提交 0b40a3f3 编写于 作者: H hjchen2

Merge branch 'ocr_attention' of https://github.com/hjchen2/paddle-mobile into ci_build

cmake_minimum_required(VERSION 3.0.0) cmake_minimum_required(VERSION 3.10.0)
option(USE_OPENMP "build with openmp support" ON) option(USE_OPENMP "build with openmp support" ON)
option(USE_EXCEPTION "build with exception" ON) option(USE_EXCEPTION "build with exception" ON)
......
...@@ -75,6 +75,7 @@ const char *G_OP_TYPE_TOP_K = "top_k"; ...@@ -75,6 +75,7 @@ const char *G_OP_TYPE_TOP_K = "top_k";
const char *G_OP_TYPE_CAST = "cast"; const char *G_OP_TYPE_CAST = "cast";
const char *G_OP_TYPE_LOG = "log"; const char *G_OP_TYPE_LOG = "log";
const char *G_OP_TYPE_LOD_RESET = "lod_reset"; const char *G_OP_TYPE_LOD_RESET = "lod_reset";
const char *G_OP_TYPE_LESS_THAN = "less_than";
const char *G_OP_TYPE_QUANTIZE = "quantize"; const char *G_OP_TYPE_QUANTIZE = "quantize";
const char *G_OP_TYPE_DEQUANTIZE = "dequantize"; const char *G_OP_TYPE_DEQUANTIZE = "dequantize";
...@@ -175,5 +176,6 @@ std::unordered_map< ...@@ -175,5 +176,6 @@ std::unordered_map<
{G_OP_TYPE_SEQUENCE_SOFTMAX, {{"X"}, {"Out"}}}, {G_OP_TYPE_SEQUENCE_SOFTMAX, {{"X"}, {"Out"}}},
{G_OP_TYPE_NORM, {{"X"}, {"Out", "Norm"}}}, {G_OP_TYPE_NORM, {{"X"}, {"Out", "Norm"}}},
{G_OP_TYPE_LOG, {{"X"}, {"Out"}}}, {G_OP_TYPE_LOG, {{"X"}, {"Out"}}},
{G_OP_TYPE_LOD_RESET, {{"X", "Y"}, {"Out"}}}}; {G_OP_TYPE_LOD_RESET, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_LESS_THAN, {{"X", "Y"}, {"Out"}}}};
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -158,6 +158,7 @@ extern const char *G_OP_TYPE_TOP_K; ...@@ -158,6 +158,7 @@ extern const char *G_OP_TYPE_TOP_K;
extern const char *G_OP_TYPE_CAST; extern const char *G_OP_TYPE_CAST;
extern const char *G_OP_TYPE_LOG; extern const char *G_OP_TYPE_LOG;
extern const char *G_OP_TYPE_LOD_RESET; extern const char *G_OP_TYPE_LOD_RESET;
extern const char *G_OP_TYPE_LESS_THAN;
extern const char *G_OP_TYPE_QUANTIZE; extern const char *G_OP_TYPE_QUANTIZE;
extern const char *G_OP_TYPE_DEQUANTIZE; extern const char *G_OP_TYPE_DEQUANTIZE;
......
