=
vmlaq_lane_f32
(
cv1
,
bv1
,
av01
,
0
);
cv2
=
vmlaq_lane_f32
(
cv2
,
bv0
,
av01
,
1
);
cv3
=
vmlaq_lane_f32
(
cv3
,
bv1
,
av01
,
1
);
av23
=
vget_high_f32
(
av
);
cv4
=
vmlaq_lane_f32
(
cv4
,
bv0
,
av23
,
0
);
cv5
=
vmlaq_lane_f32
(
cv5
,
bv1
,
av23
,
0
);
cv6
=
vmlaq_lane_f32
(
cv6
,
bv0
,
av23
,
1
);
cv7
=
vmlaq_lane_f32
(
cv7
,
bv1
,
av23
,
1
);
a
+=
MR
;
b
+=
NR
;
}
vst1q_f32
(
c
,
cv0
);
vst1q_f32
(
c
+
4
,
cv1
);
vst1q_f32
(
c
+
ldc
,
cv2
);
vst1q_f32
(
c
+
ldc
+
4
,
cv3
);
vst1q_f32
(
c
+
2
*
ldc
,
cv4
);
vst1q_f32
(
c
+
2
*
ldc
+
4
,
cv5
);
vst1q_f32
(
c
+
3
*
ldc
,
cv6
);
vst1q_f32
(
c
+
3
*
ldc
+
4
,
cv7
);
}
// 分块矩阵乘法结果回写
// C = A * B
void
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
4
;
int
_nc1
=
nc
%
4
;
float
*
c_ptr
,
*
C_ptr
;
float32x4_t
cv
;
for
(
int
i
=
0
;
i
<
mc
;
++
i
)
{
c_ptr
=
c
+
i
*
NC
;
C_ptr
=
C
+
i
*
ldc
;
for
(
int
j
=
0
;
j
<
nc1
;
++
j
)
{
cv
=
vld1q_f32
(
c_ptr
);
vst1q_f32
(
C_ptr
,
cv
);
c_ptr
+=
4
;
C_ptr
+=
4
;
}
if
(
_nc1
!=
0
)
{
cv
=
vld1q_f32
(
c_ptr
);
if
(
_nc1
>=
1
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
0
);
C_ptr
++
;
}
if
(
_nc1
>=
2
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
1
);
C_ptr
++
;
}
if
(
_nc1
>=
3
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
2
);
}
}
}
}
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
// C = A * B + C
void
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
4
;
int
_nc1
=
nc
%
4
;
float
*
c_ptr
,
*
C_ptr
;
float32x4_t
cv
;
float32x4_t
cv1
;
for
(
int
i
=
0
;
i
<
mc
;
++
i
)
{
c_ptr
=
c
+
i
*
NC
;
C_ptr
=
C
+
i
*
ldc
;
for
(
int
j
=
0
;
j
<
nc1
;
++
j
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv1
=
vld1q_f32
(
C_ptr
);
cv
=
vaddq_f32
(
cv
,
cv1
);
vst1q_f32
(
C_ptr
,
cv
);
c_ptr
+=
4
;
C_ptr
+=
4
;
}
if
(
_nc1
!=
0
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv1
=
vld1q_f32
(
C_ptr
);
cv
=
vaddq_f32
(
cv
,
cv1
);
if
(
_nc1
>=
1
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
0
);
C_ptr
++
;
}
if
(
_nc1
>=
2
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
1
);
C_ptr
++
;
}
if
(
_nc1
>=
3
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
2
);
}
}
}
}
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
4
;
int
_nc1
=
nc
%
4
;
float
*
c_ptr
,
*
C_ptr
;
float32x4_t
cv
;
float32x4_t
cv1
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
i
=
0
;
i
<
mc
;
++
i
)
{
c_ptr
=
c
+
i
*
NC
;
C_ptr
=
C
+
i
*
ldc
;
for
(
int
j
=
0
;
j
<
nc1
;
++
j
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv1
=
vld1q_f32
(
C_ptr
);
cv
=
vaddq_f32
(
cv
,
cv1
);
cv
=
vmaxq_f32
(
cv
,
zero
);
vst1q_f32
(
C_ptr
,
cv
);
c_ptr
+=
4
;
C_ptr
+=
4
;
}
if
(
_nc1
!=
0
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv1
=
vld1q_f32
(
