Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
0cee0cab
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0cee0cab
编写于
8月 08, 2018
作者:
Y
yangfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gemm merge function: C = A * B + bias
上级
186a371d
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
315 addition
and
20 deletion
+315
-20
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+3
-8
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
...perators/kernel/central-arm-func/conv_add_relu_arm_func.h
+7
-7
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
+4
-4
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+258
-1
src/operators/math/gemm.h
src/operators/math/gemm.h
+11
-0
src/operators/math/math_function.cpp
src/operators/math/math_function.cpp
+27
-0
src/operators/math/math_function.h
src/operators/math/math_function.h
+5
-0
未找到文件。
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
0cee0cab
...
...
@@ -31,12 +31,7 @@ void ConvAddBasic(const FusionConvAddParam ¶m) {
Tensor
bias
=
*
param
.
Bias
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
math
::
expand_bias
(
bias
,
axis
,
output
->
dims
());
float
*
output_data
=
output
->
data
<
float
>
();
float
*
biase_data
=
bias
.
data
<
float
>
();
for
(
int
k
=
0
;
k
<
output
->
numel
();
++
k
)
{
output_data
[
k
]
=
biase_data
[
k
];
}
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
...
...
@@ -111,9 +106,9 @@ void ConvAddBasic(const FusionConvAddParam ¶m) {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
WithBias
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
)
);
static_cast
<
float
>
(
1
),
false
,
biase_data
);
}
}
}
...
...
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
浏览文件 @
0cee0cab
...
...
@@ -28,12 +28,12 @@ void ConvAddReluCompute(const FusionConvAddReluParam ¶m) {
Tensor
bias
=
*
param
.
Bias
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
math
::
expand_bias
(
bias
,
axis
,
output
->
dims
());
//
math::expand_bias(bias, axis, output->dims());
float
*
output_data
=
output
->
data
<
float
>
();
float
*
biase_data
=
bias
.
data
<
float
>
();
for
(
int
k
=
0
;
k
<
output
->
numel
();
++
k
)
{
output_data
[
k
]
=
biase_data
[
k
];
}
//
for (int k = 0; k < output->numel(); ++k) {
//
output_data[k] = biase_data[k];
//
}
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
...
...
@@ -109,9 +109,9 @@ void ConvAddReluCompute(const FusionConvAddReluParam ¶m) {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
WithBias
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
true
);
static_cast
<
float
>
(
1
),
true
,
biase_data
);
}
}
}
...
...
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
浏览文件 @
0cee0cab
...
...
@@ -45,16 +45,16 @@ void FusionFcCompute(const FusionFcParam ¶m) {
PADDLE_MOBILE_ENFORCE
(
out_dim
[
1
]
==
input_z
->
dims
()[
0
],
" out_dim.size must be 2."
);
axis
=
(
axis
==
-
1
?
out_dim
.
size
()
-
input_z
->
dims
().
size
()
:
axis
);
PADDLE_MOBILE_ENFORCE
(
axis
==
1
,
" to fit broadcast, axis = 1. "
)
PADDLE_MOBILE_ENFORCE
(
axis
==
1
,
" to fit broadcast, axis = 1. "
)
;
int64_t
classes
=
input_z
->
numel
();
for
(
int
i
=
0
;
i
<
out_dim
[
0
];
i
++
)
{
memory
::
Copy
(
out_data
+
i
*
classes
,
input_z_data
,
sizeof
(
float
)
*
classes
);
}
for
(
int
i
=
0
;
i
<
out
->
numel
();
i
++
)
{
DLOG
<<
out_data
[
i
];
}
//
for (int i = 0; i < out->numel(); i++) {
//
DLOG << out_data[i];
//
}
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
1
));
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
...
...
src/operators/math/gemm.cpp
浏览文件 @
0cee0cab
...
...
@@ -373,9 +373,9 @@ void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
#endif
}
}
if
(
alpha
!=
1
)
{
WriteWithAlphaBeta
(
mc
,
nc
,
c
,
C
,
ldc
);
return
;
}
if
(
beta
==
0
)
{
...
...
