Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
0bb67049
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0bb67049
编写于
8月 24, 2018
作者:
R
Ruilong Liu
提交者:
GitHub
8月 24, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #833 from codeWorm2015/metal
fix crash
上级
ca22a7a5
6e5e698d
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
273 addition
and
129 deletion
+273
-129
metal/paddle-mobile/paddle-mobile/Operators/Kernels/BoxcoderKernel.swift
...bile/paddle-mobile/Operators/Kernels/BoxcoderKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvBNReluKernel.swift
...le/paddle-mobile/Operators/Kernels/ConvBNReluKernel.swift
+112
-110
metal/paddle-mobile/paddle-mobile/Operators/Kernels/MulticlassNMSKernel.swift
...paddle-mobile/Operators/Kernels/MulticlassNMSKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Operators/Kernels/PriorBoxKernel.swift
...bile/paddle-mobile/Operators/Kernels/PriorBoxKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Operators/Kernels/Texture2DTo2DArrayKernel.swift
...e-mobile/Operators/Kernels/Texture2DTo2DArrayKernel.swift
+16
-15
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/ConvKernel.metal
...le/paddle-mobile/Operators/Kernels/metal/ConvKernel.metal
+141
-0
metal/paddle-mobile/paddle-mobile/Operators/PriorBoxOp.swift
metal/paddle-mobile/paddle-mobile/Operators/PriorBoxOp.swift
+1
-1
未找到文件。
metal/paddle-mobile/paddle-mobile/Operators/Kernels/BoxcoderKernel.swift
浏览文件 @
0bb67049
...
...
@@ -34,6 +34,6 @@ class BoxcoderKernel<P: PrecisionType>: Kernel, Computable{
required
init
(
device
:
MTLDevice
,
param
:
BoxcoderParam
<
P
>
)
{
param
.
output
.
initTexture
(
device
:
device
)
super
.
init
(
device
:
device
,
inFunctionName
:
"
priorbox
"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"
boxcoder
"
)
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvBNReluKernel.swift
浏览文件 @
0bb67049
...
...
@@ -40,11 +40,11 @@ struct ConvBNReluTestParam: TestParam {
class
ConvBNReluKernel
<
P
:
PrecisionType
>
:
Kernel
,
Computable
,
Testable
{
required
init
(
device
:
MTLDevice
,
testParam
:
ConvBNReluTestParam
)
{
if
testParam
.
filterSize
.
width
==
1
&&
testParam
.
filterSize
.
height
==
1
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_add
_batch_norm_relu_1x1"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"conv
_batch_norm_relu_1x1"
)
}
else
if
testParam
.
filterSize
.
channel
==
1
{
super
.
init
(
device
:
device
,
inFunctionName
:
"depthwise_conv_add
_batch_norm_relu_3x3"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"depthwise_conv
_batch_norm_relu_3x3"
)
}
else
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_add
_batch_norm_relu_3x3"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"conv
_batch_norm_relu_3x3"
)
}
}
...
...
@@ -53,11 +53,11 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
required
init
(
device
:
MTLDevice
,
param
:
ConvBNReluParam
<
P
>
)
{
if
param
.
filter
.
width
==
1
&&
param
.
filter
.
height
==
1
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_add
_batch_norm_relu_1x1"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"conv
_batch_norm_relu_1x1"
)
}
else
if
param
.
filter
.
channel
==
1
{
super
.
init
(
device
:
device
,
inFunctionName
:
"depthwise_conv_add
_batch_norm_relu_3x3"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"depthwise_conv
_batch_norm_relu_3x3"
)
}
else
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_add
_batch_norm_relu_3x3"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"conv
_batch_norm_relu_3x3"
)
}
param
.
output
.
initTexture
(
device
:
device
,
transpose
:
[
0
,
2
,
3
,
1
])
param
.
filter
.
initBuffer
(
device
:
device
,
precision
:
Tensor
.
BufferPrecision
.
Float32
)
...
...
@@ -74,6 +74,8 @@ class ConvBNReluKernel<P: PrecisionType>: Kernel, Computable, Testable {
print
(
"offset y:
\(
offsetY
)
"
)
let
offsetZ
=
0.0
print
(
" fuck "
)
metalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
paddedZ
:
UInt16
(
param
.
input
.
metalTexture
.
arrayLength
*
4
-
param
.
input
.
dim
[
3
]))
var
invs
:
[
P
]
=
[]
...