...@@ -273,3 +273,9 @@ LOAD_OP1(sequence_pool, CPU); ...@@ -273,3 +273,9 @@ LOAD_OP1(sequence_pool, CPU);
#ifdef LOG_OP #ifdef LOG_OP
LOAD_OP1(log, CPU); LOAD_OP1(log, CPU);
#endif #endif
#ifdef LOD_RESET_OP
LOAD_OP1(lod_reset, CPU);
#endif
#ifdef LESS_THAN_OP
LOAD_OP1(less_than, CPU);
#endif
...@@ -17,7 +17,7 @@ limitations under the License. */ ...@@ -17,7 +17,7 @@ limitations under the License. */
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
#define DEFINE_INFERSHAPE(OpName) \ #define DEFINE_ACTIVATION_INFERSHAPE(OpName) \
template <typename Dtype, typename T> \ template <typename Dtype, typename T> \
void OpName##Op<Dtype, T>::InferShape() const { \ void OpName##Op<Dtype, T>::InferShape() const { \
const auto &input_dims = this->param_.InputX()->dims(); \ const auto &input_dims = this->param_.InputX()->dims(); \
...@@ -25,20 +25,20 @@ namespace operators { ...@@ -25,20 +25,20 @@ namespace operators {
} }
#ifdef RELU_OP #ifdef RELU_OP
DEFINE_INFERSHAPE(Relu); DEFINE_ACTIVATION_INFERSHAPE(Relu);
DEFINE_INFERSHAPE(Relu6); DEFINE_ACTIVATION_INFERSHAPE(Relu6);
#endif // RELU_OP #endif // RELU_OP
#ifdef SIGMOID_OP #ifdef SIGMOID_OP
DEFINE_INFERSHAPE(Sigmoid); DEFINE_ACTIVATION_INFERSHAPE(Sigmoid);
#endif // SIGMOID_OP #endif // SIGMOID_OP
#ifdef TANH_OP #ifdef TANH_OP
DEFINE_INFERSHAPE(Tanh); DEFINE_ACTIVATION_INFERSHAPE(Tanh);
#endif // TANH_OP #endif // TANH_OP
#ifdef LOG_OP #ifdef LOG_OP
DEFINE_INFERSHAPE(Log); DEFINE_ACTIVATION_INFERSHAPE(Log);
#endif // LOG_OP #endif // LOG_OP
} // namespace operators } // namespace operators
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/compare_op.h"
namespace paddle_mobile {
namespace operators {
#ifdef LESS_THAN_OP
template <typename Dtype, typename T>
void LessThanOp<Dtype, T>::InferShape() const {
const auto &input_dims = this->param_.input_x_->dims();
this->param_.output_->Resize(input_dims);
}
#endif // LESS_THAN_OP
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef LESS_THAN_OP
REGISTER_OPERATOR_CPU(less_than, ops::LessThanOp);
#endif // LESS_THAN_OP
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/compare_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef LESS_THAN_OP
DECLARE_OPERATOR(LessThan, CompareParam, LessThanKernel);
#endif // LESS_THAN_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/compare_kernel.h"
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace paddle_mobile {
namespace operators {
typedef enum {
LESS_THAN = 0,
LESS_EQUAL = 1,
GREATER_THAN = 2,
GREATER_EQUAL = 3,
EQUAL = 4,
NOT_EQUAL = 5,
} CompareType;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template <CompareType Comp = LESS_THAN>
inline uint32x4_t vcmpq_f32(const float32x4_t x, const float32x4_t y) {
return vcleq_f32(x, y);
}
#endif
template <CompareType Comp = LESS_THAN>
inline uint8_t Compare(const float x, const float y) {
return static_cast<uint8_t>(x < y);
}
template <CompareType Comp = LESS_THAN>
inline uint8_t Compare(const int64_t x, const int64_t y) {
return static_cast<uint8_t>(x < y);
}
template <typename Dtype, CompareType Comp>
struct CompareCompute {
void operator()(const Tensor *X, const Tensor *Y, const int Axis,
Tensor *Out) {}
};
template <CompareType Comp>
struct CompareCompute<float, Comp> {
void operator()(const Tensor *X, const Tensor *Y, const int Axis,
Tensor *Out) {
const float *x = X->data<float>();
const float *y = Y->data<float>();
uint8_t *output = reinterpret_cast<uint8_t *>(Out->mutable_data<bool>());
const auto &x_dims = X->dims();
const auto &y_dims = Y->dims();
/// axis = -1 represent the last dimensions.
