提交 028a35b1 编写于 作者: X xiaogang 提交者: GitHub

[LITE][OPENCL] Add nearest_interp kernel of OpenCL Image2D format and UT. test=develop(#2838)

上级 88abc6ff
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
__kernel void nearest_interp(__read_only image2d_t input, __write_only image2d_t output,
__private const float scale_h, __private const float scale_w,
__private const int in_dims_h, __private const int out_dims_h,
__private const int in_dims_w, __private const int out_dims_w) {
const int c = get_global_id(0);
const int w = get_global_id(1);
const int nh = get_global_id(2);
int2 output_pos;
output_pos.x = c * out_dims_w + w;
output_pos.y = nh;
int out_n = nh / out_dims_h;
int out_h = nh % out_dims_h;
int2 input_pos;
input_pos.x = c * in_dims_w + w / scale_w;
input_pos.y = out_n * in_dims_h + out_h / scale_h;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
half4 input_data = read_imageh(input, sampler, (int2)(input_pos.x, input_pos.y));
write_imageh(output, (int2)(output_pos.x , output_pos.y), input_data);
}
......@@ -19,6 +19,7 @@ add_kernel(depthwise_conv2d_opencl OPENCL basic SRCS depthwise_conv2d_compute.cc
add_kernel(reshape_opencl OPENCL basic SRCS reshape_compute.cc DEPS ${cl_kernel_deps})
add_kernel(conv_opencl OPENCL basic SRCS conv_compute.cc DEPS ${cl_kernel_deps} cl_image_converter)
add_kernel(layout_opencl OPENCL basic SRCS layout_compute.cc DEPS ${cl_kernel_deps})
add_kernel(nearest_interp_opencl OPENCL basic SRCS nearest_interp_compute.cc DEPS ${cl_kernel_deps})
lite_cc_test(test_elementwise_add_opencl SRCS elementwise_add_compute_test.cc
DEPS elementwise_add_opencl fusion_elementwise_add_activation_opencl op_registry program context
......@@ -75,5 +76,8 @@ lite_cc_test(test_conv_image2d_opencl SRCS conv_image2d_compute_test.cc
ARGS --cl_path=${CMAKE_SOURCE_DIR}/lite/backends/opencl)
lite_cc_test(test_layout_opencl SRCS layout_compute_test.cc
DEPS layout_opencl op_registry program context
DEPS layout_opencl op_registry program context cl_image_converter
ARGS --cl_path=${CMAKE_SOURCE_DIR}/lite/backends/opencl)
lite_cc_test(test_nearest_interp_opencl SRCS nearest_interp_compute_test.cc
DEPS nearest_interp_opencl layout_opencl op_registry program context cl_image_converter
ARGS --cl_path=${CMAKE_SOURCE_DIR}/lite/backends/opencl)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class NearestInterpComputeFloatImageDefault
: public KernelLite<TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault)> {
public:
using param_t = operators::InterpolateParam;
std::string doc() const override {
return "NearestInterp using cl::Image2D(ImageDefault/RGBA), kFloat";
}
void PrepareForRun() override {
auto& context = ctx_->As<OpenCLContext>();
context.cl_context()->AddKernel(
kernel_func_name_, "image/nearest_interp_kernel.cl", build_options_);
}
void Run() override {
auto& param = *param_.get_mutable<param_t>();
const auto& x_dims = param.X->dims();
auto* x_buf = param.X->data<float, cl::Image2D>();
auto* out_buf =
param.Out->mutable_data<float, cl::Image2D>(param.out_w, param.out_h);
const auto& y_dims = param.Out->dims(); // useless: check dim only
float scale_h = y_dims[2] / x_dims[2];
float scale_w = y_dims[3] / x_dims[3];
int in_dims_h = x_dims[2];
int out_dims_h = y_dims[2];
int in_dims_w = x_dims[3];
int out_dims_w = y_dims[3];
auto& context = ctx_->As<OpenCLContext>();
CHECK(context.cl_context() != nullptr);
STL::stringstream kernel_key;
kernel_key << kernel_func_name_ << build_options_;
auto kernel = context.cl_context()->GetKernel(kernel_key.str());
int arg_idx = 0;
cl_int status = kernel.setArg(arg_idx, *x_buf);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, *out_buf);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const float>(scale_h));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const float>(scale_w));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims_h));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims_h));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims_w));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims_w));
CL_CHECK_FATAL(status);
