From 0350e99eae47fccad3c3a42746101b6ba9d670ed Mon Sep 17 00:00:00 2001 From: yangfei Date: Tue, 4 Sep 2018 12:04:02 +0800 Subject: [PATCH] imp fusion_conv_bn_add_relu op in resnet --- src/common/types.cpp | 2 + src/common/types.h | 1 + src/operators/fusion_conv_bn_add_relu_op.cpp | 56 ++-- src/operators/fusion_conv_bn_add_relu_op.h | 120 +++---- .../kernel/arm/conv_bn_add_relu_kernel.cpp | 76 ++--- .../conv_bn_add_relu_arm_func.h | 235 +++++++------- .../kernel/conv_bn_add_relu_kernel.h | 22 +- src/operators/math/gemm.cpp | 298 ++++++++++++++++++ src/operators/math/gemm.h | 16 +- src/operators/math/math_function.cpp | 37 +++ src/operators/math/math_function.h | 6 + src/operators/op_param.h | 113 +++++++ tools/op.cmake | 6 + 13 files changed, 732 insertions(+), 256 deletions(-) diff --git a/src/common/types.cpp b/src/common/types.cpp index 372331ad32..6503f6383d 100644 --- a/src/common/types.cpp +++ b/src/common/types.cpp @@ -26,6 +26,7 @@ const char *G_OP_TYPE_FUSION_CONV_ADD_RELU = "fusion_conv_add_relu"; const char *G_OP_TYPE_FUSION_CONV_ADD_PRELU = "fusion_conv_add_prelu"; const char *G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU = "fusion_conv_add_add_prelu"; const char *G_OP_TYPE_FUSION_CONV_ADD_BN_RELU = "fusion_conv_add_bn_relu"; +const char *G_OP_TYPE_FUSION_CONV_BN_ADD_RELU = "fusion_conv_bn_add_relu"; const char *G_OP_TYPE_FUSION_DWCONV_BN_RELU = "fusion_dwconv_bn_relu"; const char *G_OP_TYPE_FUSION_CONV_BN_RELU = "fusion_conv_bn_relu"; const char *G_OP_TYPE_FC = "fusion_fc"; @@ -79,6 +80,7 @@ std::unordered_map< {G_OP_TYPE_BOX_CODER, {{"PriorBox", "PriorBoxVar", "TargetBox"}, {"OutputBox"}}}, {G_OP_TYPE_FUSION_CONV_ADD_BN_RELU, {{"Input"}, {"Out"}}}, + {G_OP_TYPE_FUSION_CONV_BN_ADD_RELU, {{"Input"}, {"Out"}}}, {G_OP_TYPE_PRIOR_BOX, {{"Image", "Input"}, {"Boxes", "Variances"}}}, {G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}}, {G_OP_TYPE_FC, {{"X", "Y", "Z"}, {"Out"}}}, diff --git a/src/common/types.h b/src/common/types.h index dcbea11328..6d38e41789 100644 --- a/src/common/types.h +++ b/src/common/types.h @@ -90,6 +90,7 @@ extern const char *G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU; extern const char *G_OP_TYPE_FC; extern const char *G_OP_TYPE_FUSION_CONV_ADD; extern const char *G_OP_TYPE_FUSION_CONV_ADD_BN_RELU; +extern const char *G_OP_TYPE_FUSION_CONV_BN_ADD_RELU; extern const char *G_OP_TYPE_FUSION_DWCONV_BN_RELU; extern const char *G_OP_TYPE_FUSION_CONV_BN_RELU; diff --git a/src/operators/fusion_conv_bn_add_relu_op.cpp b/src/operators/fusion_conv_bn_add_relu_op.cpp index 4f5b56285e..9823a3111e 100644 --- a/src/operators/fusion_conv_bn_add_relu_op.cpp +++ b/src/operators/fusion_conv_bn_add_relu_op.cpp @@ -18,34 +18,34 @@ limitations under the License. */ #include "operators/math/conv_func.h" namespace paddle_mobile { - namespace operators { - - template - void FusionConvBNAddReluOp::InferShape() const { - auto in_dims = this->param_.Input()->dims(); - auto filter_dims = this->param_.Filter()->dims(); - const std::vector &strides = this->param_.Strides(); - std::vector paddings = this->param_.Paddings(); - int groups = this->param_.Groups(); - std::vector dilations = this->param_.Dilations(); - - PADDLE_MOBILE_ENFORCE((in_dims.size() == filter_dims.size() && - dilations.size() == paddings.size() && - paddings.size() == strides.size()), - "ConvParam is not suitable"); - - std::vector output_shape({in_dims[0], filter_dims[0]}); - for (size_t i = 0; i < strides.size(); ++i) { - output_shape.push_back( - math::ConvOutputSize(in_dims[i + 2], filter_dims[i + 2], dilations[i], - paddings[i], strides[i])); - } - - framework::DDim ddim = framework::make_ddim(output_shape); - this->param_.Output()->Resize(ddim); - } - - } // namespace operators +namespace operators { + +template +void FusionConvBNAddReluOp::InferShape() const { + auto in_dims = this->param_.Input()->dims(); + auto filter_dims = this->param_.Filter()->dims(); + const std::vector &strides = this->param_.Strides(); + std::vector paddings = this->param_.Paddings(); + int groups = this->param_.Groups(); + std::vector dilations = this->param_.Dilations(); + + PADDLE_MOBILE_ENFORCE((in_dims.size() == filter_dims.size() && + dilations.size() == paddings.size() && + paddings.size() == strides.size()), + "ConvParam is not suitable"); + + std::vector output_shape({in_dims[0], filter_dims[0]}); + for (size_t i = 0; i < strides.size(); ++i) { + output_shape.push_back( + math::ConvOutputSize(in_dims[i + 2], filter_dims[i + 2], dilations[i], + paddings[i], strides[i])); + } + + framework::DDim ddim = framework::make_ddim(output_shape); + this->param_.Output()->Resize(ddim); +} + +} // namespace operators } // namespace paddle_mobile namespace ops = paddle_mobile::operators; diff --git a/src/operators/fusion_conv_bn_add_relu_op.h b/src/operators/fusion_conv_bn_add_relu_op.h index 5355ba3c8c..62f3ccf37d 100644 --- a/src/operators/fusion_conv_bn_add_relu_op.h +++ b/src/operators/fusion_conv_bn_add_relu_op.h @@ -24,67 +24,67 @@ limitations under the License. */ #include "operators/kernel/conv_bn_add_relu_kernel.h" namespace paddle_mobile { - namespace operators { - using std::string; - using std::vector; - class FusionConvBNAddReluMatcher : public framework::FusionOpMatcher { - public: - FusionConvBNAddReluMatcher() { - node_ = framework::Node(G_OP_TYPE_CONV); - node_ > std::make_shared(G_OP_TYPE_BATCHNORM) > - std::make_shared(G_OP_TYPE_ELEMENTWISE_ADD) > - std::make_shared(G_OP_TYPE_RELU); - } - - void FolderNodes( - framework::Node *node, - std::vector> *removed_nodes) { - node->Folder(node_.Depth(), Type(), - {{G_OP_TYPE_ELEMENTWISE_ADD, {{"Y", "Y"},{"X","X"}}}, - {G_OP_TYPE_BATCHNORM, - {{"Scale", "Scale"}, - {"Mean", "Mean"}, - {"Bias", "Bias"}, - {"Variance", "Variance"}, - {"Y","BNY"}}}}, - removed_nodes); - } - - std::string Type() { return G_OP_TYPE_FUSION_CONV_BN_ADD_RELU; } - std::vector> NeedCheck() { - DLOG << " conv bn add relu check add X "; - return {{2, "Y"}, {2, "X"}}; - } - }; - - template - class FusionConvBNAddReluOp - : public framework::OperatorWithKernel< - DeviceType, FusionConvBNAddReluParam, - operators::ConvBNAddReluKernel> { - public: - FusionConvBNAddReluOp(const string &type, const VariableNameMap &inputs, - const VariableNameMap &outputs, - const framework::AttributeMap &attrs, - std::shared_ptr scope) - : framework::OperatorWithKernel< - DeviceType, FusionConvBNAddReluParam, - operators::ConvBNAddReluKernel>( - type, inputs, outputs, attrs, scope) {} - - using framework::OperatorWithKernel< - DeviceType, FusionConvBNAddReluParam, - operators::ConvBNAddReluKernel>::OperatorWithKernel; - void InferShape() const override; - - protected: - }; +namespace operators { +using std::string; +using std::vector; +class FusionConvBNAddReluMatcher : public framework::FusionOpMatcher { + public: + FusionConvBNAddReluMatcher() { + node_ = framework::Node(G_OP_TYPE_CONV); + node_ > std::make_shared(G_OP_TYPE_BATCHNORM) > + std::make_shared(G_OP_TYPE_ELEMENTWISE_ADD) > + std::make_shared(G_OP_TYPE_RELU); + } + + void FolderNodes( + framework::Node *node, + std::vector> *removed_nodes) { + node->Folder(node_.Depth(), Type(), + {{G_OP_TYPE_ELEMENTWISE_ADD, {{"Y", "Y"}, {"X", "X"}}}, + {G_OP_TYPE_BATCHNORM, + {{"Scale", "Scale"}, + {"Mean", "Mean"}, + {"Bias", "Bias"}, + {"Variance", "Variance"}, + {"Y", "BNY"}}}}, + removed_nodes); + } + + std::string Type() { return G_OP_TYPE_FUSION_CONV_BN_ADD_RELU; } + std::vector> NeedCheck() { + DLOG << " conv bn add relu check add X "; + return {{2, "Y"}, {2, "X"}}; + } +}; + +template +class FusionConvBNAddReluOp + : public framework::OperatorWithKernel< + DeviceType, FusionConvBNAddReluParam, + operators::ConvBNAddReluKernel> { + public: + FusionConvBNAddReluOp(const string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, + const framework::AttributeMap &attrs, + std::shared_ptr scope) + : framework::OperatorWithKernel< + DeviceType, FusionConvBNAddReluParam, + operators::ConvBNAddReluKernel>( + type, inputs, outputs, attrs, scope) {} + + using framework::OperatorWithKernel< + DeviceType, FusionConvBNAddReluParam, + operators::ConvBNAddReluKernel>::OperatorWithKernel; + void InferShape() const override; + + protected: +}; #ifdef PADDLE_MOBILE_CPU #ifndef FUSION_CONV_BN_ADD_RELU_REGISTER - static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar( - new FusionConvBNAddReluMatcher()); +static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar( + new FusionConvBNAddReluMatcher()); #define FUSION_CONV_BN_ADD_RELU_REGISTER #endif @@ -92,7 +92,7 @@ namespace paddle_mobile { #ifdef PADDLE_MOBILE_MALI_GPU - #ifndef FUSION_CONV_BN_ADD_RELU_REGISTER +#ifndef FUSION_CONV_BN_ADD_RELU_REGISTER static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar( new FusionConvBNAddReluMatcher()); #define FUSION_CONV_BN_ADD_RELU_REGISTER @@ -102,7 +102,7 @@ static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar( #ifdef PADDLE_MOBILE_FPGA - #ifndef FUSION_CONV_BN_ADD_RELU_REGISTER +#ifndef FUSION_CONV_BN_ADD_RELU_REGISTER static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar( new FusionConvBNAddReluMatcher()); #define FUSION_CONV_BN_ADD_RELU_REGISTER @@ -110,7 +110,7 @@ static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar( #endif - } // namespace operators +} // namespace operators } // namespace paddle_mobile #ifdef PADDLE_MOBILE_CPU diff --git a/src/operators/kernel/arm/conv_bn_add_relu_kernel.cpp b/src/operators/kernel/arm/conv_bn_add_relu_kernel.cpp index 0c1c425b7e..785b13dde2 100644 --- a/src/operators/kernel/arm/conv_bn_add_relu_kernel.cpp +++ b/src/operators/kernel/arm/conv_bn_add_relu_kernel.cpp @@ -18,49 +18,49 @@ limitations under the License. */ #include "operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h" namespace paddle_mobile { - namespace operators { +namespace operators { - template <> - bool ConvBNAddReluKernel::Init( - FusionConvBNAddReluParam *param) { - const Tensor *mean = param->InputMean(); - const Tensor *variance = param->InputVariance(); - const Tensor *scale = param->InputScale(); - const Tensor *bias = param->InputBias(); - const float epsilon = param->Epsilon(); +template <> +bool ConvBNAddReluKernel::Init( + FusionConvBNAddReluParam *param) { + const