...
metal/paddle-mobile/paddle-mobile/Operators/Kernels/MulticlassNMSKernel.swift
浏览文件 @
0bb67049
...
...
@@ -26,6 +26,6 @@ class MulticlassNMSKernel<P: PrecisionType>: Kernel, Computable{
}
required
init
(
device
:
MTLDevice
,
param
:
MulticlassNMSParam
<
P
>
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"priorbox"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"prior
_
box"
)
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/PriorBoxKernel.swift
浏览文件 @
0bb67049
...
...
@@ -33,7 +33,7 @@ class PriorBoxKernel<P: PrecisionType>: Kernel, Computable{
var
metalParam
:
PriorBoxMetalParam
!
required
init
(
device
:
MTLDevice
,
param
:
PriorBoxParam
<
P
>
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"priorbox"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"prior
_
box"
)
param
.
output
.
initTexture
(
device
:
device
,
transpose
:
[
2
,
0
,
1
,
3
])
param
.
outputVariances
.
initTexture
(
device
:
device
,
transpose
:
[
2
,
0
,
1
,
3
])
...
...
metal/paddle-mobile/paddle-mobile/Operators/Kernels/Texture2DTo2DArrayKernel.swift
浏览文件 @
0bb67049
...
...
@@ -32,6 +32,7 @@ class Texture2DTo2DArrayKernel<P: PrecisionType>: Kernel, Computable{
}
required
init
(
device
:
MTLDevice
,
param
:
FeedParam
<
P
>
)
{
param
.
output
.
initTexture
(
device
:
device
,
transpose
:
[
0
,
2
,
3
,
1
])
super
.
init
(
device
:
device
,
inFunctionName
:
"texture2d_to_2d_array"
)
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/ConvKernel.metal
浏览文件 @
0bb67049
...
...
@@ -699,3 +699,144 @@ kernel void depthwise_conv_add_3x3(texture2d_array<float, access::sample> inText
outTexture.write(output, gid.xy, gid.z);
}
#pragma mark - conv bn relu
kernel void conv_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
ushort2 stride = ushort2(param.strideX, param.strideY);
const ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device float *weights [[buffer(1)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
ushort2 stride = ushort2(param.strideX, param.strideY);
ushort2 posInInput = ushort2(gid.xy) * stride + ushort2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW * 4;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
output.x += input.x * weights[weithTo + 0 * kernelHXW + j];
output.y += input.y * weights[weithTo + 1 * kernelHXW + j];
output.z += input.z * weights[weithTo + 2 * kernelHXW + j];
output.w += input.w * weights[weithTo + 3 * kernelHXW + j];
}
output = fmax(output * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
metal/paddle-mobile/paddle-mobile/Operators/PriorBoxOp.swift
浏览文件 @
0bb67049
...
...
@@ -27,7 +27,7 @@ class PriorBoxParam<P: PrecisionType>: OpParam {
aspectRatios
=
try
PriorBoxParam
.
getAttr
(
key
:
"aspect_ratios"
,
attrs
:
opDesc
.
attrs
)
variances
=
try
PriorBoxParam
.
getAttr
(
key
:
"variances"
,
attrs
:
opDesc
.
attrs
)
flip
=
try
PriorBoxParam
.
getAttr
(
key
:
"flip"
,
attrs
:
opDesc
.
attrs
)
clip
=
try
PriorBoxParam
.
getAttr
(
key
:
"cl
o
p"
,
attrs
:
opDesc
.
attrs
)
clip
=
try
PriorBoxParam
.
getAttr
(
key
:
"cl
i
p"
,
attrs
:
opDesc
.
attrs
)
stepW
=
try
PriorBoxParam
.
getAttr
(
key
:
"step_w"
,
attrs
:
opDesc
.
attrs
)
stepH
=
try
PriorBoxParam
.
getAttr
(
key
:
"step_h"
,
attrs
:
opDesc
.
attrs
)
offset
=
try
PriorBoxParam
.
getAttr
(
key
:
"offset"
,
attrs
:
opDesc
.
attrs
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录