paddle::lite::CLImageConverterDefault default_convertor;
auto y_img_shape = default_convertor.InitImageDimInfoWith(y_dims); // w, h
auto y_img_width = y_img_shape[0];
LOG(INFO) << "y_img_width:" << y_img_width;
auto global_work_size =
cl::NDRange{static_cast<cl::size_type>(y_img_width / y_dims[3]),
static_cast<cl::size_type>(y_dims[3]),
static_cast<cl::size_type>(y_dims[0] * y_dims[2])};
status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
kernel,
cl::NullRange,
global_work_size,
cl::NullRange,
nullptr,
event_.get());
CL_CHECK_FATAL(status);
// TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
// context.cl_wait_list()->emplace(out_buf, event_);
context.cl_context()->GetCommandQueue().finish();
}
private:
std::string kernel_func_name_{"nearest_interp"};
std::string build_options_{"-DCL_DTYPE_float "};
std::shared_ptr<cl::Event> event_{new cl::Event};
};
class NearestInterpComputeFP16ImageDefault
: public KernelLite<TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault)> {
public:
using param_t = operators::InterpolateParam;
std::string doc() const override {
return "NearestInterp using cl::Image2D(ImageDefault/RGBA), kFP16";
}
void PrepareForRun() override {
auto& context = ctx_->As<OpenCLContext>();
context.cl_context()->AddKernel(
kernel_func_name_, "image/nearest_interp_kernel.cl", build_options_);
}
void Run() override {
auto& param = *param_.get_mutable<param_t>();
const auto& x_dims = param.X->dims();
auto* x_buf =
param.X->data<int16_t,
cl::Image2D>(); // use int16_t represents half float
auto image_shape = InitImageDimInfoWith(x_dims);
auto* out_buf =
param.Out->mutable_data<int16_t, cl::Image2D>( // use int16_t
// represents half float
image_shape["width"],
image_shape["height"]);
const auto& y_dims = param.Out->dims(); // useless: check dim only
float scale_h = y_dims[2] / x_dims[2];
float scale_w = y_dims[3] / x_dims[3];
int in_dims_h = x_dims[2];
int out_dims_h = y_dims[2];
int in_dims_w = x_dims[3];
int out_dims_w = y_dims[3];
auto& context = ctx_->As<OpenCLContext>();
CHECK(context.cl_context() != nullptr);
STL::stringstream kernel_key;
kernel_key << kernel_func_name_ << build_options_;
auto kernel = context.cl_context()->GetKernel(kernel_key.str());
int arg_idx = 0;
cl_int status = kernel.setArg(arg_idx, *x_buf);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, *out_buf);
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const float>(scale_h));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const float>(scale_w));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims_h));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims_h));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims_w));
CL_CHECK_FATAL(status);
status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims_w));
CL_CHECK_FATAL(status);
VLOG(4) << TargetToStr(param.X->target());
VLOG(4) << TargetToStr(param.Out->target());
VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
<< image_shape["height"];
VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
<< x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
<< y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
auto global_work_size =
cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
static_cast<cl::size_type>(image_shape["height"])};
status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
kernel,
cl::NullRange,
global_work_size,
cl::NullRange,
nullptr,
event_.get());
CL_CHECK_FATAL(status);
// TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
// context.cl_wait_list()->emplace(out_buf, event_);
context.cl_context()->GetCommandQueue().finish();
}
private:
std::string kernel_func_name_{"nearest_interp"};
std::string build_options_{"-DCL_DTYPE_half"};
std::shared_ptr<cl::Event> event_{new cl::Event};
};
} // namespace opencl
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(
nearest_interp,
kOpenCL,
kFloat,
kImageDefault,
paddle::lite::kernels::opencl::NearestInterpComputeFloatImageDefault,
ImageDefault)
.BindInput("X",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault))})
.Finalize();
REGISTER_LITE_KERNEL(
nearest_interp,
kOpenCL,
kFP16,
kImageDefault,