Tensor *mean = param->InputMean(); + const Tensor *variance = param->InputVariance(); + const Tensor *scale = param->InputScale(); + const Tensor *bias = param->InputBias(); + const float epsilon = param->Epsilon(); - auto mean_ptr = mean->data(); - auto variance_ptr = variance->data(); - auto scale_ptr = scale->data(); - auto bias_ptr = bias->data(); + auto mean_ptr = mean->data(); + auto variance_ptr = variance->data(); + auto scale_ptr = scale->data(); + auto bias_ptr = bias->data(); - const int C = mean->numel(); - float inv_std_ptr[C]; - for (int i = 0; i < C; i++) { - inv_std_ptr[i] = - 1 / static_cast(pow((variance_ptr[i] + epsilon), 0.5)); - } - Tensor *new_scale = new Tensor(); - Tensor *new_bias = new Tensor(); - auto new_scale_ptr = new_scale->mutable_data({C}); - auto new_bias_ptr = new_bias->mutable_data({C}); - for (int i = 0; i < C; i++) { - new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i]; - new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i]; - } - param->SetNewScale(new_scale); - param->SetNewBias(new_bias); - return true; - } + const int C = mean->numel(); + float inv_std_ptr[C]; + for (int i = 0; i < C; i++) { + inv_std_ptr[i] = + 1 / static_cast(pow((variance_ptr[i] + epsilon), 0.5)); + } + Tensor *new_scale = new Tensor(); + Tensor *new_bias = new Tensor(); + auto new_scale_ptr = new_scale->mutable_data({C}); + auto new_bias_ptr = new_bias->mutable_data({C}); + for (int i = 0; i < C; i++) { + new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i]; + new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i]; + } + param->SetNewScale(new_scale); + param->SetNewBias(new_bias); + return true; +} - template <> - void ConvBNAddReluKernel::Compute( - const FusionConvBNAddReluParam ¶m) const { - ConvBNAddReluCompute(param); - } - template class ConvBNAddReluKernel; +template <> +void ConvBNAddReluKernel::Compute( + const FusionConvBNAddReluParam ¶m) const { + ConvBNAddReluCompute(param); +} +template class ConvBNAddReluKernel; - } // namespace operators +} // namespace operators } // namespace paddle_mobile #endif diff --git a/src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h b/src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h index 78370e4842..8658b058f0 100644 --- a/src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h +++ b/src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h @@ -24,123 +24,124 @@ limitations under the License. */ #include "operators/op_param.h" namespace paddle_mobile { - namespace operators { - void ConvBNAddReluBasic(const FusionConvBNAddReluParam ¶m) { - const Tensor *input = param.Input(); - Tensor filter = *param.Filter(); - Tensor new_bias = *param.NewBias(); - Tensor new_scale = *param.NewScale(); - Tensor *output = param.Output(); - Tensor *bias1 = param.Bias(); - int groups = param.Groups(); - DLOG<<"yangfei2"; - DLOG<dims(); - std::vector strides = param.Strides(); - std::vector paddings = param.Paddings(); - std::vector dilations = param.Dilations(); - - const int batch_size = static_cast(input->dims()[0]); - - std::vector filter_shape_vec(framework::vectorize(filter.dims())); - - std::vector output_shape_vec(framework::vectorize(output->dims())); - size_t data_dim = filter_shape_vec.size() - 2; - std::vector col_shape_vec(1 + 2 * data_dim); - col_shape_vec[0] = input->dims()[1] / groups; - for (size_t j = 0; j < data_dim; ++j) { - col_shape_vec[j + 1] = filter_shape_vec[j + 2]; - col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; - } - framework::DDim col_shape(framework::make_ddim(col_shape_vec)); - - framework::DDim col_matrix_shape = - framework::flatten_to_2d(col_shape, data_dim + 1); - - bool is_expand = - math::IsExpand(filter_shape_vec, strides, paddings, dilations); - Tensor col; - Tensor col_matrix; - if (is_expand) { - col.mutable_data(col_shape); - col_matrix.ShareDataWith(col); - col_matrix.Resize(col_matrix_shape); - } - - framework::DDim input_shape = framework::slice_ddim( - input->dims(), 1, static_cast(input->dims().size())); - - framework::DDim filter_matrix_shape = {filter.dims()[0], - filter.numel() / filter.dims()[0]}; - filter.Resize(filter_matrix_shape); - framework::DDim output_matrix_shape = { - output->dims()[1], - output->numel() / (output->dims()[0] * output->dims()[1])}; - - // convolution operator: im2col(or vol2col) + gemm - int in_step = static_cast(input->dims()[1]) / groups; - int out_step = static_cast(output->dims()[1]) / groups; - - math::Vol2ColFunctor vol2col; - math::Im2ColFunctor im2col; - - for (int i = 0; i < batch_size; i++) { - Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); - Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); - Tensor bias_batch = bias1->Slice(i, i + 1).Resize(output_matrix_shape); - for (int g = 0; g < groups; g++) { - Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); - - if (!is_expand) { - col.ShareDataWith(in_slice); - col_matrix.ShareDataWith(col); - col_matrix.Resize(col_matrix_shape); - } else if (data_dim == 2U) { - // im2col - im2col(in_slice, dilations, strides, - std::vector{paddings[0], paddings[1], paddings[0], - paddings[1]}, - &col); - } else