int axis = (Axis == -1 ? x_dims.size() - y_dims.size() : Axis);
int batch = 1;
int channels = 1;
int elementwise_num = 1;
for (int i = 0; i < axis; ++i) {
batch *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
channels *= y_dims[i];
}
for (int i = y_dims.size() + axis; i < x_dims.size(); ++i) {
elementwise_num *= x_dims[i];
}
// if elementwise_num == 1, compare rowwise
if (elementwise_num == 1) {
int remain_start = 0;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
remain_start = channels & 0xfff8;
uint8x8_t __mask = vdup_n_u8(0x1);
for (int i = 0; i < batch; ++i) {
for (int j = 0; j < channels - 7; j += 8) {
int x_offset = i * channels + j;
float32x4_t __x0 = vld1q_f32(x + x_offset);
float32x4_t __x1 = vld1q_f32(x + x_offset + 4);
float32x4_t __y0 = vld1q_f32(y + j);
float32x4_t __y1 = vld1q_f32(y + j + 4);
uint32x4_t __cmp0 = vcmpq_f32<Comp>(__x0, __y0);
uint32x4_t __cmp1 = vcmpq_f32<Comp>(__x1, __y1);
uint16x4_t __ncmp0 = vmovn_u32(__cmp0);
uint16x4_t __ncmp1 = vmovn_u32(__cmp1);
uint16x8_t __ncmp = vcombine_u16(__ncmp0, __ncmp1);
uint8x8_t __nncmp = vmovn_u16(__ncmp);
__nncmp = vand_u8(__nncmp, __mask);
vst1_u8(output + x_offset, __nncmp);
}
}
#endif // __ARM_NEON__
for (int i = 0; i < batch; ++i) {
for (int j = remain_start; j < channels; ++j) {
int x_offset = i * channels + j;
output[x_offset] = Compare<Comp>(x[x_offset], y[j]);
}
}
} else {
for (int i = 0; i < batch; ++i) {
for (int j = 0; j < channels; ++j) {
int x_offset = (i * channels + j) * elementwise_num;
int y_offset = j * elementwise_num;
int remain_start = 0;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
remain_start = elementwise_num & 0xfff8;
uint8x8_t __mask = vdup_n_u8(0x1);
for (int k = 0; k < elementwise_num - 7; k += 8) {
float32x4_t __x0 = vld1q_f32(x + x_offset);
float32x4_t __x1 = vld1q_f32(x + x_offset + 4);
float32x4_t __y0 = vld1q_f32(y + y_offset);
uint32x4_t __cmp0 = vcmpq_f32<Comp>(__x0, __y0);
uint32x4_t __cmp1 = vcmpq_f32<Comp>(__x1, __y0);
uint16x4_t __ncmp0 = vmovn_u32(__cmp0);
uint16x4_t __ncmp1 = vmovn_u32(__cmp1);
uint16x8_t __ncmp = vcombine_u16(__ncmp0, __ncmp1);
uint8x8_t __nncmp = vmovn_u16(__ncmp);
__nncmp = vand_u8(__nncmp, __mask);
vst1_u8(output + x_offset, __nncmp);
x_offset += 8;
y_offset += 8;
}
#endif // __ARM_NEON__
for (int k = remain_start; k < elementwise_num; ++k) {
output[x_offset + k] = Compare<Comp>(x[x_offset + k], y[y_offset]);
}
}
}
}
}
};
template <CompareType Comp>
struct CompareCompute<int64_t, Comp> {
void operator()(const Tensor *X, const Tensor *Y, const int Axis,
Tensor *Out) {
const int64_t *x = X->data<int64_t>();
const int64_t *y = Y->data<int64_t>();
uint8_t *output = reinterpret_cast<uint8_t *>(Out->mutable_data<bool>());
const auto &x_dims = X->dims();
const auto &y_dims = Y->dims();
/// axis = -1 represent the last dimensions.