paddle::lite::kernels::opencl::NearestInterpComputeFP16ImageDefault,
ImageDefault)
.BindInput("X",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/image_helper.h"
namespace paddle {
namespace lite {
template <typename dtype>
void nearest_interp_compute_ref(const dtype *src,
int w_in,
int h_in,
dtype *dst,
int w_out,
int h_out,
float scale_x,
float scale_y,
bool with_align = false) {
float scale_w_new = (with_align)
? (static_cast<float>(w_in - 1) / (w_out - 1))
: (static_cast<float>(w_in) / (w_out));
float scale_h_new = (with_align)
? (static_cast<float>(h_in - 1) / (h_out - 1))
: (static_cast<float>(h_in) / (h_out));
if (with_align) {
for (int h = 0; h < h_out; ++h) {
dtype *dst_p = dst + h * w_out;
int near_y = static_cast<int>(scale_h_new * h + 0.5);
for (int w = 0; w < w_out; ++w) {
int near_x = static_cast<int>(scale_w_new * w + 0.5);
*dst_p++ = src[near_y * w_in + near_x];
}
}
} else {
for (int h = 0; h < h_out; ++h) {
dtype *dst_p = dst + h * w_out;
int near_y = static_cast<int>(scale_h_new * h);
for (int w = 0; w < w_out; ++w) {
int near_x = static_cast<int>(scale_w_new * w);
*dst_p++ = src[near_y * w_in + near_x];
}
}
}
}
// #define LOOP_TEST
// #define PRINT_RESULT
TEST(nearest_interp_image2d_fp32, compute) {
LOG(INFO) << "main steps of test: host -> layout(buf2img) -> "
"nearest_interp(img) -> "
"layout(img2buf) "
"-> host";
#ifdef LOOP_TEST
for (int n : {1, 3}) {
for (auto c : {1, 3}) {
for (int h : {12, 20, 50, 112}) {
for (int w : {12, 20, 50, 112}) {
for (int out_h : {36, 60, 90, 224}) {
for (int out_w : {36, 60, 90, 224}) {
if (out_w < w || out_h < h) {
continue;
}
#else
const int n = 1;
const int c = 2;
const int h = 3;
const int w = 4;
const int out_h = 6;
const int out_w = 8;
#endif // LOOP_TEST
float scale_x = out_w / w;
float scale_y = out_h / h;
LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " " << c
<< " " << h << " " << w << " ========" << out_h << " "
<< out_w;
// set layout kernels
auto buf_to_img_kernels =
KernelRegistry::Global().Create("layout",
TARGET(kOpenCL),
PRECISION(kAny),
DATALAYOUT(kImageDefault));
auto img_to_buf_kernels =
KernelRegistry::Global().Create("layout",
TARGET(kOpenCL),
PRECISION(kAny),
DATALAYOUT(kNCHW));
auto nearest_interp_img_kernels =
KernelRegistry::Global().Create("nearest_interp",
TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault));
ASSERT_FALSE(buf_to_img_kernels.empty());
ASSERT_FALSE(buf_to_img_kernels.empty());
ASSERT_FALSE(nearest_interp_img_kernels.empty());
auto buf_to_img_kernel = std::move(buf_to_img_kernels.front());
auto img_to_buf_kernel = std::move(img_to_buf_kernels.front());
auto nearest_interp_img_kernel =
std::move(nearest_interp_img_kernels.front());
LOG(INFO) << "get 1st kernel: " << buf_to_img_kernel->doc();
LOG(INFO) << "get 2nd kernel: " << img_to_buf_kernel->doc();
LOG(INFO) << "get 3rd kernel: "
<< nearest_interp_img_kernel->doc();
// set tensors about op param
LOG(INFO) << "set tensors about op param";
// layout(buf->img): x -> nearest_interp_in
// nearest_interp(img): nearest_interp_in -> nearest_interp_out
// layout(img->buf): nearest_interp_out -> y
lite::Tensor x, y, nearest_interp_in, nearest_interp_out, y_ref;
operators::LayoutParam BufferToImageParam;
operators::LayoutParam ImageToBufferParam;
BufferToImageParam.x = &x;
BufferToImageParam.y = &nearest_interp_in;
ImageToBufferParam.x = &nearest_interp_out;
ImageToBufferParam.y = &y;
operators::InterpolateParam NearestInterpParam;
NearestInterpParam.X = &nearest_interp_in;
NearestInterpParam.Out = &nearest_interp_out;
NearestInterpParam.out_h = out_h;
NearestInterpParam.out_w = out_w;
const DDim x_dim =
DDim(std::vector<DDim::value_type>{n, c, h, w});
const DDim y_dim =
DDim(std::vector<DDim::value_type>{n, c, out_h, out_w});
x.Resize(x_dim);
y.Resize(y_dim);
nearest_interp_in.Resize(x_dim);
nearest_interp_out.Resize(y_dim);
y_ref.Resize(y_dim);
auto nearest_interp_image2d_shape =
paddle::lite::kernels::opencl::InitImageDimInfoWith(x_dim);
// initialize tensors
LOG(INFO) << "initialize tensors";
auto *x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