if (data_dim == 3U) { - // vol2col - vol2col(in_slice, dilations, strides, paddings, &col); - } - // gemm - Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); - Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); - Tensor bias_data = bias_batch.Slice(g * out_step, (g + 1) * out_step); - math::matmulWithBnAdd( - filter_slice, false, col_matrix, false, static_cast(1), - &out_slice, static_cast(1), true, &new_scale, &new_bias, g,bias_data.data()); - } - } - } - template - void ConvBNAddReluCompute(const FusionConvBNAddReluParam ¶m) { - Tensor Bias; - Bias.mutable_data({param.Groups()}); - if (param.Groups() == param.Input()->dims()[1] && - param.Input()->dims()[1] == param.Output()->dims()[1] && - param.Filter()->dims()[2] == param.Filter()->dims()[3] && - param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) { - math::DepthwiseConvAddBNRelu3x3s1p1(param.Input(), param.Filter(), - param.Output(), param.NewScale(), - param.NewBias(), true); - } else if (param.Groups() == param.Input()->dims()[1] && - param.Input()->dims()[1] == param.Output()->dims()[1] && - param.Filter()->dims()[2] == param.Filter()->dims()[3] && - param.Filter()->dims()[2] == 3 && param.Strides()[0] == 2) { - // math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(), - // param.Output(), param.NewScale(), - // param.NewBias(), 1); - math::DepthwiseConvAddBNRelu3x3s2p1v2(param.Input(), param.Filter(), - param.Output(), param.NewScale(), - param.NewBias(), true); - } else { - ConvBNAddReluBasic(param); - } - } - - } // namespace operators +namespace operators { +void ConvBNAddReluBasic(const FusionConvBNAddReluParam ¶m) { + const Tensor *input = param.Input(); + Tensor filter = *param.Filter(); + Tensor new_bias = *param.NewBias(); + Tensor new_scale = *param.NewScale(); + Tensor *output = param.Output(); + Tensor *bias1 = param.Bias(); + int groups = param.Groups(); + DLOG << "yangfei2"; + DLOG << bias1->dims(); + std::vector strides = param.Strides(); + std::vector paddings = param.Paddings(); + std::vector dilations = param.Dilations(); + + const int batch_size = static_cast(input->dims()[0]); + + std::vector filter_shape_vec(framework::vectorize(filter.dims())); + + std::vector output_shape_vec(framework::vectorize(output->dims())); + size_t data_dim = filter_shape_vec.size() - 2; + std::vector col_shape_vec(1 + 2 * data_dim); + col_shape_vec[0] = input->dims()[1] / groups; + for (size_t j = 0; j < data_dim; ++j) { + col_shape_vec[j + 1] = filter_shape_vec[j + 2]; + col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; + } + framework::DDim col_shape(framework::make_ddim(col_shape_vec)); + + framework::DDim col_matrix_shape = + framework::flatten_to_2d(col_shape, data_dim + 1); + + bool is_expand = + math::IsExpand(filter_shape_vec, strides, paddings, dilations); + Tensor col; + Tensor col_matrix; + if (is_expand) { + col.mutable_data(col_shape); + col_matrix.ShareDataWith(col); + col_matrix.Resize(col_matrix_shape); + } + + framework::DDim input_shape = framework::slice_ddim( + input->dims(), 1, static_cast(input->dims().size())); + + framework::DDim filter_matrix_shape = {filter.dims()[0], + filter.numel() / filter.dims()[0]}; + filter.Resize(filter_matrix_shape); + framework::DDim output_matrix_shape = { + output->dims()[1], + output->numel() / (output->dims()[0] * output->dims()[1])}; + + // convolution operator: im2col(or vol2col) + gemm + int in_step = static_cast(input->dims()[1]) / groups; + int out_step = static_cast(output->dims()[1]) / groups; + + math::Vol2ColFunctor vol2col; + math::Im2ColFunctor im2col; + + for (int i = 0; i < batch_size; i++) { + Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); + Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); + Tensor bias_batch = bias1->Slice(i, i + 1).Resize(output_matrix_shape); + for (int g = 0; g < groups; g++) { + Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); + + if (!is_expand) { + col.ShareDataWith(in_slice); + col_matrix.ShareDataWith(col); + col_matrix.Resize(col_matrix_shape); + } else if (data_dim == 2U) { + // im2col + im2col(in_slice, dilations, strides, + std::vector{paddings[0], paddings[1], paddings[0], + paddings[1]}, + &col); + } else if (data_dim == 3U) { + // vol2col + vol2col(in_slice, dilations, strides, paddings, &col); + } + // gemm + Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); + Tensor bias_data = bias_batch.Slice(g * out_step, (g + 1) * out_step); + math::matmulWithBnAdd(filter_slice, false, col_matrix, false, + static_cast(1), &out_slice, + static_cast(1), true, &new_scale, + &new_bias, g, bias_data.data()); + } + } +} +template +void ConvBNAddReluCompute(const FusionConvBNAddReluParam ¶m) { + Tensor Bias; + Bias.mutable_data({param.Groups()}); + if (param.Groups() == param.Input()->dims()[1] && + param.Input()->dims()[1] == param.Output()->dims()[1] && + param.Filter()->dims()[2] == param.Filter()->dims()[3] && + param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) { + math::DepthwiseConvAddBNRelu3x3s1p1(param.Input(), param.Filter(), + param.Output(), param.NewScale(), + param.NewBias(), true); + } else if (param.Groups() == param.Input()->dims()[1] && + param.Input()->dims()[1] == param.Output()->dims()[1] && + param.Filter()->dims()[2] == param.Filter()->dims()[3] && + param.Filter()->dims()[2] == 3 && param.Strides()[0] == 2) { + // math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(), + // param.Output(), param.NewScale(), + // param.NewBias(), 1); + math::DepthwiseConvAddBNRelu3x3s2p1v2(param.Input(), param.Filter(), + param.Output(), param.NewScale(), + param.NewBias(), true); + } else { + ConvBNAddReluBasic(param); + } +} + +} // namespace operators } // namespace paddle_mobile #endif diff --git a/src/operators/kernel/conv_bn_add_relu_kernel.h b/src/operators/kernel/conv_bn_add_relu_kernel.h index 57ebbb42f1..820e5f8bcb 100644 --- a/src/operators/kernel/conv_bn_add_relu_kernel.h +++ b/src/operators/kernel/conv_bn_add_relu_kernel.h @@ -26,20 +26,20 @@ limitations under the License. */ #include "operators/op_param.h" namespace paddle_mobile { - namespace operators { +namespace operators { - using framework::DDim; - using framework::OpKernelBase; +using framework::DDim; +using framework::OpKernelBase; - template - class ConvBNAddReluKernel - : public OpKernelBase> { - public: - void Compute(const FusionConvBNAddReluParam ¶m) const; - bool Init(FusionConvBNAddReluParam *param); - }; +template +class ConvBNAddReluKernel + : public OpKernelBase> { + public: + void Compute(const FusionConvBNAddReluParam ¶m) const; + bool Init(FusionConvBNAddReluParam *param); +}; - } // namespace operators +} // namespace operators } // namespace paddle_mobile #endif diff --git a/src/operators/math/gemm.cpp b/src/operators/math/gemm.cpp index 63cea79997..cd03b5e263 100644 --- a/src/operators/math/gemm.cpp +++ b/src/operators/math/gemm.cpp @@ -716,6 +716,27 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a, } } +// 分块矩阵乘法 +void InnerKernelWithBnAdd(int mc, int nc, float alpha, const float *a, + const float *b, float beta, float *c, float *C, + int ldc, bool relu, float *new_scale, float *new_bias, + float *bias) { +#pragma omp parallel for + for (int j = 0; j < nc; j += NR) { + for (int i = 0; i < mc; i += MR) { +#if __aarch64__ + // AddDot8x12(KC, a + i * KC, b + j * KC, c + i * NC + j, NC); + AddDot6x16(KC, a + i * KC, b + j * KC, c + i * NC + j, NC); +#else + // AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC); + // AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC); + AddDot6x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC); +#endif + } + } + WriteWithBnAddRelu(mc, nc, c, C, ldc, new_scale, new_bias, bias); +} + void InnerKernelWithPRelu(int mc, int nc, const float *a, const float *b, float *c, float *C, int ldc, float *p, std::string mode, float *bias, float *bias1) { @@ -1183,6 +1204,59 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, } } +// C = A * B, batchnorm(C),C = C + bias; relu(C) +void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc, + float *new_scale, float *new_bias, float *bias) { + int nc1 = nc / 4; + int _nc1 = nc % 4; + + float *c_ptr, *C_ptr, *bias_ptr; + float32x4_t cv; + float32x4_t nbias; + float32x2_t scale; + float32x4_t biasv; + float32x4_t zero = vdupq_n_f32(0.0); + for (int i = 0; i < mc; ++i) { + c_ptr = c + i * NC; + C_ptr = C + i * ldc; + bias_ptr = bias + i * ldc; + nbias = vld1q_dup_f32(new_bias); + scale = vld1_dup_f32(new_scale); + new_bias++; + new_scale++; + float scale0 = vget_lane_f32(scale, 0); + for (int j = 0; j < nc1; ++j) { + cv = vld1q_f32(c_ptr); + biasv = vld1q_f32(bias_ptr); + cv = vmlaq_n_f32(nbias, cv, scale0); + cv = vaddq_f32(cv, biasv); + cv = vmaxq_f32(cv, zero); + vst1q_f32(C_ptr, cv); + c_ptr += 4; + C_ptr += 4; + bias_ptr += 4; + } + if (_nc1 != 0) { + cv = vld1q_f32(c_ptr); + biasv = vld1q_f32(bias_ptr); + cv = vmlaq_n_f32(nbias, cv, scale0); + cv = vaddq_f32(cv, biasv); + cv = vmaxq_f32(cv, zero); + if (_nc1 >= 1) { + vst1q_lane_f32(C_ptr, cv, 0); + C_ptr++; + } + if (_nc1 >= 2) { + vst1q_lane_f32(C_ptr, cv, 1); + C_ptr++; + } + if (_nc1 >= 3) { + vst1q_lane_f32(C_ptr, cv, 2); + } + } + } +} + #else void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) { @@ -2426,6 +2500,59 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale, "q8", "q10", "q11", "q12", "q13", "q14"); } +// C = A * B, batchnorm(C),C = C + bias; relu(C) +void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc, + float *new_scale, float *new_bias, float *bias) { + int nc1 = nc / 4; + int _nc1 = nc % 4; + + float *c_ptr, *C_ptr, *bias_ptr; + float32x4_t cv; + float32x4_t nbias; + float32x2_t scale; + float32x4_t biasv; + float32x4_t zero = vdupq_n_f32(0.0); + for (int i = 0; i < mc; ++i) { + c_ptr = c + i * NC; + C_ptr = C + i * ldc; + bias_ptr = bias + i * ldc; + nbias = vld1q_dup_f32(new_bias); + scale = vld1_dup_f32(new_scale); + new_bias++; + new_scale++; + float scale0 = vget_lane_f32(scale, 0); + for (int j = 0; j < nc1; ++j) { + cv = vld1q_f32(c_ptr); + biasv = vld1q_f32(bias_ptr); + cv = vmlaq_n_f32(nbias, cv, scale0); + cv = vaddq_f32(cv, biasv); + cv = vmaxq_f32(cv, zero); + vst1q_f32(C_ptr, cv); + c_ptr += 4; + C_ptr += 4; + bias_ptr += 4; + } + if (_nc1 != 