C_ptr
);
cv
=
vaddq_f32
(
cv
,
cv1
);
cv
=
vmaxq_f32
(
cv
,
zero
);
if
(
_nc1
>=
1
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
0
);
C_ptr
++
;
}
if
(
_nc1
>=
2
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
1
);
C_ptr
++
;
}
if
(
_nc1
>=
3
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
2
);
}
}
}
}
// C = A * B, batchnorm(C)
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
)
{
int
nc1
=
nc
/
4
;
int
_nc1
=
nc
%
4
;
float
*
c_ptr
,
*
C_ptr
;
float32x4_t
cv
;
float32x4_t
cv1
;
float32x4_t
bias
;
float32x2_t
scale
;
for
(
int
i
=
0
;
i
<
mc
;
++
i
)
{
c_ptr
=
c
+
i
*
NC
;
C_ptr
=
C
+
i
*
ldc
;
bias
=
vld1q_dup_f32
(
new_bias
);
scale
=
vld1_dup_f32
(
new_scale
);
new_bias
++
;
new_scale
++
;
float
scale0
=
vget_lane_f32
(
scale
,
0
);
for
(
int
j
=
0
;
j
<
nc1
;
++
j
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vmlaq_n_f32
(
bias
,
cv
,
scale0
);
vst1q_f32
(
C_ptr
,
cv
);
c_ptr
+=
4
;
C_ptr
+=
4
;
}
if
(
_nc1
!=
0
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vmlaq_n_f32
(
bias
,
cv
,
scale0
);
if
(
_nc1
>=
1
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
0
);
C_ptr
++
;
}
if
(
_nc1
>=
2
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
1
);
C_ptr
++
;
}
if
(
_nc1
>=
3
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
2
);
C_ptr
++
;
}
}
}
}
// C = A * B, batchnorm(C), relu(C)
void
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
)
{
int
nc1
=
nc
/
4
;
int
_nc1
=
nc
%
4
;
float
*
c_ptr
,
*
C_ptr
;
float32x4_t
cv
;
float32x4_t
bias
;
float32x2_t
scale
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
i
=
0
;
i
<
mc
;
++
i
)
{
c_ptr
=
c
+
i
*
NC
;
C_ptr
=
C
+
i
*
ldc
;
bias
=
vld1q_dup_f32
(
new_bias
);
scale
=
vld1_dup_f32
(
new_scale
);
new_bias
++
;
new_scale
++
;
float
scale0
=
vget_lane_f32
(
scale
,
0
);
for
(
int
j
=
0
;
j
<
nc1
;
++
j
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vmlaq_n_f32
(
bias
,
cv
,
scale0
);
cv
=
vmaxq_f32
(
cv
,
zero
);
vst1q_f32
(
C_ptr
,
cv
);
c_ptr
+=
4
;
C_ptr
+=
4
;
}
if
(
_nc1
!=
0
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vmlaq_n_f32
(
bias
,
cv
,
scale0
);
cv
=
vmaxq_f32
(
cv
,
zero
);
if
(
_nc1
>=
1
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
0
);
C_ptr
++
;
}
if
(
_nc1
>=
2
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
1
);
C_ptr
++
;
}
}
if
(
j
==
0
)
{
if
(
_nc1
>=
3
)
{
C
(
i
,
j
)
+=
alpha
*
vgetq_lane_f32
(
cv
.
val
[
i
],
0
);
vst1q_lane_f32
(
C_ptr
,
cv
,
2
);
}
else
if
(
j
==
1
)
{
C
(
i
,
j
)
+=
alpha
*
vgetq_lane_f32
(
cv
.
val
[
i
],
1
);
}
else
if
(
j
==
2
)
{
C
(
i
,
j
)
+=
alpha
*
vgetq_lane_f32
(
cv
.
val
[
i
],
2
);
}
else
if
(
j
==
3
)
{
C
(
i
,
j
)
+=
alpha
*
vgetq_lane_f32
(
cv
.
val
[
i
],
3
);
}
}
}
}
}
}
...