auto *y_data = y.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
auto *y_data_ref = y_ref.mutable_data<float>(TARGET(kARM));
auto *mapped_x = static_cast<float *>(TargetWrapperCL::Map(
x_data, 0, sizeof(float) * x_dim.production()));
auto *mapped_y = static_cast<float *>(TargetWrapperCL::Map(
y_data, 0, sizeof(float) * y_dim.production()));
for (int i = 0; i < x_dim.production(); ++i) {
mapped_x[i] = static_cast<int>(i) - x_dim.production() / 2;
}
for (int i = 0; i < y_dim.production(); ++i) {
mapped_y[i] = static_cast<int>(0);
}
auto *nearest_interp_in_data =
nearest_interp_in.mutable_data<float, cl::Image2D>(
nearest_interp_image2d_shape["width"],
nearest_interp_image2d_shape["height"]);
auto *nearest_interp_out_data =
nearest_interp_out.mutable_data<float, cl::Image2D>(y_dim[3],
y_dim[2]);
// set context and kernel args
LOG(INFO) << "set context and kernel args";
std::unique_ptr<KernelContext> context(new KernelContext);
context->As<OpenCLContext>().InitOnce();
buf_to_img_kernel->SetParam(BufferToImageParam);
std::unique_ptr<KernelContext> buf_to_img_context(
new KernelContext);
context->As<OpenCLContext>().CopySharedTo(
&(buf_to_img_context->As<OpenCLContext>()));
buf_to_img_kernel->SetContext(std::move(buf_to_img_context));
img_to_buf_kernel->SetParam(ImageToBufferParam);
std::unique_ptr<KernelContext> img_to_buf_context(
new KernelContext);
context->As<OpenCLContext>().CopySharedTo(
&(img_to_buf_context->As<OpenCLContext>()));
img_to_buf_kernel->SetContext(std::move(img_to_buf_context));
nearest_interp_img_kernel->SetParam(NearestInterpParam);
std::unique_ptr<KernelContext> nearest_interp_img_context(
new KernelContext);
context->As<OpenCLContext>().CopySharedTo(
&(nearest_interp_img_context->As<OpenCLContext>()));
nearest_interp_img_kernel->SetContext(
std::move(nearest_interp_img_context));
// run kernels
LOG(INFO) << "run kernel: buf_to_img_kernel";
buf_to_img_kernel->Launch();
LOG(INFO) << "run kernel: nearest_interp_img_kernel";
nearest_interp_img_kernel->Launch();
LOG(INFO) << "run kernel: img_to_buf_kernel";
img_to_buf_kernel->Launch();
// compute ref cpu
for (int nid = 0; nid < x_dim[0]; ++nid) {
for (int cid = 0; cid < x_dim[1]; ++cid) {
float *x_nc =
mapped_x + (nid * x_dim[1] + cid) * x_dim[3] * x_dim[2];
float *y_nc =
y_data_ref + (nid * x_dim[1] + cid) * y_dim[3] * y_dim[2];
nearest_interp_compute_ref<float>(x_nc,
x_dim[3],
x_dim[2],
y_nc,
y_dim[3],
y_dim[2],
1 / scale_x,
1 / scale_y);
}
}
// result
#ifdef PRINT_RESULT
LOG(INFO) << "---- print kernel result (input -> output) ----";
for (int eidx = 0; eidx < x_dim.production(); ++eidx) {
std::cout << mapped_x[eidx] << " ";
}
std::cout << std::endl;
for (int eidx = 0; eidx < y_dim.production(); ++eidx) {
std::cout << mapped_y[eidx] << " ";
}
std::cout << std::endl;
for (int eidx = 0; eidx < y_dim.production(); ++eidx) {
std::cout << y_data_ref[eidx] << " ";
}
std::cout << std::endl;
#endif // PRINT_RESULT
// check result: compare kernel output and cpu output(y_data_ref)
for (int eidx = 0; eidx < y_dim.production(); eidx++) {
EXPECT_NEAR(y_data_ref[eidx], mapped_y[eidx], 1e-6);
if (abs(y_data_ref[eidx] - mapped_y[eidx]) > 1e-6) {
LOG(FATAL) << "1st diff in this case at eidx[from 0]:" << eidx
<< " / " << x_dim.production() << ", y_data_ref["
<< eidx << "]:" << y_data_ref[eidx]
<< ", mapped_y[" << eidx << "]:" << mapped_y[eidx];
break;
}
}
// free
LOG(INFO) << "free: unmap x, y";
TargetWrapperCL::Unmap(x_data, mapped_x);
TargetWrapperCL::Unmap(y_data, mapped_y);
#ifdef LOOP_TEST
}
}
} // w
} // h
} // c
} // n
#else
// nothing to do.
#endif
}
} // namespace lite
} // namespace paddle
// nearest_interp buffer
// USE_LITE_KERNEL(nearest_interp, kOpenCL, kFloat, kNCHW, def);
// nearest_interp image2d fp32
USE_LITE_KERNEL(layout, kOpenCL, kAny, kImageDefault, NCHW_to_ImageDefault);
USE_LITE_KERNEL(layout, kOpenCL, kAny, kNCHW, ImageDefault_to_NCHW);
USE_LITE_KERNEL(nearest_interp, kOpenCL, kFloat, kImageDefault, ImageDefault);
// nearest_interp image2d fp16
USE_LITE_KERNEL(nearest_interp, kOpenCL, kFP16, kImageDefault, ImageDefault);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册