@@ -392,6 +392,42 @@ void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
}
}
// 分块矩阵乘法
void
InnerKernelWithBias
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
bias
)
{
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
nc
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
mc
;
i
+=
MR
)
{
#if __aarch64__
// AddDot8x12(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot6x16
(
KC
,
a
+
i
*
KC
,
b
+
j
*
KC
,
c
+
i
*
NC
+
j
,
NC
);
#else
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
// AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot6x8
(
KC
,
a
+
i
*
KC
,
b
+
j
*
KC
,
c
+
i
*
NC
+
j
,
NC
);
#endif
}
}
if
(
alpha
!=
1
)
{
WriteWithAlphaBeta
(
mc
,
nc
,
c
,
C
,
ldc
);
return
;
}
if
(
beta
==
0
)
{
WriteBasic
(
mc
,
nc
,
c
,
C
,
ldc
);
return
;
}
if
(
beta
==
1
&&
!
relu
)
{
WriteWithAddV1
(
mc
,
nc
,
c
,
C
,
ldc
,
bias
);
return
;
}
if
(
beta
==
1
&&
relu
)
{
WriteWithAddReluV1
(
mc
,
nc
,
c
,
C
,
ldc
,
bias
);
return
;
}
}
// 分块矩阵乘法
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
...
...
@@ -577,6 +613,43 @@ void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc) {
}
}
}
// C = A * B + bias
void
WriteWithAddV1
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
bias
)
{
int
nc1
=
nc
/
4
;
int
_nc1
=
nc
%
4
;
float
*
c_ptr
,
*
C_ptr
;
float32x4_t
cv
;
float32x4_t
biasv
;
for
(
int
i
=
0
;
i
<
mc
;
++
i
)
{
c_ptr
=
c
+
i
*
NC
;
C_ptr
=
C
+
i
*
ldc
;
biasv
=
vld1q_dup_f32
(
bias
+
i
);
for
(
int
j
=
0
;
j
<
nc1
;
++
j
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vaddq_f32
(
cv
,
biasv
);
vst1q_f32
(
C_ptr
,
cv
);
c_ptr
+=
4
;
C_ptr
+=
4
;
}
if
(
_nc1
!=
0
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vaddq_f32
(
cv
,
biasv
);
if
(
_nc1
>=
1
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
0
);
C_ptr
++
;
}
if
(
_nc1
>=
2
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
1
);
C_ptr
++
;
}
if
(
_nc1
>=
3
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
2
);
C_ptr
++
;
}
}
}
}
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
...
...
@@ -619,6 +692,48 @@ void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc) {
}
}
// C = A * B + bias, relu(C)
void
WriteWithAddReluV1
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
bias
)
{
int
nc1
=
nc
/
4
;
int
_nc1
=
nc
%
4
;
float
*
c_ptr
,
*
C_ptr
;
float32x4_t
cv
;
float32x4_t
biasv
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
i
=
0
;
i
<
mc
;
++
i
)
{
c_ptr
=
c
+
i
*
NC
;
C_ptr
=
C
+
i
*
ldc
;
biasv
=
vld1q_dup_f32
(
bias
+
i
);
for
(
int
j
=
0
;
j
<
nc1
;
++
j
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vaddq_f32
(
cv
,
biasv
);
cv
=
vmaxq_f32
(
cv
,
zero
);
vst1q_f32
(
C_ptr
,
cv
);
c_ptr
+=
4
;
C_ptr
+=
4
;
}
if
(
_nc1
!=
0
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vaddq_f32
(
cv
,
biasv
);
cv
=
vmaxq_f32
(
cv
,
zero
);
if
(
_nc1
>=
1
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
0
);
C_ptr
++
;
}
if
(
_nc1
>=
2
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
1
);
C_ptr
++
;
}
if
(
_nc1
>=
3
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
2
);
C_ptr
++
;
}
}
}
}
// C = A * B, batchnorm(C)
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
)
{
...
...
@@ -1448,6 +1563,44 @@ void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc) {
}
}
// C = A * B + bias
void
WriteWithAddV1
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
bias
)
{
int
nc1
=
nc
/
4
;
int
_nc1
=
nc
%
4
;
float
*
c_ptr
,
*
C_ptr
;
float32x4_t
cv
;
float32x4_t
biasv
;
for
(
int
i
=
0
;
i
<
mc
;
++
i
)
{
c_ptr
=
c
+
i
*
NC
;
C_ptr
=
C
+
i
*
ldc
;
biasv
=
vld1q_dup_f32
(
bias
+
i
);
for
(
int
j
=
0
;
j
<
nc1
;
++
j
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vaddq_f32
(
cv
,
biasv
);
vst1q_f32
(
C_ptr
,
cv
);
c_ptr
+=
4
;
C_ptr
+=
4
;
}
if
(
_nc1
!=
0
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vaddq_f32
(
cv
,
biasv
);
if
(
_nc1
>=
1
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
0
);
C_ptr
++
;
}
if
(
_nc1
>=
2
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
1
);
C_ptr
++
;
}
if
(
_nc1
>=
3
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
2
);
C_ptr
++
;
}
}
}
}
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
...