int axis = (Axis == -1 ? x_dims.size() - y_dims.size() : Axis);
int batch = 1;
int channels = 1;
int elementwise_num = 1;
for (int i = 0; i < axis; ++i) {
batch *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
channels *= y_dims[i];
}
for (int i = y_dims.size() + axis; i < x_dims.size(); ++i) {
elementwise_num *= x_dims[i];
}
// if elementwise_num == 1, compare rowwise
if (elementwise_num == 1) {
for (int i = 0; i < batch; ++i) {
for (int j = 0; j < channels; ++j) {
int x_offset = i * channels + j;
output[x_offset] = Compare<Comp>(x[x_offset], y[j]);
}
}
} else {
for (int i = 0; i < batch; ++i) {
for (int j = 0; j < channels; ++j) {
int x_offset = (i * channels + j) * elementwise_num;
int y_offset = j * elementwise_num;
for (int k = 0; k < elementwise_num; ++k) {
output[x_offset + k] = Compare<Comp>(x[x_offset + k], y[y_offset]);
}
}
}
}
}
};
#ifdef LESS_THAN_OP
template <>
bool LessThanKernel<CPU, float>::Init(CompareParam<CPU> *param) {
return true;
}
template <>
void LessThanKernel<CPU, float>::Compute(const CompareParam<CPU> &param) {
if (param.input_x_->type() == typeid(int64_t)) {
CompareCompute<int64_t, LESS_THAN>()(param.input_x_, param.input_y_,
param.axis_, param.output_);
} else if (param.input_x_->type() == typeid(float)) {
CompareCompute<float, LESS_THAN>()(param.input_x_, param.input_y_,
param.axis_, param.output_);
} else {
PADDLE_MOBILE_THROW_EXCEPTION(
"LessThan only support int64_t and float data type.");
}
}
#endif // LESS_THAN_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef LESS_THAN_OP
DECLARE_KERNEL(LessThan, CompareParam);
#endif // LESS_THAN_OP
} // namespace operators
} // namespace paddle_mobile
...@@ -21,15 +21,15 @@ namespace paddle_mobile { ...@@ -21,15 +21,15 @@ namespace paddle_mobile {
namespace operators { namespace operators {
#ifdef TOP_K_OP #ifdef TOP_K_OP
DECLARE_KERNEL(TopK, TopKParam) DECLARE_KERNEL(TopK, TopKParam);
#endif // TOP_K_OP #endif // TOP_K_OP
#ifdef CAST_OP #ifdef CAST_OP
DECLARE_KERNEL(Cast, CastParam) DECLARE_KERNEL(Cast, CastParam);
#endif // CAST_OP #endif // CAST_OP
#ifdef LOD_RESET_OP #ifdef LOD_RESET_OP
DECLARE_KERNEL(LodReset, LodResetParam) DECLARE_KERNEL(LodReset, LodResetParam);
#endif // LOD_RESET_OP #endif // LOD_RESET_OP
} // namespace operators } // namespace operators
......
...@@ -21,7 +21,7 @@ namespace operators { ...@@ -21,7 +21,7 @@ namespace operators {
template <typename Dtype, typename T> template <typename Dtype, typename T>
void LodResetOp<Dtype, T>::InferShape() const { void LodResetOp<Dtype, T>::InferShape() const {
const auto &input_dims = this->param_.input_->dims(); const auto &input_dims = this->param_.input_x_->dims();
this->param_.output_->Resize(input_dims); this->param_.output_->Resize(input_dims);
} }
......