0) { + cv = vld1q_f32(c_ptr); + biasv = vld1q_f32(bias_ptr); + cv = vmlaq_n_f32(nbias, cv, scale0); + cv = vaddq_f32(cv, biasv); + cv = vmaxq_f32(cv, zero); + if (_nc1 >= 1) { + vst1q_lane_f32(C_ptr, cv, 0); + C_ptr++; + } + if (_nc1 >= 2) { + vst1q_lane_f32(C_ptr, cv, 1); + C_ptr++; + } + if (_nc1 >= 3) { + vst1q_lane_f32(C_ptr, cv, 2); + } + } + } +} + /* // C = A * B void VecWriteBasic(int n, float *c, float *C, int ldc) { @@ -2893,6 +3020,68 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda, paddle_mobile::memory::Free(zero); } +void SgemmWithBnAdd(int m, int n, int k, float alpha, const float *A, int lda, + const float *B, int ldb, float beta, float *C, int ldc, + bool relu, float *new_scale, float *new_bias, float *bias) { + // L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73) + // L2 cache is 0.5~4 Mib (Contex-A72 cluster) + int L1 = 32 * 1024; + int L2 = 512 * 1024; + + KC = k; + MC = L1 / (KC * sizeof(float)); + NC = L2 / (KC * sizeof(float)); + + // make sure MC is multiple of MR, and NC is multiple of NR + int mblock_num = (m + MC - 1) / MC; + MC = (m + mblock_num - 1) / mblock_num; + MC = (MC + MR - 1) / MR * MR; + // DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n"; + + int nblock_num = (n + NC - 1) / NC; + NC = (n + nblock_num - 1) / nblock_num; + NC = (NC + NR - 1) / NR * NR; + // DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n"; + + packedA = static_cast( + paddle_mobile::memory::Alloc(sizeof(float) * MC * KC)); + packedB = static_cast( + paddle_mobile::memory::Alloc(sizeof(float) * KC * NC)); + packedC = static_cast( + paddle_mobile::memory::Alloc(sizeof(float) * MC * NC)); + zero = static_cast(paddle_mobile::memory::Alloc(sizeof(float) * KC)); + memset(static_cast(zero), 0, sizeof(float) * KC); + + int mc, nc; + for (int j = 0; j < n; j += NC) { + nc = s_min(n - j, NC); +#if __aarch64__ + // PackMatrixB_12c(KC, nc, nc % NR, &B(0, j), ldb, packedB); + PackMatrixB_16c(KC, nc, nc % NR, &B(0, j), ldb, packedB); +#else + PackMatrixB_8c(KC, nc, nc % NR, &B(0, j), ldb, packedB); +#endif + for (int i = 0; i < m; i += MC) { + mc = s_min(m - i, MC); +#if __aarch64__ + PackMatrixA_6r(mc, KC, mc % MR, &A(i, 0), lda, packedA); + // PackMatrixA_8r(mc, KC, mc % MR, &A(i, 0), lda, packedA); +#else + PackMatrixA_6r(mc, KC, mc % MR, &A(i, 0), lda, packedA); +#endif + + InnerKernelWithBnAdd(mc, nc, alpha, packedA, packedB, beta, packedC, + &C(i, j), ldc, relu, new_scale + i, new_bias + i, + bias + i * ldc + j); + } + } + + paddle_mobile::memory::Free(packedA); + paddle_mobile::memory::Free(packedB); + paddle_mobile::memory::Free(packedC); + paddle_mobile::memory::Free(zero); +} + void SgemmWithPRelu(int m, int n, int k, const float *A, int lda, const float *B, int ldb, float *C, int ldc, float *p, std::string mode, float *bias, float *bias1) { @@ -3176,6 +3365,115 @@ void SgemmWithBn_omp(int m, int n, int k, float alpha, const float *A, int lda, paddle_mobile::memory::Free(zero); } +void SgemmWithBnAdd_omp(int m, int n, int k, float alpha, const float *A, + int lda, const float *B, int ldb, float beta, float *C, + int ldc, bool relu, float *new_scale, float *new_bias, + float *bias) { +#ifdef _OPENMP + int max_threads = omp_get_max_threads(); +#else + int max_threads = 1; +#endif + + int L1 = 64 / max_threads * 1024; + KC = k; + if (m > n) { + // 对 A 分块 + MC = L1 / (KC * sizeof(float)); + int mblock_num = (m + MC - 1) / MC; + MC = (m + mblock_num - 1) / mblock_num; + MC = (MC + MR - 1) / MR * MR; + // 补齐 B + NC = (n + NR - 1) / NR * NR; + +#if __aarch64__ + procPackA = PackMatrixA_6r; + procPackB = PackMatrixB_omp_16c; + procAddDot = AddDot6x16; +#else + procPackA = PackMatrixA_6r; + procPackB = PackMatrixB_omp_8c; + procAddDot = AddDot6x8; +#endif + + packedB = static_cast( + paddle_mobile::memory::Alloc(sizeof(float) * KC * NC)); + procPackB(KC, NC, NC % NR, B, ldb, packedB); + packedA = static_cast( + paddle_mobile::memory::Alloc(sizeof(float) * MC * KC * max_threads)); + } else { + // 对 B 分块 + NC = L1 / (KC * sizeof(float)); + int nblock_num = (n + NC - 1) / NC; + NC = (n + nblock_num - 1) / nblock_num; + NC = (NC + NR - 1) / NR * NR; + // 补齐 A + MC = (m + MR - 1) / MR * MR; + +#if __aarch64__ + procPackA = PackMatrixA_omp_6r; + procPackB = PackMatrixB_16c; + procAddDot = AddDot6x16; +#else + procPackA = PackMatrixA_omp_6r; + procPackB = PackMatrixB_8c; + procAddDot = AddDot6x8; +#endif + + packedA = static_cast( + paddle_mobile::memory::Alloc(sizeof(float) * MC * KC)); + procPackA(MC, KC, MC % MR, A, lda, packedA); + packedB = static_cast( + paddle_mobile::memory::Alloc(sizeof(float) * KC * NC * max_threads)); + } + zero = static_cast(paddle_mobile::memory::Alloc(sizeof(float) * KC)); + memset(static_cast(zero), 0, sizeof(float) * KC); + packedC = static_cast( + paddle_mobile::memory::Alloc(sizeof(float) * MC * NC * max_threads)); + + if (m > n) { +#pragma omp parallel for + for (int i = 0; i < m; i += MC) { +#ifdef _OPENMP + int local_threads = omp_get_thread_num(); +#else + int local_threads = 0; +#endif + + int mc; + mc = s_min(m - i, MC); + float *local_A = packedA + MC * KC * local_threads; + float *local_C = packedC + MC * NC * local_threads; + procPackA(mc, KC, mc % MR, &A(i, 0), lda, local_A); + InnerKernelWithBnAdd(mc, n, alpha, local_A, packedB, beta, local_C, + &C(i, 0), ldc, relu, new_scale + i, new_bias + i, + bias + i * ldc); + } + } else { +#pragma omp parallel for + for (int j = 0; j < n; j += NC) { +#ifdef _OPENMP + int local_threads = omp_get_thread_num(); +#else + int local_threads = 0; +#endif + + int nc; + nc = s_min(n - j, NC); + float *local_B = packedB + KC * NC * local_threads; + float *local_C = packedC + MC * NC * local_threads; + procPackB(KC, nc, nc % NR, &B(0, j), ldb, local_B); + InnerKernelWithBnAdd(m, nc, alpha, packedA, local_B, beta, local_C, + &C(0, j), ldc, relu, new_scale, new_bias, bias + j); + } + } + + paddle_mobile::memory::Free(packedA); + paddle_mobile::memory::Free(packedB); + paddle_mobile::memory::Free(packedC); + paddle_mobile::memory::Free(zero); +} + void SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda, const float *B, int ldb, float *C, int ldc, float *p, std::string mode, float *bias, float *bias1) { diff --git a/src/operators/math/gemm.h b/src/operators/math/gemm.h index 6139f1b45f..2378d59c55 100644 --- a/src/operators/math/gemm.h +++ b/src/operators/math/gemm.h @@ -81,6 +81,10 @@ void InnerKernelWithBias(int mc, int nc, float alpha, const float *a, void InnerKernelWithBn(int mc, int nc, float alpha, const float *a, const float *b, float beta, float *c, float *C, int ldc, bool relu, float *new_scale, float *new_bias); +void InnerKernelWithBnAdd(int mc, int nc, float alpha, const float *a, + const float *b, float beta, float *c, float *C, + int ldc, bool relu, float *new_scale, float *new_bias, + float *bias); void InnerKernelWithPRelu(int mc, int nc, const float *a, const float *b, float *c, float *C, int ldc, float *p, std::string mode, float *bias, float *bias1); @@ -125,7 +129,8 @@ void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *new_scale, // C = A * B, batchnorm(C), relu(C) void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *new_scale, float *new_bias); - +void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc, + float *new_scale, float *new_bias, float *bias1); /* // 向量矩阵乘法结果回写 // C = A * B @@ -153,7 +158,9 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda, void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda, const float *B, int ldb, float beta, float *C, int ldc, bool relu, float *new_scale, float *new_bias); - +void SgemmWithBnAdd(int m, int n, int k, float alpha, const float *A, int lda, + const float *B, int ldb, float beta, float *C, int ldc, + bool relu, float *new_scale, float *new_bias, float *bias); void SgemmWithPRelu(int m, int n, int k, const float *A, int lda, const float *B, int ldb, float *C, int ldc, float *p, std::string mode, float *bias, float *bias1); @@ -167,6 +174,11 @@ void Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda, void SgemmWithBn_omp(int m, int n, int k, float alpha, const float *A, int lda, const float *B, int ldb, float beta, float *C, int ldc, bool relu, float *new_scale, float *new_bias); +// 32位 float 矩阵乘法, 并对结果进行 batchnorm和add(openmp 多线程版本) +void SgemmWithBnAdd_omp(int m, int n, int k, float alpha, const float *A, + int lda, const float *B, int ldb, float beta, float *C, + int ldc, bool relu, float *new_scale, float *new_bias, + float *bias); void SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda, const float *B, int ldb, float *C, int ldc, float *p, diff --git a/src/operators/math/math_function.cpp b/src/operators/math/math_function.cpp index c5192441b2..dca8be83ef 100644 --- a/src/operators/math/math_function.cpp +++ b/src/operators/math/math_function.cpp @@ -87,6 +87,43 @@ void matmulWithBn(const framework::Tensor &matrix_a, bool trans_a, new_bias->data() + group); #endif } +template <> +void matmulWithBnAdd(const framework::Tensor &matrix_a, bool trans_a, + const framework::Tensor &matrix_b, bool trans_b, + float alpha, framework::Tensor *matrix_out, + float beta, bool relu, framework::Tensor *new_scale, + framework::Tensor *new_bias, int group, + float *bias) { + auto dim_a = matrix_a.dims(); + auto dim_b = matrix_b.dims(); + auto dim_out = matrix_out->dims(); + // PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && + // dim_out.size() == + // 2, + // "The input and output of matmul be matrix"); + // + // PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) && + // platform::is_cpu_place(matrix_b.place()) + // && + // platform::is_cpu_place(matrix_out->place()), + // "Matrix must all be in CPUPlace"); + + int M = dim_out[0]; + int N = dim_out[1]; + int K = (!trans_a) ? dim_a[1] : dim_a[0]; + +#ifdef _OPENMP + SgemmWithBnAdd_omp(M, N, K, alpha, matrix_a.data(), K, + matrix_b.data(), N, beta, matrix_out->data(), + N, relu, new_scale->data() + group, + new_bias->data() + group, bias); +#else + SgemmWithBnAdd(M, N, K, alpha, matrix_a.data(), K, + matrix_b.data(), N, beta, matrix_out->data(), N, + relu, new_scale->data() + group, + new_bias->data() + group, bias); +#endif +} void matmulWithPRelu(const framework::Tensor &matrix_a, bool trans_a, const framework::Tensor &matrix_b, bool trans_b, framework::Tensor *matrix_out, float *p, std::string mode, diff --git a/src/operators/math/math_function.h b/src/operators/math/math_function.h index 26ec50872b..9b51743999 100644 --- a/src/operators/math/math_function.h +++ b/src/operators/math/math_function.h @@ -33,6 +33,12 @@ void matmulWithBn(const framework::Tensor &matrix_a, bool trans_a, framework::Tensor *matrix_out, T beta, bool relu, framework::Tensor *new_scale, framework::Tensor *new_bias, int group); +template +void matmulWithBnAdd(const framework::Tensor &matrix_a, bool trans_a, + const framework::Tensor &matrix_b, bool trans_b, + float alpha, framework::Tensor *matrix_out, float beta, + bool relu, framework::Tensor *new_scale, + framework::Tensor *new_bias, int group, float *bias); void matmulWithPRelu(const framework::Tensor &matrix_a, bool trans_a, const framework::Tensor &matrix_b, bool trans_b, diff --git a/src/operators/op_param.h b/src/operators/op_param.h index 8f289b24ff..a6077812a0 100644 --- a/src/operators/op_param.h +++ b/src/operators/op_param.h @@ -1472,6 +1472,119 @@ class FusionConvAddBNReluParam : public OpParam { }; #endif +#ifdef FUSION_CONVBNADDRELU_OP +template +class FusionConvBNAddReluParam : public OpParam { + typedef typename DtypeTensorTrait::gtype GType; + typedef typename DtypeTensorTrait::rtype RType; + + public: + FusionConvBNAddReluParam(const VariableNameMap &inputs, + const VariableNameMap &outputs, + const AttributeMap &attrs, const Scope &scope) { + bias_ = InputYFrom(inputs, scope); + axis_ = GetAttr("axis", attrs); + filter_ = FilterFrom(inputs, scope); + input_ = InputFrom(inputs, scope); + output_ = OutFrom(outputs, scope); + strides_ = GetAttr>("strides", attrs); + paddings_ = GetAttr>("paddings", attrs); + dilations_ = GetAttr>("dilations", attrs); + groups = GetAttr("groups", attrs); + input_bias_ = InputBiasFrom(inputs, scope); + input_mean_ = InputMeanFrom(inputs, scope); + input_scale_ = InputScaleFrom(inputs, scope); + input_variance_ = InputVarianceFrom(inputs, scope); + epsilon_ = GetAttr("epsilon", attrs); + momentum_ = GetAttr("momentum", attrs); + keyBNY_ = getkey("BNY", inputs, 0); + keyX_ = getkey("X", inputs, 0); + keyY_ = getkey("Y", inputs, 0); + if (keyX_ == keyBNY_) { + bias_ = InputYFrom(inputs, scope); + } else if (keyY_ == keyBNY_) { + bias_ = InputXFrom(inputs, scope); + } + // is_test_ = GetAttr("is_test", attrs); + } + RType *Bias() const { return bias_; } + + const int &Axis() const { return axis_; } + + const RType *Input() const { return input_; } + +#ifdef PADDLE_MOBILE_FPGA + RType *Filter() const { return filter_; } +#else + const RType *Filter() const { return filter_; } +#endif + + RType *Output() const { return output_; } + + const vector &Strides() const { return strides_; } + + const vector &Paddings() const { return paddings_; } + + const vector &Dilations() const { return dilations_; } + + const int &Groups() const { return groups; } + + const RType *InputBias() const { return input_bias_; } + + const RType *InputMean() const { return input_mean_; } + + const RType *InputScale() const { return input_scale_; } + + const RType *InputVariance() const { return input_variance_; } + + const float &Epsilon() const { return epsilon_; } + + const float &Momentum() const { return momentum_; } + + const bool &IsTest() const { return is_test_; } + + void SetNewScale(RType *new_scale) { new_scale_ = new_scale; } + + void SetNewBias(RType *new_bias) { new_bias_ = new_bias; } + + const RType *NewScale() const { return new_scale_; } + + const RType *NewBias() const { return new_bias_; } + + protected: + RType *bias_; + int axis_; + RType *input_; + RType *output_; + RType *filter_; + vector strides_; + vector paddings_; + vector dilations_; + int groups; + RType *input_bias_; + RType *input_mean_; + RType *input_scale_; + RType *input_variance_; + float epsilon_; + float momentum_; + bool is_test_; + RType *new_bias_; + RType *new_scale_; + std::string keyBNY_; + std::string keyX_; + std::string keyY_; +#ifdef PADDLE_MOBILE_FPGA + + private: + fpga::ConvArgs fpga_conv_args; + + public: + const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; } + void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; } +#endif +}; +#endif + #ifdef FUSION_CONVBN_OP template class FusionConvBNParam : public OpParam { diff --git a/tools/op.cmake b/tools/op.cmake index 38c5114005..5965cf030f 100644 --- a/tools/op.cmake +++ b/tools/op.cmake @@ -87,6 +87,7 @@ if ("resnet" IN_LIST NET) set(ELEMENTWISEADD_OP ON) set(POOL_OP ON) set(BATCHNORM_OP ON) + set(FUSION_CONVBNADDRELU_OP ON) set(MUL_OP ON) set(RESHAPE_OP ON) set(SOFTMAX_OP ON) @@ -141,6 +142,7 @@ if(NOT FOUND_MATCH) set(FUSION_CONVADDADDPRELU_OP ON) set(FUSION_DWCONVBNRELU_OP ON) set(FUSION_CONVBNRELU_OP ON) + set(FUSION_CONVBNADDRELU_OP ON) set(PRELU_OP ON) set(RESIZE_OP ON) set(SCALE_OP ON) @@ -244,6 +246,10 @@ if (FUSION_CONVBNRELU_OP) add_definitions(-DFUSION_CONVBNRELU_OP) endif() +if (FUSION_CONVBNADDRELU_OP) + add_definitions(-DFUSION_CONVBNADDRELU_OP) +endif() + if (PRELU_OP) add_definitions(-DPRELU_OP) endif() -- GitLab