...
@@ -1522,6 +1675,48 @@ void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc) {
}
}
// C = A * B + bias, relu(C)
void
WriteWithAddReluV1
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
bias
)
{
int
nc1
=
nc
/
4
;
int
_nc1
=
nc
%
4
;
float
*
c_ptr
,
*
C_ptr
;
float32x4_t
cv
;
float32x4_t
biasv
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
i
=
0
;
i
<
mc
;
++
i
)
{
c_ptr
=
c
+
i
*
NC
;
C_ptr
=
C
+
i
*
ldc
;
biasv
=
vld1q_dup_f32
(
bias
+
i
);
for
(
int
j
=
0
;
j
<
nc1
;
++
j
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vaddq_f32
(
cv
,
biasv
);
cv
=
vmaxq_f32
(
cv
,
zero
);
vst1q_f32
(
C_ptr
,
cv
);
c_ptr
+=
4
;
C_ptr
+=
4
;
}
if
(
_nc1
!=
0
)
{
cv
=
vld1q_f32
(
c_ptr
);
cv
=
vaddq_f32
(
cv
,
biasv
);
cv
=
vmaxq_f32
(
cv
,
zero
);
if
(
_nc1
>=
1
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
0
);
C_ptr
++
;
}
if
(
_nc1
>=
2
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
1
);
C_ptr
++
;
}
if
(
_nc1
>=
3
)
{
vst1q_lane_f32
(
C_ptr
,
cv
,
2
);
C_ptr
++
;
}
}
}
}
// C = A * B, batchnorm(C)
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
...
...
@@ -2113,6 +2308,68 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile
::
memory
::
Free
(
packedC
);
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
SgemmWithBias
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
32
*
1024
;
int
L2
=
0.5
*
1024
*
1024
;
KC
=
k
;
MC
=
L1
/
(
KC
*
sizeof
(
float
));
NC
=
L2
/
(
KC
*
sizeof
(
float
));
// make sure MC is multiple of MR, and NC is multiple of NR
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
MR
-
1
)
/
MR
*
MR
;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
KC
));
packedB
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
*
NC
));
packedC
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
NC
));
zero
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
));
for
(
int
l
=
0
;
l
<
KC
;
++
l
)
{
zero
[
l
]
=
0
;
}
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
#if __aarch64__
// PackMatrixB_12c(KC, nc, nc % NR, &B(0, j), ldb, packedB);
PackMatrixB_16c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
#else
PackMatrixB_8c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
#endif
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
#if __aarch64__
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
// PackMatrixA_8r(mc, KC, mc % MR, &A(i, 0), lda, packedA);
#else
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
#endif
InnerKernelWithBias
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
,
bias
+
i
);
}
}
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedB
);
paddle_mobile
::
memory
::
Free
(
packedC
);
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
...
...
src/operators/math/gemm.h
浏览文件 @
0cee0cab
...
...
@@ -62,6 +62,9 @@ void PackMatrixB_16c(int k, int n, int n_tail, const float *B, int ldb,
// 分块矩阵乘法
void
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
);
void
InnerKernelWithBias
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
bias
);
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
...
...
@@ -91,8 +94,13 @@ void WriteBasic(int mc, int nc, float *c, float *C, int ldc);
void
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C
void
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + bias
void
WriteWithAddV1
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
bias
);
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + bias ,relu(C)
void
WriteWithAddReluV1
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
bias
);
// C = A * B, batchnorm(C)
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
...
...
@@ -121,6 +129,9 @@ void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
);
void
SgemmWithBias
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
bias
);
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
...
...
src/operators/math/math_function.cpp
浏览文件 @
0cee0cab
...
...
@@ -44,6 +44,33 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
);
}
template
<
>
void
matmulWithBias
<
float
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
float
*
bias
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int
M
=
dim_out
[
0
];
int
N
=
dim_out
[
1
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
SgemmWithBias
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
bias
);
}
template
<
>
void
matmulWithBn
<
float
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
...
...
src/operators/math/math_function.h
浏览文件 @
0cee0cab
...
...
@@ -26,6 +26,11 @@ template <typename T>
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
=
false
);
template
<
typename
T
>
void
matmulWithBias
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
,
float
*
bias
);
template
<
typename
T
>
void
matmulWithBn
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录