...@@ -2856,5 +2856,28 @@ class LodResetParam : public OpParam { ...@@ -2856,5 +2856,28 @@ class LodResetParam : public OpParam {
}; };
#endif // LOD_RESET_OP #endif // LOD_RESET_OP
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
input_x_ = InputXFrom<GType>(inputs, scope);
input_y_ = InputYFrom<GType>(inputs, scope);
output_ = OutFrom<GType>(outputs, scope);
axis_ = OpParam::GetAttr<int>("axis", attrs);
}
public:
GType *input_x_;
GType *input_y_;
GType *output_;
int axis_;
};
#endif // LESS_THAN_OP
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -250,6 +250,9 @@ if (NOT FOUND_MATCH) ...@@ -250,6 +250,9 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-cast-op operators/test_cast_op.cpp test_helper.h test_include.h) ADD_EXECUTABLE(test-cast-op operators/test_cast_op.cpp test_helper.h test_include.h)
target_link_libraries(test-cast-op paddle-mobile) target_link_libraries(test-cast-op paddle-mobile)
ADD_EXECUTABLE(test-less-than-op operators/test_less_than_op.cpp test_helper.h test_include.h)
target_link_libraries(test-less-than-op paddle-mobile)
# gen test # gen test
ADD_EXECUTABLE(test-fc-op operators/test_fusion_fc_op.cpp test_helper.h test_include.h) ADD_EXECUTABLE(test-fc-op operators/test_fusion_fc_op.cpp test_helper.h test_include.h)
target_link_libraries(test-fc-op paddle-mobile) target_link_libraries(test-fc-op paddle-mobile)
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cmath>
#include <iostream>
#include "../test_include.h"
#include "operators/compare_op.h"
namespace paddle_mobile {
template <typename T>
void LessThan(const framework::Tensor *X, const framework::Tensor *Y,
const int Axis, framework::Tensor *Out) {
const T *x = X->data<T>();
const T *y = Y->data<T>();
bool *output = Out->mutable_data<bool>();
const auto &x_dims = X->dims();
const auto &y_dims = Y->dims();
/// axis = -1 represent the last dimensions.
int axis = (Axis == -1 ? x_dims.size() - y_dims.size() : Axis);
int batch = 1;
int channels = 1;
int elementwise_num = 1;
for (int i = 0; i < axis; ++i) {
batch *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
channels *= y_dims[i];
}
for (int i = y_dims.size() + axis; i < x_dims.size(); ++i) {
elementwise_num *= x_dims[i];
}
// less than
for (int i = 0; i < batch; ++i) {
for (int j = 0; j < channels; ++j) {
int x_offset = (i * channels + j) * elementwise_num;
int y_offset = j * elementwise_num;
for (int k = 0; k < elementwise_num; ++k) {
output[x_offset + k] = (x[x_offset + k] < y[y_offset]);
}
}
}
}
template <typename T>
int TestLessThanOp(const std::vector<int> &x_shape,
const std::vector<int> &y_shape, const int axis) {
framework::DDim xdims = framework::make_ddim(x_shape);
framework::DDim ydims = framework::make_ddim(y_shape);
VariableNameMap inputs;
VariableNameMap outputs;
auto scope = std::make_shared<framework::Scope>();
inputs["X"] = std::vector<std::string>({"inputx"});
inputs["Y"] = std::vector<std::string>({"inputy"});
outputs["Out"] = std::vector<std::string>({"output"});
auto inputx_var = scope.get()->Var("inputx");
auto inputx = inputx_var->template GetMutable<framework::LoDTensor>();
SetupTensor<T>(inputx, xdims, static_cast<T>(-100), static_cast<T>(100));
auto inputy_var = scope.get()->Var("inputy");
auto inputy = inputy_var->template GetMutable<framework::LoDTensor>();
SetupTensor<T>(inputy, ydims, static_cast<T>(-100), static_cast<T>(100));
auto output_var = scope.get()->Var("output");
framework::AttributeMap attrs;
attrs["axis"].Set<int>(axis);
auto *op = new operators::LessThanOp<CPU, float>("less_than", inputs, outputs,
attrs, scope);
op->InferShape();
op->Init();
op->Run();