@@ -338,6 +594,7 @@ void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
...
@@ -338,6 +594,7 @@ void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
"q10"
,
"q11"
,
"q12"
,
"q13"
);
"q10"
,
"q11"
,
"q12"
,
"q13"
);
}
}
/*
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu) {
bool relu) {
...
@@ -770,6 +1027,7 @@ void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
...
@@ -770,6 +1027,7 @@ void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
VecWriteWithBn(n, bufferC, C, ldc, new_scale, new_bias);
VecWriteWithBn(n, bufferC, C, ldc, new_scale, new_bias);
}
}
}
}
*/
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
const
float
*
a_ptr
,
*
b_ptr
;
const
float
*
a_ptr
,
*
b_ptr
;
...
@@ -1288,6 +1546,7 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale,
...
@@ -1288,6 +1546,7 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale,
"q8"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
);
"q8"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
);
}
}
/*
// C = A * B
// C = A * B
void VecWriteBasic(int n, float *c, float *C, int ldc) {
void VecWriteBasic(int n, float *c, float *C, int ldc) {
int nc1 = n / 16;
int nc1 = n / 16;
...
@@ -1563,6 +1822,7 @@ void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *scale,
...
@@ -1563,6 +1822,7 @@ void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *scale,
: "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q10", "q11",
: "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q10", "q11",
"q12", "q13", "q14");
"q12", "q13", "q14");
}
}
*/
#endif // __aarch64__
#endif // __aarch64__
#else
#else
...
...
src/operators/math/gemm.h
浏览文件 @
11b3a655
...
@@ -28,6 +28,7 @@ namespace paddle_mobile {
...
@@ -28,6 +28,7 @@ namespace paddle_mobile {
namespace
operators
{
namespace
operators
{
namespace
math
{
namespace
math
{
/*
// 将 A 矩阵分块复制到连续内存(ColMajor)
// 将 A 矩阵分块复制到连续内存(ColMajor)
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
float *buffer);
float *buffer);
...
@@ -35,6 +36,7 @@ void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
...
@@ -35,6 +36,7 @@ void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
// 将 B 矩阵分块复制到连续内存(ColMajor)
// 将 B 矩阵分块复制到连续内存(ColMajor)
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float *buffer);
float *buffer);
*/
// 将 A 矩阵分块复制到连续内存(RowMajor)
// 将 A 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
...
@@ -51,7 +53,7 @@ void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
...
@@ -51,7 +53,7 @@ void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
/*
// 向量矩阵乘法 (M = 1)
// 向量矩阵乘法 (M = 1)
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
const float *B, int ldb, float beta, float *C, int ldc,
...
@@ -60,6 +62,7 @@ void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
...
@@ -60,6 +62,7 @@ void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
int lda, const float *B, int ldb, float beta, float *C,
int lda, const float *B, int ldb, float beta, float *C,
int ldc, bool relu, float *new_scale, float *new_bias);
int ldc, bool relu, float *new_scale, float *new_bias);
*/
// 计算一个更小的 C 矩阵分块
// 计算一个更小的 C 矩阵分块
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
...
@@ -81,6 +84,7 @@ void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *new_scale,
...
@@ -81,6 +84,7 @@ void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *new_scale,
void
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
void
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
float
*
new_scale
,
float
*
new_bias
);
/*
// 向量矩阵乘法结果回写
// 向量矩阵乘法结果回写
// C = A * B
// C = A * B
void VecWriteBasic(int n, float *c, float *C, int ldc);
void VecWriteBasic(int n, float *c, float *C, int ldc);
...
@@ -96,6 +100,7 @@ void VecWriteWithBn(int n, float *c, float *C, int ldc, float *new_scale,
...
@@ -96,6 +100,7 @@ void VecWriteWithBn(int n, float *c, float *C, int ldc, float *new_scale,
// C = A * B, batchnorm(C), relu(C)
// C = A * B, batchnorm(C), relu(C)
void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
float *new_bias);
float *new_bias);
*/
// 32位 float 矩阵乘法
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录