auto output = output_var->template Get<framework::LoDTensor>();
framework::Tensor output_cmp;
bool *output_cmp_data = output_cmp.mutable_data<bool>(output->dims());
LessThan<T>(inputx, inputy, axis, &output_cmp);
const bool *output_data = output->data<bool>();
for (int i = 0; i < output->numel(); ++i) {
if (output_data[i] != output_cmp_data[i]) {
LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
<< ", output_cmp_data[" << i
<< "] = " << output_cmp_data[i];
delete op;
exit(1);
}
}
delete op;
return 0;
}
} // namespace paddle_mobile
int main() {
paddle_mobile::TestLessThanOp<float>({1, 2, 3}, {1, 2, 3}, 0);
paddle_mobile::TestLessThanOp<float>({10, 2, 1}, {10, 2, 1}, 0);
paddle_mobile::TestLessThanOp<float>({2, 10, 1}, {1, 10, 1}, 1);
paddle_mobile::TestLessThanOp<float>({10, 2, 1}, {1, 2, 1}, 1);
paddle_mobile::TestLessThanOp<int64_t>({1, 2, 3}, {1, 2, 3}, 0);
paddle_mobile::TestLessThanOp<int64_t>({10, 2, 1}, {10, 2, 1}, 0);
paddle_mobile::TestLessThanOp<int64_t>({2, 10, 1}, {1, 10, 1}, 1);
paddle_mobile::TestLessThanOp<int64_t>({10, 2, 1}, {1, 2, 1}, 1);
std::cout << "test less_than op pass." << std::endl;
return 0;
}
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
#set -ex set -e
function print_usage() { function print_usage() {
echo "\n${RED}Usage${NONE}: echo "\n${RED}Usage${NONE}:
...@@ -27,17 +27,17 @@ function print_usage() { ...@@ -27,17 +27,17 @@ function print_usage() {
${BLUE}linux_armv7${NONE}: run build for linux armv7 platform ${BLUE}linux_armv7${NONE}: run build for linux armv7 platform
${BLUE}linux_armv8${NONE}: run build for linux armv8 platform ${BLUE}linux_armv8${NONE}: run build for linux armv8 platform
" "
echo "\n${RED}Network${NONE}: optional, only for compressing framework size echo "\n${RED}Network${NONE}: optional, for deep compressing the framework size
${BLUE}googlenet${NONE}: build only googlenet supported ${BLUE}googlenet${NONE}: build only googlenet support
${BLUE}mobilenet${NONE}: build only mobilenet supported ${BLUE}mobilenet${NONE}: build only mobilenet support
${BLUE}yolo${NONE}: build only yolo supported ${BLUE}yolo${NONE}: build only yolo support
${BLUE}squeezenet${NONE}: build only squeezenet supported ${BLUE}squeezenet${NONE}: build only squeezenet support
${BLUE}resnet${NONE}: build only resnet supported ${BLUE}resnet${NONE}: build only resnet support
${BLUE}mobilenetssd${NONE}: build only mobilenetssd supported ${BLUE}mobilenetssd${NONE}: build only mobilenetssd support
${BLUE}nlp${NONE}: build only nlp model supported ${BLUE}nlp${NONE}: build only nlp model support
${BLUE}mobilenetfssd${NONE}: build only mobilenetfssd supported ${BLUE}mobilenetfssd${NONE}: build only mobilenetfssd support
${BLUE}genet${NONE}: build only genet supported ${BLUE}genet${NONE}: build only genet support
${BLUE}super${NONE}: build only super supported ${BLUE}super${NONE}: build only super support
" "
} }
......
...@@ -278,6 +278,8 @@ if(NOT FOUND_MATCH) ...@@ -278,6 +278,8 @@ if(NOT FOUND_MATCH)
set(SEQUENCE_SOFTMAX_OP ON) set(SEQUENCE_SOFTMAX_OP ON)
set(LOG_OP ON) set(LOG_OP ON)
set(TANH_OP ON) set(TANH_OP ON)
set(LOD_RESET_OP ON)
set(LESS_THAN_OP ON)
endif() endif()
# option(BATCHNORM_OP "" ON) # option(BATCHNORM_OP "" ON)
...@@ -517,6 +519,12 @@ endif() ...@@ -517,6 +519,12 @@ endif()
if (LOG_OP) if (LOG_OP)
add_definitions(-DLOG_OP) add_definitions(-DLOG_OP)
endif() endif()
if (LOD_RESET_OP)
add_definitions(-DLOD_RESET_OP)
endif()
if (LESS_THAN_OP)
add_definitions(-DLESS_THAN_OP)
endif()
if (TANH_OP) if (TANH_OP)
add_definitions(-DTANH_OP) add_definitions(-DTANH_OP)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册